

Revision 1

Certain figures in this Report contain sensitive, securityrelated information protected from public disclosure by Federal and State law. This Report is suitable for public disclosure only after these figures are removed.

HYDROGEOLOGIC INVESTIGATION REPORT

FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Prepared For: Exelon Generation Company, LLC

DISCLAIMER:

SOME FORMATTING CHANGES MAY HAVE OCCURRED WHEN THE ORIGINAL DOCUMENT WAS PRINTED TO PDF; HOWEVER, THE ORIGINAL CONTENT REMAINS UNCHANGED.

SEPTEMBER 2006 REF. NO. 045136 (13) Prepared by: Conestoga-Rovers & Associates

651 Colby Drive Waterloo, Ontario Canada N2V 1C2

Office: (519) 884-0510 Fax: (519) 884-0525

web: http:\\www.CRAworld.com

TABLE OF CONTENTS

			<u>Page</u>
EXE	CUTIVE SU	JMMARY	i
1.0	INTROI	DUCTION	1
2.0	STATIO	N DESCRIPTION	2
2.0	2.1	STATION LOCATION	
	2.2	OVERVIEW OF COOLING WATER OPERATIONS	
	2.3	SURROUNDING LAND USE	
	2.4	STATION SETTING	
	2.4.1	TOPOGRAPHY AND SURFACE WATER FEATURES	
	2.4.2	GEOLOGY	
	2.4.3	HYDROGEOLOGY	
	2.4.3.1	EXISTING WELL NETWORK	
	2.4.3.2	GROUNDWATER FLOW	
	2.5	AREA GROUNDWATER USE	9
3.0	AREAS	FOR FURTHER EVALUATION	11
	3.1	SYSTEMS EVALUATIONS	
	3.2	HISTORICAL RELEASES	
	3.3	STATION INVESTIGATIONS	14
	3.3.1	PRE-OPERATIONAL RADIOLOGICAL	
		ENVIRONMENTAL MONITORING PROGRAM	14
	3.3.2	RADIOLOGICAL ENVIRONMENTAL MONITORING	
		PROGRAM	15
	3.3.3	HISTORIC INVESTIGATIONS	15
	3.3.3.1	POWER PLANT DOCUMENTS - UFSAR REPORT	15
	3.3.3.2	BLOWDOWN LINE INVESTIGATION	15
	3.4	IDENTIFIED AREAS FOR FURTHER EVALUATION	16
4.0	FIELD N	METHODS	19
	4.1	BLOWDOWN LINE INVESTIGATION ACTIVITIES	19
	4.1.1	GROUNDWATER MONITORING WELL INSTALLATION	19
	4.1.2	GROUNDWATER MONITORING WELL DEVELOPMENT	21
	4.1.3	SURVEY	
	4.1.4	GROUNDWATER ELEVATION MEASUREMENTS	22
	4.1.5	GROUNDWATER SAMPLE COLLECTION	22
	4.2	FLEETWIDE INVESTIGATION ACTIVITIES	
	4.2.1	GROUNDWATER ELEVATION MEASUREMENTS	
	4.2.2	GROUNDWATER SAMPLE COLLECTION	
	4.2.3	DATA QUALITY OBJECTIVES	
	4.2.4	SAMPLE IDENTIFICATION	
	4.2.5	CHAIN-OF-CUSTODY RECORD	27

TABLE OF CONTENTS

			<u>Page</u>
	4.2.6	QUALITY CONTROL SAMPLES	27
	4.2.7	ANALYSES	
5.0	RESULT	TS SUMMARY	29
	5.1	STATION GEOLOGY	29
	5.2	STATION HYDROGEOLOGY	29
	5.2.1	GROUNDWATER FLOW DIRECTIONS	30
	5.2.2	MAN-MADE INFLUENCES ON GROUNDWATER FLOW	31
	5.2.3	VERTICAL HYDRAULIC GRADIENTS	31
	5.2.4	LATERAL GROUNDWATER FLOW AND VELOCITY	32
	5.3	GROUNDWATER QUALITY	33
	5.3.1	SUMMARY OF BETA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	
	5.3.1.1	STATION SAMPLING POINTS	
	5.3.1.2	GROUNDWATER MONITORING WELL SAMPLES	
	5.3.1.3	RESIDENTIAL WATER SUPPLY WELLS	35
	5.3.2	SUMMARY OF GAMMA-EMITTING RADIONUCLIDES	
		ANALYTICAL RESULTS	
	5.3.3	SUMMARY OF FIELD MEASUREMENTS	
	5.4	SURFACE WATER QUALITY	37
6.0	RADIONUCLIDES OF CONCERN AND SOURCE AREAS		38
	6.1	GAMMA-EMITTING RADIONUCLIDES	38
	6.2	BETA-EMITTING RADIONUCLIDES	
	6.3	TRITIUM	
	6.3.1	GENERAL CHARACTERISTICS	
	6.3.2	DISTRIBUTION IN STATION GROUNDWATER	
	6.3.3	CONCEPTUAL MODEL OF TRITIUM RELEASE AND MIGRATION	I41
7.0	EXPOSU	JRE PATHWAY ASSESSMENT	43
	7.1	HEALTH EFFECTS OF TRITIUM	
	7.2	BACKGROUND CONCENTRATIONS OF TRITIUM	44
	7.2.1	GROUNDWATER	44
	7.2.2	PRECIPITATION DATA	
	7.2.3	SURFACE WATER DATA	45
	7.2.4	DRINKING WATER DATA	
	7.2.5	EXPECTED TRITIUM BACKGROUND FOR THE STATION	46
	7.3	IDENTIFICATION OF POTENTIAL EXPOSURE PATHWAYS AND	
		POTENTIAL RECEPTORS	47
	7.3.1	POTENTIAL GROUNDWATER MIGRATION TO DRINKING	
		WATER USERS AT THE STATION PROPERTY	47
	7.3.2	POTENTIAL GROUNDWATER MIGRATION TO DRINKING	
		WATER USERS OFF THE STATION PROPERTY	48

TABLE OF CONTENTS

			<u>Page</u>
	7.3.3	POTENTIAL GROUNDWATER MIGRATION TO	
		SURFACE WATER USERS	48
	7.4	SUMMARY OF POTENTIAL TRITIUM EXPOSURE	
		PATHWAYS	48
	7.5	OTHER RADIONUCLIDES	49
8.0	CONCLU	USIONS	50
9.0	RECOM	MENDATIONS	54
	9.1	DATA GAPS	54
	9.2	GROUNDWATER MONITORING	54
10.0	REFERE	NCFS	55

LIST OF FIGURES (Following Text)

FIGURE 1.1	STATION LOCATION MAP
FIGURE 1.2	STATION BOUNDARIES AND FEATURES
FIGURE 2.1	LOCAL GEOLOGIC CROSS-SECTIONS A-A' AND B-B'
FIGURE 2.2	LOCAL GEOLOGIC CROSS-SECTION C-C'
FIGURE 2.3	MONITORING WELL LOCATIONS
FIGURE 2.4	GROUNDWATER CONTOUR MAP - MARCH 2006
FIGURE 3.1	AREA FOR FURTHER EVALUATION – FORMER FIBERGLASS BLOWDOWN LINE
FIGURE 3.2	AREA FOR FURTHER EVALUATION – BLOWDOWN LINE
FIGURE 3.3	AREA FOR FURTHER EVALUATION -PROTECTED AREA
FIGURE 5.1	HYDROGEOLOGIC CROSS-SECTION LOCATIONS
FIGURE 5.2	HYDROGEOLOGIC CROSS-SECTION X1-X1'
FIGURE 5.3	HYDROGEOLOGIC CROSS-SECTION X2-X2'
FIGURE 5.4	HYDROGEOLOGIC CROSS-SECTIONS X3-X3' AND X3-X3'
FIGURE 5.5	POTENTIOMETRIC SURFACE CONTOURS - APRIL 2006 – UPPER GALENA-PLATTEVILLE AQUIFER
FIGURE 5.6	POTENTIOMETRIC SURFACE CONTOURS - APRIL 2006 – BOTTOM OF GALENA-PLATTEVILLE AQUIFER
FIGURE 5.7	POTENTIOMETRIC SURFACE CONTOURS - APRIL 2006 – ST. PETER SANDSTONE AQUIFER
FIGURE 5.8	TRITIUM CONCENTRATIONS - STATION SAMPLING LOCATIONS
FIGURE 5.9	TRITIUM CONCENTRATIONS – UPPER GALENA-PLATTEVILLE AQUIFER

LIST OF FIGURES (Following Text)

FIGURE 5.10	TRITIUM CONCENTRATIONS – BOTTOM OF GALENA-PLATTEVILLE AQUIFER
FIGURE 5.11	TRITIUM CONCENTRATIONS - ST. PETER SANDSTONE AQUIFER
FIGURE 5.12	TRITIUM CONCENTRATIONS - RESIDENTIAL WELL LOCATIONS
FIGURE 5.13	RADIONUCLIDE CONCENTRATIONS

LIST OF TABLES (Following Text)

TABLE 2.1	SUMMARY OF EXISTING WELL INFORMATION
TABLE 4.1	SUMMARY OF MONITORING WELL DEVELOPMENT- BLOWDOWN LINE INVESTIGATION
TABLE 4.2	SUMMARY OF GROUNDWATER ELEVATIONS - MARCH/APRIL 2006
TABLE 4.3	SUMMARY OF MONITORING WELL PURGING PARAMETERS – MARCH/APRIL 2006
TABLE 4.4	SAMPLE SUMMARY - BLOWDOWN LINE INVESTIGATION
TABLE 4.5	SUMMARY OF GROUNDWATER ELEVATIONS – APRIL 24, 2006
TABLE 4.6	SAMPLE SUMMARY - FLEETWIDE INVESTIGATION
TABLE 4.7	SUMMARY OF MONITORING WELL PURGING PARAMETERS – FLEETWIDE SAMPLING EVENT
TABLE 5.1	CALCULATED VERTICAL HYDRAULIC GRADIENTS
TABLE 5.2	SUMMARY OF TRITIUM CONCENTRATIONS IN WATER - STATION SAMPLING LOCATIONS
TABLE 5.3	SUMMARY OF TRITIUM CONCENTRATIONS IN GROUNDWATER - FEBRUARY-APRIL 2006
TABLE 5.4	SUMMARY OF TRITIUM CONCENTRATIONS IN WATER - RESIDENTIAL WATER SUPPLY WELLS
TABLE 5.5	SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER

LIST OF APPENDICES

APPENDIX A WATER SUPPLY WELL INFORMATION

APPENDIX B MONITORING WELL STRATIGRAPHIC AND INSTRUMENTATION

LOGS

APPENDIX C QUALITY ASSURANCE PROGRAM

C.1 ENVIRONMENTAL, INC.

C.2 TELEDYNE BROWN ENGINEERING, INC.

APPENDIX D LABORATORY ANALYTICAL REPORTS

D.1 ENVIRONMENTAL, INC.

D.2 TELEDYNE BROWN ENGINEERING, INC.

APPENDIX E DATA VALIDATION MEMORANDUM

EXECUTIVE SUMMARY

This Hydrogeologic Investigation Report (HIR) documents the results of Conestoga-Rovers & Associates' (CRA's) May 2006 Hydrogeologic Investigation Work Plan (Work Plan) pertaining to the Byron Generating Station in Byron, Illinois. CRA prepared this HIR for Exelon as part of its Fleetwide Program to determine whether groundwater at and in the vicinity of its nuclear power generating facilities has been adversely impacted by any releases of radionuclides. This report also documents the results of CRA's and the Byron Station's investigation beginning in January 2006 in relation to the current and former blowdown lines.

CRA collected and analyzed information on historical releases, the structures, components, and areas of the Station that have the potential to release tritium or other radioactive liquids to the environment and past hydrogeologic investigations at the Station. CRA used this information, combined with its understanding of groundwater flow and sample locations at the Station to identify the AFEs for the Station.

CRA collected 39 groundwater samples during the blowdown line investigation and 41 groundwater samples during the fleetwide investigation. CRA also collected two full rounds of water levels from the newly installed and existing wells. The Work Plan was completed in March and April 2006. All groundwater samples were analyzed for tritium, strontium-89/90 and gamma-emitting radionuclides.

The results of the hydrogeologic investigation are:

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective Lower Limits of Detection (LLDs) in any of the groundwater samples obtained and analyzed during the course of this investigation;
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2 picoCuries per liter (pCi/L) in any of the groundwater samples obtained and analyzed during the course of this investigation;
- Tritium was not detected at concentrations that are greater than the United States Environmental Protection Agency (USEPA) drinking water standard of 20,000 pCi/L;
- Low levels of tritium were detected at concentrations greater than the LLD of 200 pCi/L in four out of 39 samples collected, which is considered background, but well below the applicable drinking water standard. These tritium concentrations ranged from 234 ± 128 pCi/L to 3,260 ± 367 pCi/L. These four samples were all

i

collected from monitoring wells near three vacuum breaker vaults: VB-2, VB-3, and VB-4. The source of the tritium concentrations in the groundwater was periodic leaks during re-seating of the blowdown line vacuum breaker valves;

- Based on the results of this investigation, tritium is not migrating off the Station property at detectable concentrations;
- Based on the results of this investigation, there is no current risk from exposure to radionuclides associated with licensed plant operations through any of the identified potential exposure pathways; and
- Based on the results of this investigation, there are no known active releases into the groundwater at the Station.

Based upon the information collected to date, CRA recommends that Exelon conduct periodic monitoring of selected sample locations.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has prepared this Hydrogeologic Investigation Report (HIR) for Exelon Generation Company, LLC (Exelon) as part of its Fleetwide Program to determine whether groundwater at and in the vicinity of its nuclear power generating facilities has been adversely impacted by any releases of radionuclides. This report documents the results of CRA's May 2006 Hydrogeologic Investigation Work Plan (Work Plan). This investigation pertains to Exelon's Byron Generating Station in Byron, Illinois (Station) (refer to Figure 1.1). This report also documents the results of CRA's and the Station's investigation conducted beginning in January 2006 in relation to the current and former blowdown lines.

The Station is defined as all property, structures, systems, and components owned and operated by Exelon located at 4450 North German Church Road in Byron, Illinois, Rockvale and Marion Townships, Ogle County. The approximate property boundaries are shown on Figure 1.2.

Pursuant to the Work Plan, CRA assessed groundwater quality at the Station in locations designated as Areas for Further Evaluation (AFEs). The process by which CRA identified AFEs is discussed in Section 3.0 of this report.

The objectives of the Work Plan were to:

- characterize the geologic and hydrogeologic conditions at the Station, including subsurface soil types, the presence or absence of confining layers, and the direction and rate of groundwater flow;
- characterize the groundwater/surface water interaction at the Station, including a determination of the surface water flow regime;
- evaluate groundwater quality at the Station, including the vertical and horizontal extent, quantity, concentrations, and potential sources of tritium and other radionuclides in the groundwater, if any;
- define the probable sources of any radionuclides released at the Station;
- evaluate potential human, ecological, or environmental receptors of any radionuclides that might have been released to the environment; and
- evaluate whether interim response activities are warranted.

2.0 STATION DESCRIPTION

The following section presents a general summary of the Station location and definition, overview of Station operations, surrounding land use, and an overview of both regional and Station-specific topography, surface water features, geology, hydrogeology, and groundwater flow conditions. This section also presents an overview of groundwater use in the area.

2.1 STATION LOCATION

The Station is located at 4450 North German Church Road in Byron, Illinois, Rockvale and Marion Townships, Ogle County. The Station consists of approximately 1,900 acres, of which approximately 1,200 acres are used for the generating facility. The other approximately 700 acres of property encompass a 'buffer zone' around the facility and property to the west of the facility.

The Byron Station is located approximately 2 miles east of the Rock River. The blowdown line extends from the Station to the Rock River, and discharges into the Rock River. Figure 1.2 presents a Station Property Map showing the Station structures and the approximate property boundary.

2.2 OVERVIEW OF COOLING WATER OPERATIONS

Operations at the Station began in 1985. The two nuclear reactors at the Station (Unit 1 and Unit 2) are both pressurized water reactors. The Station produces approximately 2,400 megawatts of electricity.

Non-contact cooling water from the Rock River that is used in the electricity generation process is cooled through the Station's two cooling towers. The water is then recirculated through the flume and discharged through the blowdown line back to the Rock River in accordance with an Illinois Environmental Protection Agency (Illinois EPA) National Pollution Discharge Elimination System (NPDES) permit (IL0048313) and Nuclear Regulatory Commission (NRC) Operating Licenses, NPF-37 (Unit 1) and NPF-66 (Unit 2).

Water from the Station's Radioactive Waste Treatment system is transferred to the liquid Radioactive Waste Storage Tank where it is sampled and analyzed. Once the analysis is reviewed and the water is determined to be in compliance with the NPDES permit and

the NRC Operating License discharge limitations, it is batch released through the blowdown line.

The blowdown line and make-up line were constructed adjacent to each other and follow a northwest and then westerly path from the Station for approximately 2 miles to the Rock River. At the Rock River, the make-up line is located approximately 300 feet upstream of the blowdown line. Along the length of the two lines, there are six vacuum breaker (VB) locations (VB-1 through VB-6) for each line. The breakers are located within concrete vaults. There are two vaults at each breaker location, one for each line.

There are seven ponds in the northeast section of the Station. Six of these ponds are concrete-lined process catch basins and are aligned in an east-west trending series. These are referred to as the Treated Runoff ponds. The four western ponds collect water from the Station; the water from these four ponds is pumped to the waste treatment building for processing. The two eastern ponds collect rainwater from the storm water drain system; the water from these ponds is pumped to the Construction Run-off Pond (CROP) located north of the Treated Runoff ponds. The CROP is lined at the bottom with 1 foot of clay. Water from the CROP is eventually pumped back into the Station's cooling towers.

2.3 SURROUNDING LAND USE

The land surrounding the Station in all directions is primarily farmland. Approximately 0.3 mile north of the Station property along the Rock River is a small residential subdivision named Rock Terrace. In addition, there are two small residential areas along the Rock River approximately 0.1 mile and 0.8 mile south of the Station property.

The Byron Salvage Superfund Site (Byron Salvage Site) is immediately to the north of the west portion of the Station along Razorville Road. The Byron Salvage Site is administered by United States Environmental Protection Agency (USEPA) Region 5. It was placed on the National Priorities List (NPL) in 1982 and has the USEPA identification number ILD010236230. The Byron Salvage Site consists of two separate properties: the Byron Salvage Yard property and the Dirk's Farm property (see Figure 1.2). The Dirk's Farm property is currently owned by Exelon, and is a former farm located west of the Byron Salvage Yard property across Razorville Road.

Waste disposal at the Byron Salvage Site is known to have occurred on each of the two properties. From the mid 1960s to 1972, approximately 10 acres of the Byron Salvage Site were used as an automotive salvage yard and dump where miscellaneous waste

and debris were disposed. Such wastes and debris included drums of electroplating wastes and other materials including oil sludges, cutting wheels, solvents, scrap metal, and industrial wastes. Plating waste containing cyanide was sprayed onto roads as dust control at the Byron Salvage Site.

At the direction of Illinois EPA, from 1974 through 1976 Exelon's predecessor, Commonwealth Edison Company (ComEd) removed the waste material from the Dirks Farm property. After 1976, ComEd continued monitoring the groundwater at the Dirks Farm property. Investigative and remedial actions were conducted at the Byron Salvage Yard portion of the Site beginning in 1983. Drums were present at the Byron Salvage Yard on the surface and buried underground. Hazardous wastes were found to contain lead, arsenic, cyanides, halogenated organics, zinc, nickel, and low concentrations of polychlorinated biphenyls (PCBs). Between 1986 and 1998, soil removal and cleanup activities were conducted on the Byron Salvage Site. The Byron Salvage Site remediation is in the long-term groundwater monitoring phase for volatile organic compounds (VOCs) and cyanides. ComEd resolved its alleged liability for the Byron Salvage Site in a settlement with USEPA.

2.4 STATION SETTING

The following sections present a summary of the topography, surface water features, geology, hydrogeology, and groundwater flow conditions in the region surrounding the Station. The information was primarily gathered from Sections 2.1 and 2.5 of the Byron Station Updated Final Safety Analysis Report (UFSAR), Revision 10 dated December 2004, and from the well logs contained in the Byron Salvage Yard Remedial Design Work Plan (CRA, June 2001). The main references that the UFSAR relied upon are listed in Section 10.0 of this HIR. CRA checked and verified all UFSAR references that apply to this HIR.

2.4.1 TOPOGRAPHY AND SURFACE WATER FEATURES

The Station's location is on the Oregon, Illinois 7.5-minute United States Geological Service (USGS) quadrangle topographic maps, dated 1976 (Stillman Valley) and 1983 (Oregon) (see Figure 1.1). The property boundaries fall within the following sections of the map: T24N R10E Sections 12, 13, 14, 15, 22, 23, and 24, and T24N R11E Sections 7, 18, and 19. The Byron, Illinois area is part of the Rock River Hill Country physiographic subsection. The Rock River Hill Country is characterized by gently rolling, dissected uplands covered by thin deposits of glacial drift overlain by a thin cap of loess. The

southwest-trending Rock River valley passes through the eastern portion of the subsection. Bedrock is exposed locally along the Rock River and along small tributary streams and valleys of the Rock River. The topography that is indicated on the Oregon, Illinois 7.5-minute quadrangle is consistent with this physiography.

The Station was constructed on a local topographic high. In each direction from the Station, the topography undulates, with rolling hills and valleys. Along the Rock River, erosional valleys cut by tributary streams are present. The ground surface elevation at the Station is approximately 200 feet higher than the ground surface near the Rock River.

The Rock River, the largest body of water in the area, is located approximately 2 miles to the west of the Station. The river flows southward with an average flow of 4,000 cubic feet per second (cfs) and is primarily used for recreation, including boating, fishing, and water skiing. Streams in the Byron area discharge into the Rock River; the confluence of the Rock River with the Mississippi River is approximately 115 river miles south of the Station (Willman, et al., 1967).

The Woodland Creek is located to the north of the Station and flows to the northwest toward the Rock River. Additionally, an unnamed creek is located to the west of the Station and flows west toward the Rock River. Both of these creeks are ephemeral, flowing only during times of heavy rainfall.

2.4.2 GEOLOGY

The northern portion of the mid-western United States is in the Central Lowlands Physiographic Province (Willman et al., 1975). This physiographic province has been divided into several physiographic sections. Parts of northern Illinois are located in the Wisconsin Driftless Section, the Till Plains Section, and the Great Lake Section.

Byron Station is located within the Till Plains Section. The Till Plains Section is characterized, in general, by the presence of glacial deposits overlying the bedrock surface. Local outcrops of bedrock are present. The Till Plains Section in Illinois is further subdivided into the following physiographic subsections: the Rock River Hill Country, the Green River Lowland, the Bloomington Ridged Plain, the Galesburg Plain, the Kankakee Plain, and the Springfield Plain. The Byron Station is in the Rock River Hill Country physiographic subsection (Willman et al., 1975).

The soil units in the region, adjacent to the Station, are relatively thin or locally absent. They include alluvial deposits associated with the rivers and streams in the area, glacial

deposits of till and outwash generally located in the upland areas, thin loess deposits that overlie the till, and locally, some thin residual soils developed from the weathering of the bedrock.

The Station is underlain by a veneer of overburden deposits that vary in thickness from less than 1 foot to approximately 12 feet and consist mainly of silty loam and loess, with alluvial deposits near the Rock River. The predominant soil types at the Station are the Martinsville Silt Loam, the Whalen Loam, and the Lamont Sandy Loam (Ogle County, 2006). These three soil types consist of loamy soil with varying amounts of silt and sand, with slopes ranging from 2 to 18 percent (United States Department of Agriculture, 2006).

The distribution of the rock units that form the bedrock surface within the region include a sedimentary sequence of Cambrian to Cretaceous-rocks and an igneous and metamorphic complex of Precambrian-aged rocks. The sedimentary sequence in northern Illinois near the Station includes Ordovician-aged and Cambrian-aged strata. These strata consist of 2,000 to 3,000 feet of dolomites, sandstones, and shales. The Precambrian basement in northern Illinois consists of granites and granodiorites (Bradbury and Atherton, 1965).

The Byron Station lies within the Central Stable Region tectonic province of the North American continent. This tectonic region is characterized by a sequence of southward-thickening sedimentary strata overlying the Precambrian basement and was subjected to a series of vertical crustal movements forming broad basins and arches during Paleozoic and early Mesozoic time. Local folding and faulting has modified the arches and basins (Buschbach, 1964) (Willman et al., 1975).

The bedrock under the Station is comprised of flat-lying Ordovician-aged dolomitic and sandstone layers progressing downward as follows:

- Galena Group Dolomites;
- Platteville Group Dolomites; and
- Ancell Group, consisting of:
 - Glenwood Formation (shale with sandy dolomite, semi-confining layer),
 - St. Peter Sandstone Formation, and
 - older Cambrian formations.

The generating facility was constructed on an area of a 'bedrock high', and the foundation was installed into the bedrock. Figures 2.1 and 2.2 present generalized

cross-sections of the area geology prepared from geologic information gathered from boreholes advanced prior to construction of the Station. The locations of the cross-sections are shown on Figure 1.2.

CRA has prepared hydrogeologic cross-sections depicting the geology and groundwater elevations under the Station. These figures are discussed in Section 5.0 of this Report.

2.4.3 HYDROGEOLOGY

Ordovician-age Galena-Platteville dolomites and the older Ordovician-age Glenwood Formation and St. Peter Sandstone underlie the area. The most important aquifer in the region is the Cambrian-Ordovician Aquifer, made up of all bedrock between the top of the Galena-Platteville dolomites and the top of the Eau Claire Formation. These strata are, in descending order, the Ordovician-age Galena Formation, Platteville Formation, Ancell Formation (Glenwood, St. Peter, and older Cambrian formations), Prairie du Chien Formation, and Ironton and Galesville Sandstones. At the Bryon Station, the Galena-Platteville dolomites are separated from the rest of the Cambrian-Ordovician Aquifer by the Harmony Hill Shale Member of the Glenwood Formation. Available data indicate that, on a regional basis, the entire sequence of strata above the Eau Claire Formation behaves hydraulically as one aquifer. In places, pressure heads between the water bearing units differ, and the hydraulic connection is imperfect.

The Galena and Platteville Groups dolomites are extensively fractured near the top, with solutionally enlarged openings in places but become dense at depth. Water from the Galena-Platteville dolomites in the area is generally hard. Relatively low yields, water hardness, and susceptibility of the aquifer to contamination because of thin drift, fractures, and solution channels do not favor development of the Galena-Platteville dolomites.

Below the Galena-Platteville dolomites are the thin shales, sandstones, and limestones of the Glenwood Formation. This unit grades downward into the thick sandstones of the St. Peter Sandstone. The Ordovician-age St. Peter Sandstone is permeable and has a relatively uniform lithology throughout the area. The St. Peter Sandstone is recharged from overlying glacial deposits in the central and western parts of northern Illinois, and also by vertical leakage through the Maquoketa Shale Group in northeastern Illinois and by through-flow from the outcrop area in southern Wisconsin (Buschbach, 1964).

2.4.3.1 EXISTING WELL NETWORK

Groundwater (the water table) under the Station is first encountered within the Galena-Platteville limestones and dolomites. The depth to the groundwater varies with the topography, ranging from approximately 17 feet below ground surface (feet bgs) to 115 feet bgs. Near the Rock River, the water table is in the unconsolidated deposits.

There are 77 wells at the Station. Figure 2.3 presents the locations of the wells. Of the 77 wells, the Station owns 33 wells and the remaining 44 wells are owned by the Byron Salvage Site PRP Group. A summary of the existing well information is provided in Table 2.1. These wells were used during the investigations to provide information on the geology and groundwater levels at the Station.

The monitoring wells are set at different depths to screen all three hydrogeologic units located under the Station. CRA monitors the levels and water quality of the Byron Salvage Site wells at the Station as part of the long-term monitoring program for the Byron Salvage Site.

There are two deep wells in the Protected Area (PA). The wells are designated Deep Well 1 and Deep Well 2 and are used for the Station's water supply (see Figure 2.3). Both wells were installed during the construction of the Station and draw water from depths greater than 500 feet below grade at an average flow rate of 800 gallons per minute (gpm) per well. Water is pumped from each well at different times, and the piping from the wells combines into a common manifold to supply the Station's water supply.

There are two former farmhouse water supply wells on the Station. The wells are designated GW-9 and Well 7. During an investigation of the blowdown line, which began in early 2006 (refer to Section 3.3.2.2), 16 overburden monitoring wells and 13 bedrock wells were installed along the blowdown line and also within the PA. Further details regarding the most recent monitoring wells are provided in Section 3.4 of this report.

CRA expects most of the private wells in the vicinity of the Station are completed in the St. Peter Sandstone, however, well completion information was not available for all private wells identified by CRA, in order to confirm this observation.

2.4.3.2 GROUNDWATER FLOW

Groundwater flow in the Galena-Platteville dolomites occurs along joints and bedding planes. Solutioning along these pathways continues at an imperceptible rate due to the low solubility of the dolomite, the hardness of the groundwater, and the relatively low hydraulic gradient within the aquifer.

The general regional groundwater flow direction in the Galena-Platteville dolomites and the underlying Glenwood Formation and St. Peter Sandstone is to the west toward the Rock River. Local groundwater flow conditions are typically influenced by surface topography and aquifer thickness.

Groundwater flow patterns vary under the Station property. In July 1974, the Station assessed groundwater flow using a system of wells and piezometers installed prior to Station construction. Since the facility sits upon a bedrock high, groundwater flow directly beneath the facility was radially outward in all directions. Figure 2.4 presents the groundwater flow for the Station.

On the western portion of the Station near the blowdown line, groundwater flow was historically assessed as part of the Byron Salvage Site remedial investigation. CRA measured water levels at the Byron Salvage Site monitoring wells on March 23, 2006. Groundwater contours for the entire Station (both the blowdown line area and the generating facility), are shown on Figure 2.4 which presents a combined generalized contour map of the 1974 data (for the generating facility) and the March 2006 data (for the blowdown line area). There is a northwest/southeast trending groundwater divide near Razorville Road, west of the generating facility, and perpendicular to the blowdown line. The direction of groundwater flow at points along the blowdown line varies depending upon the location. However, the general groundwater flow direction is to the west toward the Rock River.

2.5 AREA GROUNDWATER USE

RETEC completed a water well search and survey for the Station property ("Residential Well Survey", RETEC Group, Inc, September 23, 2005). CRA expanded the water well search between March and May 2006 to identify the public and private water wells located within approximately 1 mile of Station property. CRA contacted the following sources for information:

- Illinois State Water Survey (ISWS);
- Illinois State Geological Survey (ISGS);
- Illinois EPA database; and
- Ogle County GIS system.

The ISGS (in association with the Illinois EPA) and the ISWS maintain databases of water well information. The ISWS and ISGS provided lists of water wells for the Station and for the area surrounding the Station. A figure of the approximate locations of the water wells surrounding the Station (Figure A.1), along with copies of the information gathered from the ISWS and ISGS are provided in Appendix A. All of the water wells listed are for residential use; none are listed for commercial, industrial, or public water supply uses.

The St. Peter Sandstone is the primary aquifer for residential potable water in the area. The most important aquifer in the region is the Cambrian-Ordovician Aquifer, made up of all bedrock between the top of the Galena-Platteville dolomites and the top of the Eau Claire Formation.

Potable water for the residences south, east, and some north of the Station is provided by private water wells at each property. As part of the Byron Salvage Site groundwater remediation, an alternate water supply and distribution system was provided to many of the residences located north of the Station.

3.0 AREAS FOR FURTHER EVALUATION

CRA considered all Station operations in assessing groundwater quality at the Station. During this process, CRA identified areas at the Station that warranted further evaluation or "AFEs". This section discusses the process by which AFEs were selected.

CRA's identification of AFEs involved the following components:

- Station inspection on March 21 and 22, 2006;
- interviews with Station personnel;
- evaluation of Station systems;
- investigation of confirmed and unconfirmed releases of radionuclides; and
- review of previous Station investigations.

CRA analyzed the information collected from these components combined with information obtained from CRA's study of hydrogeologic conditions at the Station to identify those areas where groundwater potentially could be impacted from operations at the Station.

CRA then designed an investigation to determine whether any confirmed or potential releases or any other release of radionuclides adversely affected groundwater. This entailed evaluating whether existing Station groundwater monitoring systems were sufficient to assess the groundwater quality at the AFEs. If the systems were not sufficient to adequately investigate groundwater quality associated with any AFE, additional monitoring wells were installed by CRA.

The following sections describe the above considerations and the identification of AFEs. The results of CRA's investigation are discussed in Section 5.0.

3.1 SYSTEMS EVALUATIONS

Exelon launched an initiative to systematically assess the structures, systems and components that store, use, or convey potentially radioactively contaminated liquids. Maps depicting each of these systems were developed and provided to CRA for review. The locations of these systems are presented on Figures 3.1 through 3.3. The Station identified a total of 30 systems that contain or could potentially contain radioactively contaminated liquids. The following presents a list of these systems.

System Identification	Description
AB	Boric Acid Process
AS	Auxiliary Steam
BR	Boron Thermal Regeneration
CD	Condensate
СР	Condensate Polishing
CW	Circulating Water
DM	Miscellaneous Building Drain
DV	Miscellaneous Drains and Vents
FC	Fuel Pool Cooling
FP	Fire Protection
GS	Turbine Gland Seals
HD	Feedwater Drains
MS	Main Steam
OD	Equipment/Floor Oil Drain
PS	Process Sampling
PW	Primary Water
RF	Reactor Building Floor Drains
SH	Station Heat
SI	Safety Injection
ST	Sewage Treatment
SX	Essential Service Water
TE	Turbine Building Equipment Drains
TF	Turbine Building Floor Drains
TR	Treated Runoff
VF	Filtered Vents
VR	Volume Reduction
WE	Auxiliary Building Equipment Drain
WF	Auxiliary Building Floor Drain
WS	Non-Essential Service Water
WX	Radwaste Disposal

After these systems were identified, Exelon developed a list of the various structures, components and areas of the systems (e.g., piping, tanks, process equipment) that handle or could potentially handle any radioactively contaminated liquids. The structures, components, and areas may include:

- aboveground storage tanks;
- condensate vents;
- areas where confirmed or potential historical releases, spills or accidental discharges may have occurred;

- pipes;
- pools;
- sumps;
- surface water bodies (i.e., basins, pits, ponds, or lagoons);
- trenches;
- underground storage tanks; and
- vaults.

The Station then individually evaluated the various system components to determine the potential for any release of radioactively contaminated liquid to enter the environment. Each structure or identified component was evaluated against the following seven primary criteria:

- location of the component (i.e., basement or second floor of building);
- component construction material (i.e., stainless steel or steel tanks);
- construction methodologies (i.e., welded or mechanical pipe joints);
- concentration of radioactively contaminated liquid stored or conveyed;
- amount of radioactively contaminated liquid stored or conveyed;
- existing controls (i.e., containment and detection); and
- maintenance history.

System components, which were located inside a building or that otherwise had some form of secondary containment, such that a release of radioactively contaminated liquid would not be discharged directly to the environment, were eliminated from further evaluation. System components that are not located within buildings or did not have some other form of secondary containment were retained for further qualitative evaluation of the risk of a release of radioactively contaminated liquid to the environment and the potential magnitude of any release.

Exelon's risk evaluation took into consideration factors such as:

- the potential concentration of radionuclides;
- the volume of liquid stored or managed;
- the probabilities of the systems actually containing radioactively contaminated liquid; and

• the potential for a release of radioactively contaminated liquid from the system component.

These factors were then used to rank the systems and system components according to the risk for a potential release of a radioactively contaminated liquid to the environment. The evaluation process resulted in the identification of structures, components, and areas to be considered for further evaluation.

3.2 HISTORICAL RELEASES

CRA also reviewed information concerning confirmed or potential historical releases of radionuclides at the Station, including reports and documents previously prepared by Exelon and compiled for CRA's review. CRA evaluated this information in identifying the AFEs. Any historical releases identified during the course of this assessment that may have a current impact on Station conditions are further discussed in Section 3.4.

3.3 STATION INVESTIGATIONS

CRA also considered previous Station investigations in the process of selecting the AFEs for the Station. This section presents a summary of the pre-operational radiological environmental monitoring program (pre-operational REMP), past Station investigations, and the radiological environmental monitoring program (REMP).

3.3.1 PRE-OPERATIONAL RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

A pre-operational REMP was conducted between 1981 and 1984 to establish background radioactivity levels prior to operation of the Station. While a summary report for the pre-operational REMP was not available to CRA, CRA reviewed the pre-operational REMP data. An April 1987 REMP report prepared by Teledyne Isotopes Midwest Laboratory entitled "Radioactive Waste and Environmental Monitoring Annual Report 1986" identifies that a comparison of the 1985 and 1986 data to the pre-operational REMP data indicates that there was no measurable amount of radioactivity due to the Station's operation.

3.3.2 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

The REMP at the Station was initiated in 1985. The REMP includes the collection of multi-media samples including air, surface water, groundwater, fish, sediment, vegetation, local cow milk, and residential potable water. The samples are analyzed for beta and gamma-emitting radionuclides, tritium, iodine-131, and/or strontium as established in the procedures developed for the REMP. The samples are collected at established locations, identified as stations, so that trends in the data can be monitored.

An annual report is prepared providing a description of the activities performed and the results of the analysis of the samples collected from the various media. The latest report generated was prepared by Station personnel and is entitled "Radioactive Effluent Release Report - January 2005 Through December 2005." This report concluded that the operation of the Station had no adverse radiological impact on the environment. The annual report is submitted to the NRC.

3.3.3 <u>HISTORIC INVESTIGATIONS</u>

This section summarizes historic investigations undertaken at the Station prior to this hydrogeologic investigation, related to actual or potential releases of radioactively contaminated liquids to the subsurface.

3.3.3.1 POWER PLANT DOCUMENTS - UFSAR REPORT

During the construction of the Station, a series of comprehensive investigations of regional and local geology, surface water, and groundwater conditions were conducted. These studies are documented in the UFSAR, Rev. 10, dated December 2004 (Byron Station UFSAR, 2004).

3.3.3.2 <u>BLOWDOWN LINE INVESTIGATION</u>

In July 2005, water was observed in the concrete vault for vacuum breaker 6 (VB-6). A water sample collected from the concrete vault, at that time, contained less than 2,000 picoCuries per liter (pCi/L) of tritium.

In January 2006, the Station initiated an investigation into the blowdown line. A program of inspections of the concrete vaults, along with routine observations for water within the vaults was begun. Subsequent to the initial discovery of water in the vaults, Exelon performed construction upgrades on each of the six breaker vaults. These upgrades are intended to ensure that there will be no future releases of potentially contaminated liquid to the subsurface.

3.4 <u>IDENTIFIED AREAS FOR FURTHER EVALUATION</u>

CRA used the information presented in the above sections along with its understanding of the hydrogeology at the Station to identify AFEs, which were a primary consideration in the development of the scope of work in the Work Plan. The establishment of AFEs is a standard planning practice in hydrogeologic investigations to focus the investigation activities at areas where there is the greatest potential for impact to groundwater.

Specifically, AFEs were identified based on these six considerations:

- systems evaluations;
- risk evaluations:
- review of confirmed and/or potential releases;
- review of documents;
- review of the hydrogeologic conditions; and
- Station inspection completed on March 22 and 23, 2006.

Prior to CRA completing its analysis and determination of AFEs, Station personnel completed an exhaustive review of all historic and current management of systems that may contain potentially radioactively contaminated liquids.

CRA reviewed the systems identified by the Station, which have the potential for the release of radioactively contaminated liquids to the environment, and groundwater flow at the Station. This evaluation allowed CRA to become familiar with Station operations and potential systems that may impact groundwater. CRA then evaluated information concerning historic releases as provided by the Station. This information, along with a review of the results from historic investigations, was used to refine CRA's understanding of areas likely to have the highest possibility of impacting groundwater. Where at risk systems or identified historical releases were located in close proximity or were located in areas which could not be evaluated separately, the systems and

historical releases were combined into a single AFE. At times, during the Station investigation, separate AFEs were combined into one or were otherwise altered based on additional information and consideration.

Finally, CRA used its understanding of known hydrogeologic conditions (prior to this investigation) to identify AFEs. Groundwater flow was an important factor in deciding whether to combine systems or historical releases into a single AFE or create separate AFEs. For example, groundwater beneath several systems that contain radioactively contaminated liquids that flows toward a common discharge point were likely combined into a single AFE. The AFEs were created based on known groundwater flow conditions prior to the work completed during this investigation.

Based upon its review of information concerning confirmed or potential historical releases, historic investigations, and the systems at the Station that have the potential for release of radioactively contaminated liquids to the environment combined with its understanding of groundwater flow at the Station, CRA identified three AFEs (see Figures 3.1 through 3.3).

AFE-Byron-1 - Former Fiberglass Blowdown Line

This AFE is the area in which, in April 1986, after the initial six months of Unit 1 operation, there were three separate ruptures of the original fiberglass blowdown line. The three ruptures were all in the same area, near River Road (Figure 3.1). Soil and water samples collected as part of the investigation of each rupture indicated the presence of minimal amounts of radioactive material. Following the ruptures, the Station replaced sections of the fiberglass blowdown line. The Station subsequently abandoned the entire line in place and installed a new carbon steel blowdown line in 1987.

AFE-Byron-2 – Vacuum Breaker Vaults

In December 2005/January 2006, water was observed in the vacuum breaker vaults. Exelon initiated an investigation into potential groundwater impact near all 12 vacuum breaker vaults (Figure 3.2), plugged the drainage holes and sealed all six blowdown line vaults.

AFE-Byron-3 - Protected Area

Based on the risk ranking, several systems within the PA scored high as systems in which tritiated water could be released to the environment if a failure or if a set of events

were to occur. These systems include: systems located within the Auxiliary Building, Radwaste Building, Containment Building, and the Turbine Building, the Condensate and Condensate Polishing systems, the Fuel Handling Building systems, the Circulating Water Pump House systems, and the CROP.

To evaluate the groundwater quality in the area of these systems, monitoring wells were installed in locations that are hydraulically downgradient of the AFE (Figure 3.3). The downgradient locations of the monitoring wells were selected based on the radial groundwater flow outward from the PA (Figure 2.4) due to the topographic high on which the PA was constructed. These monitoring well locations were situated to provide for adequate indication of historic releases and future leak detection.

4.0 FIELD METHODS

CRA and Station personnel completed two investigations at the Station:

- the blowdown line investigation; and
- the fleetwide investigation.

During the blowdown line investigation conducted from February through April 2006, CRA oversaw the installation and development of 12 temporary and 17 permanent monitoring wells at the Station. CRA and Station personnel collected multiple samples from the vacuum breaker vaults, from nearby residential wells, from the blowdown line itself, from holding ponds, and from the existing and the CRA-installed monitoring wells.

During the fleetwide investigation completed in April and May 2006, CRA conducted a second round of groundwater sampling of 41 monitoring wells, collected a full round of water level measurements from 63 monitoring wells, and surveyed five monitoring wells that had not been surveyed as part of the blowdown line investigation. The field investigations were completed in accordance with the methodologies presented in the Work Plan (CRA, 2006).

The following sections discuss the field activities conducted during these two investigations.

4.1 BLOWDOWN LINE INVESTIGATION ACTIVITIES

4.1.1 GROUNDWATER MONITORING WELL INSTALLATION

Prior to completing any ground penetration activities, CRA completed subsurface utility clearance procedures to minimize the potential of injury to workers and/or damage to subsurface utility structures. The subsurface clearance procedures consisted of completing an electronic survey within a minimum of 10-foot radius of the proposed location utilizing electromagnetic and ground penetrating radar technology. Additionally, an air knife was utilized within the PA to verify utilities were not present at the proposed location to a depth to 10 feet bgs.

From late February 2006 to early April 2006, CRA supervised the installation of 17 monitoring wells and 12 temporary wells along the blowdown line and at other

locations at the Station to evaluate the quality of the groundwater in the areas of the three AFEs. The monitoring well locations are presented on Figure 2.3.

Monitoring wells TW-13 through TW-15 were installed to evaluate the groundwater quality near River Road, downgradient of the 1986 former fiberglass blowdown line ruptures (AFE-Byron-1). These wells were originally constructed as temporary wells, but were eventually converted to permanent monitoring wells.

For AFE-Byron-2, at each of the six vacuum breaker vault locations along the blowdown line, two temporary wells were installed adjacent to the concrete vault and within the bedding material of the blowdown line and make-up line (TW-1 through TW-12). These shallow overburden wells were installed to determine whether groundwater was present in the overburden materials above the bedrock. These 12 temporary wells were dry.

Twelve monitoring wells (AR-1 through AR-10, CAR-2, and CAR-3) were installed to screen the first occurrence of groundwater (the water table) within the Galena-Platteville limestones and dolomites. One well was placed adjacent to each vacuum breaker vault (AR-1 through AR-6) in an anticipated downgradient location as determined from historic groundwater elevations measured in the Byron Salvage Site monitoring wells and levels measured in early March 2006. Monitoring well CAR-2 was installed at a location at the bottom of the valley downgradient from the vault for vacuum breaker 4, which contained water with the highest concentrations of tritium. Five monitoring wells (AR-7 through AR-10 and CAR-3) were installed within and around the PA to evaluate the groundwater quality in the areas of the high-ranking systems (AFE-Byron-3).

Two additional monitoring wells were also installed. Monitoring well CAR-1 was screened in the alluvial sediments adjacent to TW-14 to evaluate the groundwater quality approximately 20 feet below the water table. Due to detections of tritium concentrations in groundwater samples from monitoring well AR-4, monitoring well AR-11 was screened to monitor the groundwater quality at the base of the Galena-Platteville aquifer. In total, 13 bedrock monitoring wells were constructed as part of the blowdown line investigation.

The bedrock monitoring wells were all installed using a combination of augering, coring, and air rotary drilling techniques. The monitoring wells with the AR designation were drilled using air rotary techniques, and the wells with the CAR designation were first cored prior to using rotary techniques. The coring was planned to be completed at three locations to confirm the geology that was already expected based on the drilling logs from the Byron Salvage Site monitoring wells. The exception to the

nomenclature designation is monitoring well CAR-1. Because the bedrock was not encountered at the base of the hill near River Road, coring was not necessary, and CAR-1 was augered to the target depth.

Specific installation protocols for the monitoring wells (other than the shallow temporary wells TW-1 through TW-12) are described below:

- the borehole was advanced to the target depth using one of the drilling techniques listed above;
- a nominal 2-inch diameter (No. 10 slot) PVC screen, of varying length, attached to a sufficient length of 2-inch diameter schedule 40 PVC riser pipe to extend to the surface, was placed into the borehole;
- a filter sand pack consisting of silica sand was installed to a minimum height of 2 feet above the top of the screen;
- in most cases, a minimum 2-foot thick seal consisting of bentonite chips was placed on top of the sand pack;
- the remaining borehole annulus was sealed to within 1 foot of the surface using a cement-bentonite grout; and
- the remaining portion of the annulus was filled with concrete and a 6-inch diameter protective above-grade casing.

Table 2.1 presents a summary of the well information for the wells installed during the blowdown line investigation. All monitoring well locations are presented on Figure 2.3. Monitoring well stratigraphic and instrumentation logs are provided in Appendix B. The wells were surveyed for horizontal and vertical control by an Illinois-licensed professional surveyor.

4.1.2 GROUNDWATER MONITORING WELL DEVELOPMENT

After installation, CRA developed the 29 monitoring wells installed during the blowdown line investigation.

To establish good hydraulic communication with the aquifer and reduce the volume of sediment in the monitoring well, monitoring well development was performed in accordance with the procedure outlined below:

- Monitoring wells were surged using a pre-cleaned surge block for a period of at least 20 minutes.
- Water was purged from the monitoring well using a pneumatic submersible pump.
- Groundwater was collected at regular intervals with the pH, temperature, and conductivity measured using field instruments. These instruments were calibrated daily according to the manufacturer's specifications. Additional observations such as color, odor, and turbidity of the purged water were recorded in the field book.
- Development continued until the turbidity and silt content of the monitoring wells was significantly reduced and three consistent readings of pH, temperature, and conductivity were recorded, or a minimum of ten well volumes were purged.

A summary of the monitoring well development activities is provided in Table 4.1.

4.1.3 SURVEY

The new monitoring wells were surveyed to establish reference elevations relative to mean sea level. The top of each well casing was surveyed to the nearest 0.01 foot relative to the North American Vertical Datum 88 (NAVD). The survey included the ground elevation at each well to the nearest 0.10 foot relative to the NAVD, and the well location to the nearest 1.0 foot.

4.1.4 GROUNDWATER ELEVATION MEASUREMENTS

During the blowdown line investigation, CRA collected two full rounds of water level measurements from both the Station wells existing at the time and from Byron Salvage Site's monitoring wells located both on and off of the Station property. Synoptic water level measurements were collected on March 23, 2006 and April 4, 2006. Based on the measured depth to water from the reference point and the surveyed elevation of the reference point, the groundwater elevation was calculated. A summary of groundwater elevations for the two measuring events is provided in Table 4.2.

4.1.5 GROUNDWATER SAMPLE COLLECTION

CRA conducted one round of groundwater sampling during the blowdown line investigation. A total of 39 monitoring wells were sampled during the event. These wells included 19 of the 23 wells owned by the Station (TW-1 through TW-12 were dry

and the two deep wells are sampled on a quarterly basis and have never indicated tritium impacts) and 20 selected Byron Salvage Site monitoring wells located at the Station. The Byron Salvage Site wells were selected based on the proximity of the wells to the blowdown line, their location downgradient of the blowdown line, and in order to provide a vertical characterization of the groundwater quality.

CRA conducted this round of sampling March 7, 2006 to April 18, 2006. Most of the monitoring wells were sampled on more than one occasion during this time period. Monitoring wells AR-11 and GW-9 were only sampled once. In addition, a total of 22 Byron Salvage Site monitoring wells were originally selected for sampling. However, Well 7 was not sampled because the old farmhouse pump and drop tube were still in the well and were not removed until April 2006, and well DF-13 could not be sampled due to an obstruction in the well that was later removed. CRA conducted the sampling using a combination of bailers and PVC and stainless steel submersible pumps, employing both slow purging and low flow purging techniques. A summary of the purging parameters is presented in Table 4.4.

All groundwater samples were labeled with a unique sample number, the date and time, the parameters to be analyzed, the job number, and the sampler's initials. The samples were then packed in a cooler for screening by the Station and shipment to the project laboratory, Environmental, Inc., via overnight courier under chain-of-custody protocol for tritium analysis. Split samples were also collected for the NRC and Illinois Emergency Management Agency (IEMA) for tritium analysis simultaneously with the actual sample at every sample location. The split samples were delivered to the Station personnel for delivery to the NRC and IEMA.

The water purged from the Byron Salvage Site wells during the sampling event was placed into two plastic holding tanks at the Station pending characterization and disposal in accordance with the Station's NPDES permit.

4.2 FLEETWIDE INVESTIGATION ACTIVITIES

4.2.1 GROUNDWATER ELEVATION MEASUREMENTS

On April 24, 2006, CRA collected a round of water level measurements from 63 of the 77 Station monitoring wells in accordance with the Work Plan. Based on the measured depth to water from the reference point and the surveyed elevation of the reference point, the groundwater elevation was calculated. A summary of groundwater

elevations for the April 24, 2006 event is provided in Table 4.5. Water level measurements were collected using a portable electronic depth-to-water probe accurate to $\pm\,0.01$ foot. The measurements were made from a designated location at the highest point on each well's inner riser or steel casing. The water level measurements were obtained using the following procedures:

- the proper elevation of the meter was checked by inserting the tip into water and noting if the contact was registering correctly;
- the tip was dried, and then slowly lowered into the well until contact with the water was indicated;
- the tip was slowly raised until the light and/or buzzer just began to activate. This indicated the static water level;
- the reading at the reference point was noted to the nearest hundredth of a foot.
- the reading was then re-checked; and
- the water level was then recorded, and the water level meter decontaminated prior to use at the next well location.

4.2.2 GROUNDWATER SAMPLE COLLECTION

CRA conducted a second round of groundwater sampling from April 24 through April 28, 2006. A total of 41 monitoring wells were sampled during the second event. These included the 39 wells sampled during the first event and wells DF-13 and Well 7. At these monitoring well locations, CRA conducted the sampling using pneumatic bladder pumps or peristaltic pumps and dedicated polyethylene tubing to employ low flow purging techniques as described in Puls and Barcelona (1996).

The groundwater in the monitoring wells was sampled by the following low-flow procedures:

- the wells were correctly located and identification numbers were verified;
- a water level measurement was taken;
- the well was sounded by carefully lowering the electronic depth-to-water probe to the bottom of the well (as to minimize penetration and disturbance of the well bottom sediment), and comparing the sounded depth to the installed depth to assess the presence of any excess sediment or drill cuttings;

- the pump or tubing was lowered slowly into the well and fixed into place such that the intake was located at the mid-point of the well screen, or a minimum of 2 feet above the well bottom/sediment level;
- the purging was conducted using a pumping rate between 100 to 500 milliliters per minute (mL/min). Initial purging began using the lower end of this range. The groundwater level was monitored to ensure that a drawdown of less than 0.3 foot occurred. If this criterion was met, the pumping rate was increased dependent on the behavior of the well. During purging, the pumping rate and groundwater level were measured and recorded every 10 minutes;
- the field parameters (pH, temperature, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity) were monitored during the purging to evaluate the stabilization of the purged groundwater. Stabilization was considered to be achieved when three consecutive readings for each parameter, taken at 5-minute intervals, were within the following limits:

pH ± 0.1 pH units of the average value of the three readings,

Temperature ± 3 percent of the average value of the three readings,

Conductivity ± 0.005 milliSiemen per centimeter (mS/cm) of the average value

of the three readings for conductivity <1 mS/cm and $\pm 0.01 \text{ mS/cm}$ of the average value of the three readings for

conductivity >1 mS/cm,

ORP \pm 10 millivolts (mV) of the average value of the three readings,

DO \pm 10 percent of the average value of the three readings, and

Turbidity ± 10 percent of the average value of the three readings, or a final

value of less than 5 nephelometric turbidity units (NTU);

- once purging was complete, the groundwater samples were collected directly from the pump/tubing into the sample containers; and
- in the event that the groundwater recharge to the monitoring well was insufficient to conduct low flow sampling procedure, the well was pumped dry and allowed to sufficiently recharge prior to sampling.

All groundwater samples were labeled with a unique sample number, the date and time, the parameters to be analyzed, the job number, and the sampler's initials. The samples were then packed in a cooler for screening by the Station and shipment to Teledyne Brown Engineering, Inc. (Teledyne Brown). A sample summary is presented in Table 4.6; field measurements for the fleetwide event are presented in Table 4.7.

CRA containerized the water purged from all of the wells during the fleetwide event. The water was placed into the two plastic holding tanks at the Station, pending characterization. The water was processed by the Station in accordance with their NPDES permit.

4.2.3 DATA QUALITY OBJECTIVES

CRA has validated the analytical data to establish the accuracy and completeness of the data reported. Teledyne Brown provided the analytical services. The Quality Assurance Programs are described in Appendix C. Analytical data for groundwater samples collected in accordance with the Work Plan are presented in Appendix D. Data validation reports are presented in Appendix E. The data validation included the following information and evaluations:

- sample preservation;
- sample holding times;
- laboratory method blanks;
- laboratory control samples;
- laboratory duplicates;
- verify laboratory qualifiers; and
- field quality control (field blanks and duplicates).

Following the completion of field activities, CRA compiled and reviewed the geologic, hydrogeologic, and analytical data.

The data were reviewed using the following techniques:

- data tables and databox figures;
- hydrogeologic cross-sections; and
- hydraulic analyses.

4.2.4 <u>SAMPLE IDENTIFICATION</u>

For the fleetwide sampling, systematic sample identification codes were used to uniquely identify all samples. The identification code format used in the field was:

WG-BYN-042506-SS-01. A summary of sample identification numbers for the fleetwide investigation is presented in Table 4.6.

WG - Sample matrix -groundwater

RB - Sample matrix - rinse blank

BYN - Station code (for Byron)

042506 - Date (month/day/year)

SS - Sampler's initials

01 - Sample number

4.2.5 CHAIN-OF-CUSTODY RECORD

The samples were delivered to Station personnel under chain-of-custody protocol. Subsequently, the Station or CRA shipped the samples under chain-of-custody protocol to Teledyne Brown for analyses.

4.2.6 QUALITY CONTROL SAMPLES

Quality control samples were collected to evaluate the sampling and analysis process.

Field Duplicates

Field duplicates were collected to verify the accuracy of the analytical laboratory by providing two samples collected at the same location and then comparing the analytical results for consistency. Field duplicate samples were collected at a frequency of one duplicate for every ten samples collected. The locations of duplicate samples were selected in the field during the performance of sample collection activities. The duplicate samples were collected simultaneously with the actual sample and were analyzed for the same parameters as the actual samples.

Rinsate Blank Samples

Rinsate blanks were collected during the fleetwide investigation to verify that decontamination procedures conducted in the field were adequate. Rinsate blanks were collected by routing Station-supplied demineralized water through decontaminated sampling equipment. Rinsate blanks were collected at a frequency of one rinsate blank

for every day samples were collected using non-disposable or non-dedicated equipment. A total of four rinsate blanks were collected.

Split Samples

Split samples were collected for the NRC and IEMA for tritium simultaneously with the actual sample at every sample location. Split samples were delivered to the Station personnel and made available to the NRC and IEMA.

4.2.7 ANALYSES

Groundwater samples were analyzed for tritium and gamma-emitting radionuclides as listed in NUREG-1301 and strontium-89/90 as listed in 40 CFR 141.25.

5.0 RESULTS SUMMARY

This section provides a summary of Station-specific geology and hydrogeology, along with a discussion of hydraulic gradients, groundwater elevations, and flow directions in the vicinity of the Station. This section also presents and evaluates the analytical results obtained from activities performed during the blowdown line and fleetwide investigations.

5.1 STATION GEOLOGY

Bedrock under the Station is generally found within the top 10 feet, under a veneer of unconsolidated deposits, except near the Rock River, where the bedrock has been eroded and is encountered at deeper depths. The Station geology is consistent with the regional geology and is comprised of flat-lying Ordovician-aged dolomitic and sandstone layers progressing downward as follows:

- Galena Group Dolomites;
- Platteville Group Dolomites; and
- Ancell Group, consisting of:
 - Glenwood Formation (shale with sandy dolomite, semi-confining layer),
 - St. Peter Sandstone Formation, and
 - older Cambrian formations.

The generating facility was constructed on an area of a 'bedrock high', and the foundation was installed into the bedrock.

5.2 STATION HYDROGEOLOGY

There are two aquifers within the first 230 feet beneath the Station property:

- the upper aquifer is the Galena-Platteville aquifer consisting of Galena-Platteville limestones and dolomites; and
- the lower aquifer is the St. Peter Sandstone aquifer.

The Glenwood Formation separates the above two aquifers. The Glenwood contains shale at the top and sandy dolomite at its base. The shale acts as a semi-confining aquitard between the upper Galena-Platteville aquifer and lower St. Peter Sandstone

aquifer. The first occurrence of groundwater (the water table) is encountered within the unconsolidated deposits near the Rock River, and within the upper fractured portions of the Galena-Platteville aquifer in the upland areas, east of the Rock River.

The monitoring wells at the Station were installed to monitor three intervals within the two aquifers (see Table 2.1):

- wells screened across the water table, either in the unconsolidated sediments near the Rock River or in the upper portions of the Galena-Platteville aquifer;
- wells screened at the bottom of the Galena-Platteville aquifer, just above the shale unit; and
- wells screened in the St. Peter Sandstone aguifer.

Figure 5.1 presents the locations of four hydrogeologic cross-sections prepared for the Station. The four cross-sections depict the relationship between the geology and measured groundwater elevations. Figure 5.2 presents an east-west cross-section parallel to the groundwater flow direction, along the blowdown line. Figure 5.3 presents a north-south cross-section perpendicular to the groundwater flow, through vacuum breaker 4 (VB-4). This location was chosen because water with the highest concentrations of tritium was encountered in the concrete vault at VB-4. Also indicated on Figures 5.1 through 5.3 are the approximate limits of the historical Byron Salvage Site groundwater plumes. Figure 5.4 presents two cross-sections through the PA, one trending to the northeast through Unit 2 and the other to the east through Unit 2.

5.2.1 GROUNDWATER FLOW DIRECTIONS

CRA used a commercially available contouring program (Surfer, Version 8.02, 2002) to provide an initial contouring of the measured groundwater elevations. CRA then refined the initial contours, using professional judgment, to prepare final contour maps. Figure 2.4 presents the water table groundwater contours in the upper portion of the Galena-Platteville aquifer based on data collected by CRA on March 23, 2006 for the blowdown line area, along with historical data collected in 1974 for the generating facility area. Figures 5.5 through 5.7 present the groundwater contours based on April 24, 2006 data for the upper portion of the Galena-Platteville aquifer, the bottom of the Galena-Platteville aquifer, and the St. Peter Sandstone aquifer, respectively.

The general groundwater flow direction in all three intervals is to the west toward Rock River. This is consistent with the regional flow pattern, which is to the west toward the Rock River, since the Rock River is the major water body in the area (UFSAR, 2004 and CRA, 2001).

Within the upper portions of the Galena-Platteville aquifer, the direction of groundwater flow typically follows the topographic relief at points along the blowdown line. There is a northwest/southeast trending groundwater divide within the Former Dirk's Farm property, near Razorville Road, that is generally perpendicular to the blowdown line (Figures 2.4 and 5.5).

5.2.2 MAN-MADE INFLUENCES ON GROUNDWATER FLOW

The PA sits upon a bedrock high, and as such, the groundwater beneath this area of the Station flows radially outward in all directions. The bedrock below the generating facility foundations was pressure grouted for structural reasons prior to constructing the foundation. The pressure grouting sealed the pore space of the bedrock, thus causing the groundwater to be observed at a deeper depth than that under normal conditions in AR-7. Therefore, the groundwater elevation from AR-7 was not used in the contouring of Figure 5.5.

5.2.3 VERTICAL HYDRAULIC GRADIENTS

CRA calculated vertical hydraulic gradients at the locations where depth specific wells were clustered together. Table 5.1 presents the calculated vertical gradients. Between the upper portion of the Galena-Platteville aquifer and the bottom of the aquifer, there is a slight downward vertical gradient of approximately 0.01 feet/foot. This is consistent with the effects of recharge from the higher/elevated areas of the Station and discharge to the Rock River. However, at the PC-3B/DF-6 well cluster location on the former Dirk's Farm property, the downward vertical gradient is greater, at 0.443 feet/foot. The vertical gradients measured within the Galena-Platteville aquifer are in the same range as the measured horizontal hydraulic gradient.

There is only one cluster of wells in which both wells are screened within the St. Peter Sandstone aquifer: MW-20R and MW-21. The measured vertical hydraulic gradient at this well cluster is very low at 0.001 feet/foot. This suggests primarily horizontal flow within the St. Peter Sandstone aquifer, which is consistent with the high conductivity of the St. Peter Sandstone.

The groundwater elevation data confirm that the Galena-Platteville and St. Peter Sandstone aquifers are not hydraulically connected. The groundwater elevations measured in wells that are screened in the St. Peter Sandstone aquifer are typically more than 50 feet lower than those in wells screened at the bottom of the Galena-Platteville aquifer. Vertical hydraulic gradients between these two aquifers, measured at five well clusters, range between 0.622 feet/foot and 1.893 feet/foot, with the average being 1.127 feet/foot. These are much greater than the horizontal gradients measured in either of the two aquifers. These groundwater data provide evidence that the shale of the Glenwood Formation, which separates the bottom of the Galena-Platteville aquifer from the underlying St. Peter Sandstone aquifer, is acting as a local aquitard or semi-confining unit.

5.2.4 LATERAL GROUNDWATER FLOW AND VELOCITY

Across the more than two-mile distance between the generating facility and the Rock River, the water table elevation drops approximately 160 feet, creating a shallow horizontal hydraulic gradient of approximately 0.014 feet/foot. The limestones and dolomites that comprise the Galena-Platteville aquifer generally have hydraulic conductivities that can vary significantly; a study for the Byron Salvage Site immediately to the north of the west portion of the station, reported mean hydraulic conductivities ranging from 0.31 feet/day to 240 feet/day with a primary porosity of around 10 percent (Kay et al., 1997). With a gradient of 0.014 feet/foot, the average shallow horizontal groundwater flow velocity can be calculated to be 15.8 feet/year to 12,200 feet/year.

The groundwater flow direction at the bottom of the Galena-Platteville aquifer has a southwest component, under a horizontal hydraulic gradient of approximately 0.011 feet/foot (Figure 5.6). However, the wells screened at the bottom of the aquifer are only located near the blowdown line, on the Former Dirk's Farm property, not across the entire length of the Station property. In this same area for the upper Galena-Platteville aquifer, the groundwater contours also suggest a component of flow to the southwest.

In St. Peter Sandstone aquifer, the groundwater contours suggest a groundwater flow to the west toward the Rock River, under a low horizontal hydraulic gradient of approximately 0.001 feet/foot (Figure 5.7). This is consistent with expected regional groundwater flow within the lower aquifer. Using the hydraulic gradient of 0.001 feet/foot with a reported hydraulic conductivity range of 2.0 feet/day to 8.7 feet/day (Kay et al., 1997) and a reported primary porosity of 0.14 (Kay et al., 1997)

yields an average horizontal groundwater velocity in the St. Peter Sandstone of 5.2 feet/year to 22.7 feet/year.

5.3 GROUNDWATER QUALITY

During the blowdown line investigation and the fleetwide assessment, both CRA and Station personnel collected numerous samples from the vacuum breaker vaults and other Station locations, from nearby residential wells, from the blowdown line itself, from the on-Station CROP, and from a subset of the monitoring wells located on the Station property. As discussed in Sections 4.1 and 4.2, the samples were analyzed for tritium, and some of the samples were also analyzed for strontium-89/90 and additional radionuclides.

Table 5.2 presents a summary of tritium analyses for water samples collected by the Station from the vacuum breaker vaults, the beginning and end of the blowdown line, and the CROP. Table 5.3 presents a summary of tritium analyses for groundwater samples collected during both the blowdown line investigation and the fleetwide investigation. Table 5.4 presents a summary of tritium analyses for groundwater samples collected from residential water supply wells. Table 5.5 presents a summary of the other radionuclide analyses (strontium-89/90 and gamma-emitting radionuclides) for groundwater samples collected during both the blowdown line investigation and the fleetwide investigation.

The analytical data presented herein has been subjected to CRA's data validation process (see Appendix E for the data validation reports). CRA has used the data with appropriate qualifiers, where necessary.

The data reported in the figures and tables does not include the results of re-analyses or recounts that the laboratory completed, except if those results ultimately replaced an initial report. The tables and figures, therefore, include only the first analysis reported by the laboratory.

5.3.1 SUMMARY OF BETA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

5.3.1.1 STATION SAMPLING POINTS

During the blowdown line investigation, Station personnel collected multiple samples on different dates from the vacuum breaker vaults, the beginning and end of the blowdown line, and the CROP. A summary of the tritium results for the water samples collected from the Station sampling locations is provided in Table 5.2. The tritium data are presented graphically on Figure 5.8.

5.3.1.2 GROUNDWATER MONITORING WELL SAMPLES

A summary of the tritium results for the groundwater samples collected during both the blowdown line investigation and the fleetwide investigation is provided in Table 5.3. Figures 5.9 through 5.11 present the tritium data graphically for the groundwater samples collected on different dates from the monitoring wells screened in the upper portions of the Galena-Platteville aquifer, the bottom of Galena-Platteville aquifer, and the St. Peter Sandstone aquifer, respectively.

All tritium concentrations were below the USEPA drinking water standard of 20,000 pCi/L. Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in 35 of the 39 groundwater samples collected.

Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L. A summary of the strontium-89/90 results for the groundwater samples collected as part of the investigations that are the subject of this HIR is provided in Table 5.5.

Galena-Platteville Aquifer

Groundwater samples were collected from 32 different monitoring wells screened in the upper portions of Galena-Platteville aquifer (Figure 5.9). Concentrations of tritium exceeding the LLD of 200 pCi/L for tritium were only detected in the groundwater samples collected from three of the monitoring wells: AR-2, AR-3, and AR-4. The most recent concentrations of tritium detected at each location were:

- AR-2 $432 \pm 140 \text{ pCi/L}$;
- AR-3 $234 \pm 128 \text{ pCi/L}$; and
- AR-4 $3,260 \pm 367 \text{ pCi/L}$.

The original groundwater sample collected from TW-13 had a tritium concentration less than the LLD of 200 pCi/L; however, a detection of tritium slightly greater than the LLD, 201 ± 110 pCi/L, was detected in a duplicate groundwater sample collected as part of the fleetwide sampling event at the same time on the same date. In consideration of the original sample being less than the LLD, and the duplicate sample at 201 pCi/L with an error of ± 110 pCi/L, the tritium concentration at this location is regarded as less than the LLD.

CRA collected five groundwater samples from monitoring wells installed at the bottom of Galena-Platteville aquifer (Figure 5.10), and only the samples from monitoring well AR-11 contained tritium at concentrations greater than the LLD of 200 pCi/L. The highest tritium concentration detected in a groundwater sample collected from monitoring well AR-11 was 2,340 ± 282 pCi/L. Monitoring well AR-11 is a bedrock well located in a downgradient direction from monitoring well AR-4 and VB-4 (Figure 2.3), and screened in a deeper portion of the bedrock (bottom of the Galena-Platteville aquifer) than AR-4 (upper portion of the Galena-Platteville aquifer) (Figure 5.2). The inferred vertical limits of the groundwater containing tritium exceeding the LLD of 200 pCi/L are depicted on Figures 5.2 and 5.3.

Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L. A summary of the strontium 89/90 results for the groundwater samples collected as part of the investigations that are the subject of this HIR is provided in Table 5.5.

St. Peter Sandstone Aquifer

CRA collected groundwater samples from four monitoring wells screened in the St. Peter Sandstone aquifer (Figure 5.11). None of the groundwater samples contained detectable concentrations of tritium above the LLD of 200 pCi/L.

Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L. A summary of the strontium-89/90 results for the groundwater samples collected as part of the investigations that are the subject of this HIR is provided in Table 5.5.

5.3.1.3 <u>RESIDENTIAL WATER SUPPLY WELLS</u>

Station personnel collected water samples from nine of the residences located adjacent to the Station property, along the blowdown line. In addition, a water sample was also collected from the well of a residence located approximately 2 miles east of the Station (Goral Well) to be used as a background water sample.

Tritium was not detected above the LLD of 200 pCi/L in any of the 10 residential well samples collected. A summary of the tritium results for the residential water samples is provided in Table 5.4, and the tritium data is presented graphically on Figure 5.12.

Strontium-89/90 was not detected at concentrations greater than the LLD of 2.0 pCi/L. A summary of the strontium-89/90 results for the groundwater samples collected as part of the investigations that are the subject of this HIR is provided in Table 5.5.

5.3.2 SUMMARY OF GAMMA-EMITTING RADIONUCLIDES ANALYTICAL RESULTS

Gamma-emitting target radionuclides were not detected at concentrations greater than their respective LLD. CRA collected groundwater samples from 19 monitoring wells and the samples were analyzed for gamma-emitting radionuclides. A summary of the radionuclide results is provided in Table 5.5 and presented graphically on Figure 5.13.

Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

5.3.3 <u>SUMMARY OF FIELD MEASUREMENTS</u>

A summary of the field measurement results for the groundwater samples collected as part of the blowdown line investigation is provided in Table 4.3. A summary of the field measurement results for the groundwater samples collected as part of the fleetwide investigation is provided in Table 4.7. These field measurements included pH, Dissolved Oxygen, Conductivity, Turbidity and Temperature.

5.4 SURFACE WATER QUALITY

No samples were collected from the surface water bodies. The two surface water drainage creeks located in the area of the Station are both ephemeral streams, flowing only during times of heavy rainfall.

6.0 RADIONUCLIDES OF CONCERN AND SOURCE AREAS

This section discusses radionuclides evaluated in this investigation, potential sources of the radionuclides detected, and their distribution.

6.1 GAMMA-EMITTING RADIONUCLIDES

Gamma-emitting target radionuclides were not detected at concentrations greater than their respective LLD. Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

6.2 BETA-EMITTING RADIONUCLIDES

Strontium-89/90 was not detected in any of the groundwater samples collected at concentrations greater than the LLD of 2.0 pCi/L. Tritium was detected in four of the 39 total sample locations. Concentrations of tritium ranged between 234 ± 128 pCi/L to $3,260 \pm 367$ pCi/L.

Since only tritium was detected at concentrations greater than its LLD during the fleetwide investigation, the following sections focus on tritium; specifically, providing general characteristics of tritium, potential sources, distribution in groundwater, and a conceptual model for migration.

6.3 TRITIUM

This section discusses the general characteristics of tritium, the distribution of tritium in groundwater and surface water, and the conceptual model of tritium release and migration.

6.3.1 GENERAL CHARACTERISTICS

Tritium (chemical symbol H-3) is a radioactive isotope of hydrogen. The most common forms of tritium are tritium gas and tritium oxide, which is also called "tritiated water."

The chemical properties of tritium are essentially those of ordinary hydrogen. Tritiated water behaves the same as ordinary water in both the environment and the body. Tritium can be taken into the body by drinking water, breathing air, eating food, or absorption through skin. Once tritium enters the body, it disperses quickly and is uniformly distributed throughout the body. Tritium is excreted primarily through urine within a month or so after ingestion. Organically bound tritium (tritium that is incorporated in organic compounds) can remain in the body for a longer period.

Tritium is produced naturally in the upper atmosphere when cosmic rays strike air molecules. Tritium is also produced during nuclear weapons explosions, as a by-product in reactors producing electricity, and in special production reactors, where the isotopes lithium-7 and/or boron-10 are bombarded to produce tritium.

Although tritium can be a gas, its most common form is in water because, like non-radioactive hydrogen, radioactive tritium reacts with oxygen to form water. Tritium replaces one of the stable hydrogen atoms in the water molecule and is called tritiated water. Like normal water, tritiated water is colorless and odorless. Tritiated water behaves chemically and physically like non-tritiated water in the subsurface, and therefore tritiated water will travel at the same velocity as the average groundwater velocity.

Tritium has a half-life of approximately 12.3 years. It decays spontaneously to helium-3 (³He). This radioactive decay releases a beta particle (low-energy electron). The radioactivity of tritium is the source of the risk of exposure.

Tritium is one of the least dangerous radionuclides because it emits very weak radiation and leaves the body relatively quickly. Since tritium is almost always found as water, it goes directly into soft tissues and organs. The associated dose to these tissues is generally uniform and is dependent on the water content of the specific tissue.

6.3.2 DISTRIBUTION IN STATION GROUNDWATER

This section provides an overview of the lateral and vertical distribution of tritium found in groundwater beneath the Station. Tritium was only detected in groundwater at concentrations exceeding the LLD of 200 pCi/L near the vaults along the blowdown line.

The groundwater under the PA does not appear to be impacted by tritium based on the groundwater analytical results from the five monitoring wells installed in and around

the PA (AR-7 through AR-10 and CAR-3) in locations that are hydraulically downgradient of Station systems. Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in any of the groundwater samples collected from these five monitoring wells during the investigation.

Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in the water samples collected from the residential water wells. The St. Peter Sandstone is the primary aquifer for residential potable water in the area, and the water in the St. Peter Sandstone aquifer is separated from the water in the Galena-Platteville aquifer by the shale unit of the Glenwood Formation (see Section 5.1.2).

The only tritium concentrations greater than the LLD of 200 pCi/L were detected during the blowdown line and fleetwide investigations in groundwater samples collected from four wells: AR-2, AR-3, AR-4, and AR-11. Monitoring wells AR-2, AR-3, and AR-4 screen the water table, and AR-11 is screened at the bottom of the Galena-Platteville aquifer. These four locations are adjacent to the three vacuum breaker vaults VB-2, VB-3, and VB-4, that had water within the concrete vaults exhibiting the highest concentrations of tritium (see Figure 5.8).

The tritium concentrations detected in the groundwater samples collected from monitoring wells AR-2 and AR-3, which are near VB-2 and VB-3, are not much higher than 200 pCi/L. The concentrations in these two wells fluctuate, but are all less than 600 pCi/L. The detected tritium concentrations in the groundwater samples collected during the fleetwide investigation from monitoring wells AR-4 and AR-11 were $3,260\pm367$ pCi/L and $2,340\pm282$ pCi/L, respectively. These wells are near VB-4. AR-4 screens the water table, and AR-11 is deeper and screens the bottom of the Galena-Platteville aquifer.

The original groundwater sample collected from TW-13 had a tritium concentration less than the LLD of 200 pCi/L; however, tritium was detected at a very low concentration, 201 ± 110 pCi/L, in a duplicate groundwater sample collected as part of the fleetwide sampling event at the same time on the same date. In consideration of the original sample being less than the LLD, and the duplicate sample at just 201 pCi/L with an error of \pm 110, the tritium concentration at this location is regarded as less than the LLD. Monitoring well TW-13 is a shallow well (18 feet deep) located near River Road and installed within the unconsolidated alluvial sediments.

In summary, there are only three areas at the Station where tritium has been detected. They are all located near vacuum breakers along the blowdown line. These three areas are: VB-2 (well AR-2), VB-3 (well AR-3), and VB-4 (wells AR-4 and AR-11). The

groundwater impacted at each of these areas is localized within the Galena-Platteville aquifer. The inferred vertical limits of the groundwater containing tritium exceeding 200 pCi/L are depicted on Figures 5.2 and 5.3. Based on the data collected, none of the other aquifers appears to have been impacted.

6.3.3 CONCEPTUAL MODEL OF TRITIUM RELEASE AND MIGRATION

This section presents CRA's conceptual model of groundwater and tritium migration at the Station.

As identified in Section 6.3.2, the groundwater under the PA does not appear to be impacted by tritium above the LLD of 200 pCi/L. Tritium was also not detected at concentrations exceeding the LLD of 200 pCi/L in the water samples collected from the residential water wells.

The highest concentrations of tritium detected in the Station sampling points were from water samples collected from within the vacuum breaker vaults along the blowdown line. The source of the tritium in the groundwater at the four wells is minor failures of the blowdown line vacuum breakers. This water originated from the blowdown line. The water encountered in the vaults was pumped out and processed in accordance with the Station's NPDES permit. As discussed in Section 3.3.2.2, Exelon performed construction upgrades on each of the six breaker vaults to ensure that there will not be any future releases of tritium to the groundwater.

Sources and Migration of Tritium

The detections of tritium exceeding 200 pCi/L in monitoring wells AR-2, AR-3, AR-4, and AR-11 appear to be localized and confined to the areas around the wells. Tritium was not detected at the LLD of 200 pCi/L in the groundwater samples collected from monitoring wells and residential wells downgradient of these locations. The source of the tritium in the groundwater at these four well locations is the blowdown line vacuum breakers (AFE-Byron-2). Once in the subsurface, the tritiated water migrated downward through the unsaturated overburden and fractured bedrock to the water table. Once at the water table, downward vertical gradients caused the tritiated water to migrate downward to the base of the Galena-Platteville aquifer, where tritium was detected in the groundwater sample from monitoring well AR-11 (Figure 5.2).

The shale of the Glenwood Formation has a low permeability and acts as a barrier to further downward migration of the tritiated water. Due to the low permeabilities of the

Galena-Platteville limestones/dolomites, combined with the shallow horizontal gradient, the tritiated water should not migrate very far laterally from the vacuum breakers. There is no indication from the HIR data that tritium-impacted groundwater in this area is migrating off the Station property.

7.0 EXPOSURE PATHWAY ASSESSMENT

This section addresses the groundwater impacts from tritium and other radionuclides at the Station and potential risks to human health and the environment.

Based upon historical knowledge and data related to the Station operations and based upon radionuclide analyses of groundwater samples, the primary constituent of concern (COC) is tritium. The discussions that follow are focused on the exposure pathways related to tritium.

Teledyne Brown reports all samples to their statistically-derived minimum detectable concentration (MDC) of approximately 150 to 170 pCi/L, which is associated with 95 percent confidence interval on their hardcopy reports. However, the laboratory uses a 99 percent (± 3-sigma) confidence range for determining whether to report the sample activity concentration as detected or not. This 3-sigma confidence range typically equates to 150 (± 135.75) pCi/L.

Exelon has specified a LLD of 200 pCi/L for the Fleetwide Assessment. Exelon has also required the laboratory to report related peaks identified at the 95 percent confidence level (2-sigma).

This HIR, therefore, screens and assesses data using Exelon's LLD of 200 pCi/L. As is outlined below, this concentration is also a reasonable approximation of the background concentration of tritium in groundwater at the Station.

7.1 <u>HEALTH EFFECTS OF TRITIUM</u>

Tritium is a radionuclide that decays by emitting a low-energy beta particle that cannot penetrate deeply into tissue or travel far in air. A person's exposure to tritium is primarily through the ingestion of water (drinking water) or through ingestion of water bearing food products. Inhalation of tritium requires the water to be in a vapor form (i.e., through evaporation or vaporization due to heating). Inhalation is a minor exposure route when compared to direct ingestion or drinking of tritiated water. Absorption of tritium through skin is possible, but tritium exposure is more limited here versus direct ingestion or drinking of tritiated water.

7.2 BACKGROUND CONCENTRATIONS OF TRITIUM

The purpose of the following paragraphs is to establish a background concentration through review of various media.

7.2.1 GROUNDWATER

Tritium is created in the environment from naturally occurring processes both cosmic and subterranean, as well as from anthropogenic (i.e., man-made) sources. In the upper atmosphere, "cosmogenic" tritium is produced from the bombardment of stable nuclides and combines with oxygen to form tritiated water, which will then enter the hydrologic cycle. Below ground, "lithogenic" tritium is produced by the bombardment of natural lithium isotopes ⁶Li (92.5 percent abundance) and ⁷Li (7.5 percent abundance) present in crystalline rocks by neutrons produced by the radioactive decay of uranium and thorium. Lithogenic production of tritium is usually negligible compared to other sources due to the limited abundance of lithium in rock. The lithogenic tritium is introduced directly to groundwater.

A major anthropogenic source of tritium comes from the former atmospheric testing of thermonuclear weapons. Levels of tritium in precipitation increased during the 1950s and early 1960s, coinciding with the release of significant amounts of tritium to the atmosphere during nuclear weapons testing prior to the signing of the Limited Test Ban Treaty in 1963, which prohibited atmospheric nuclear tests.

7.2.2 PRECIPITATION DATA

Precipitation samples are routinely collected at stations around the world for the analysis of tritium and other radionuclides. Two publicly available databases that provided tritium concentrations in precipitation are Global Network of Isotopes in Precipitation (GNIP) and USEPA's RadNet database. GNIP provides tritium precipitation concentration data for samples collected world wide from 1960 to 2006. RadNet provides tritium precipitation concentration data for samples collected at Stations through the U.S. from 1960 up to and including 2006.

Based on GNIP data for sample stations located in the U.S. Midwest including Chicago, St. Louis and Madison, Wisconsin, as well as Ottawa Ontario, and data from the University of Chicago, tritium concentrations peaked around 1963. This peak, which approached 10,000 pCi/L for some stations, coincided with the atmospheric testing of

thermonuclear weapons. Tritium concentrations showed a sharp decline up until 1975 followed by a gradual decline since that time. Tritium concentrations in Midwest precipitation have typically been less than 100 pCi/L since around 1980.

The RadNet database for several stations in the U.S. Midwest (Chicago, Columbus, Indianapolis, Lansing, Madison, Minneapolis, Painesville, Toledo, and Welsch, MN) did not show the same trend, which can be attributed to pre-1995 data handling procedures. The pre-1995 data were rounded to the nearest 100 pCi/L, which damped out variances in the data. The post-1995 RadNet data, where rounding was not applied, exhibit much more scatter, and similar to the GNIP data, the vast majority of the data were less than 100 pCi/L.

CRA constructed a non-parametric upper tolerance limit with a confidence of 95 percent and a coverage of 95 percent based on RadNet data for USEPA Region 5 from 2004 to 2005. The resulting upper tolerance limit is 133 pCi/L, which indicates that CRA is 95 percent confident that 95 percent of the ambient precipitation concentration results are less than 133 pCi/L. The statistical confidence, however, must be compared with the limitations of the underlying RadNet data, which does not include the minimum detectable concentration for a majority of the measurements. Some of the RadNet values less than 200 pCi/L may be approximated. Nevertheless, these results show a background contribution for precipitation of up to 133 pCi/L.

7.2.3 SURFACE WATER DATA

Tritium concentrations are routinely measured in large surface water bodies, including Lake Michigan and the Mississippi River. Surface water data from the RadNet database for Illinois sampling stations include East Moline (Mississippi River), Moline (Mississippi River), Marseilles (Illinois River), Morris (Illinois River), Oregon (Rock River), and Zion (Lake Michigan). As is the case for the RadNet precipitation data, the pre-September 1995 Illinois surface water data was rounded to the nearest 100 pCi/L, creating a dampening of variances in the data. The post-1995 Illinois surface water data, similar to the post-1995 Midwest precipitation data, were less than 100 pCi/L with the exception of the Moline (Mississippi River) station. Tritium surface water concentrations at this location varied between 100 and 800 pCi/L, which may reflect local natural or anthropogenic inputs.

Recent surface water measurements for tritium sampling locations upstream of the Quad Cities Generating Station show that concentrations in the Mississippi River are consistently less than 200 pCi/L (Exelon, 2005).

These results indicate that there is a background tritium concentration in surface water that is typically less than 100 pCi/L, but have approached 800 pCi/L in the Mississippi River.

The USEPA RadNet surface water data typically has a reported "Combined Standard Uncertainty" of 35 to 50 pCi/L. According to USEPA, this corresponds to a \pm 70 to 100 pCi/L 95 percent confidence bound on each given measurement. Therefore, the typical background data provided may be subject to measurement uncertainty of approximately \pm 70 to 100 pCi/L.

7.2.4 DRINKING WATER DATA

Tritium concentrations in drinking water from the RadNet database for three Illinois sampling stations (Chicago, Morris, and East Chicago) exhibit similar trends as the precipitation and surface water data. As with the precipitation and surface water data, the pre-1995 data has dampened out variances due to rounding the data to the nearest 100 pCi/L. The post-1995 results show tritium concentrations in drinking water well less than 100 pCi/L and the tritium concentrations found in precipitation and surface water.

7.2.5 EXPECTED TRITIUM BACKGROUND FOR THE STATION

As reported in the GNIP and RadNet databases, tritium concentrations in U.S. Midwest precipitation have typically been less than 100 pCi/L since 1980. Tritium concentrations reported in the RadNet database for Illinois surface water and groundwater, at least since 1995, have typically been less than 100 pCi/L. Based on the USEPA Region 5's 2004 to 2005 RadNet precipitation data, 95 percent of the ambient concentrations of tritiated water in Illinois are expected to be less than 133 pCi/L, based on a 95 percent confidence limit. Tritium concentrations in surface water and drinking water are expected to be comparable or less based on historical data and trends.

Concentrations in groundwater similar to surface water and drinking water are expected to be less as compared to precipitation values. The lower groundwater concentrations are related to the age of the groundwater as compared to the half-life of tritium. Deep aquifers in proximity to crystalline basement rock, however, potentially can also show elevated concentrations of tritium due to lithogenic sources.

As was noted in Section 7.0, the analytical laboratory is reporting tritium results to a LLD of 200 pCi/L. This concentration also represents a reasonable representation of background groundwater quality, given the data for precipitation, surface water, and drinking water.

Based on the evaluation presented above, the background concentration for tritium at the Station is reasonably represented by the LLD of 200 pCi/L.

7.3 IDENTIFICATION OF POTENTIAL EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

Three potential exposure pathways were considered during the evaluation of tritium in groundwater:

- potential groundwater migration to the Station's potable water supply well;
- potential groundwater migration off the Station property to private water supply wells; and
- potential groundwater migration off the Station property to a surface water body.

The following section provides an overview of each of these three potential exposure pathways for tritium in groundwater.

7.3.1 POTENTIAL GROUNDWATER MIGRATION TO DRINKING WATER USERS AT THE STATION PROPERTY

At the Station, the tritium detected in groundwater samples has been isolated to the Galena-Platteville aquifer, which is isolated from the deeper regional groundwater aquifer by the semi-confining Glenwood Formation. Groundwater quality data from production wells and monitoring wells at the Station located below this aquitard do not indicate concentrations of tritium greater than the LLD of 200 pCi/L. As such, the tritium impact is limited to the Galena-Platteville aquifer. There are no water supply wells located on the Station property that draw water from the Galena-Platteville aquifer. The Station receives its potable water from two cased 1,500-foot bedrock wells on the Site, which are installed in the Ironton-Galesville Sandstone. The vertical movement of tritiated water from the Galena-Platteville aquifer into deeper formations is restricted by the semi-confining Glenwood Formation. Since vertical migration of tritiated water through the Glenwood Formation to the Ironton-Galesville Aquifer is

47

restricted but theoretically not eliminated, this is a potentially complete exposure pathway but there is no current risk for groundwater ingestion at the Station.

7.3.2 POTENTIAL GROUNDWATER MIGRATION TO DRINKING WATER USERS OFF THE STATION PROPERTY

Based on the results of the investigations and the conceptual model, the only potentially complete exposure route (pathway) for tritiated water at the Station is ingestion of the groundwater at nearby private water supply wells. However, due to low permeabilities of the limestones and dolomites of the Galena-Platteville aquifer, along with the general hardness of the water, this aquifer is typically not used for potable water in the area.

The St. Peter Sandstone is the primary source for potable water in the area. The St. Peter Sandstone aquifer is separated from the Galena-Platteville aquifer by a low permeability shale of the Glenwood Formation. Residential water wells that are both off the Station property and in the direction of groundwater flow downgradient from the blowdown line typically obtain water from the St. Peter Sandstone aquifer. These water wells were sampled and were not impacted. In addition, none of the groundwater samples collected from monitoring wells near the property line contained tritium at concentrations greater than the LLD of 200 pCi/L. Therefore, although there is a potentially complete exposure pathway, there is no current risk of exposure associated with groundwater ingestion off the Station property.

7.3.3 POTENTIAL GROUNDWATER MIGRATION TO SURFACE WATER USERS

Groundwater does not discharge to the local surface water drainages (ephemeral creeks) and the nearest wells located adjacent to the Rock River have not contained tritium. There is no potentially complete exposure pathway, therefore there is no current risk of exposure associated with groundwater migration to surface water at the Station.

7.4 SUMMARY OF POTENTIAL TRITIUM EXPOSURE PATHWAYS

There are three potential exposure pathways for tritium at the Station:

potential groundwater migration to the Station's potable supply well;

- potential groundwater migration off the Station property to private water supply wells; and
- potential groundwater migration off the Station property to a surface water body.

Based upon the groundwater and surface water data provided and referenced in this investigation, none of the potential receptors are at risk of exposure to concentrations of tritium in excess of the USEPA drinking water standard (20,000 pCi/L).

7.5 OTHER RADIONUCLIDES

Target radionuclides were not detected at concentrations greater than the LLDs in the groundwater samples collected. Other non-targeted radionuclides were also included in the tables but excluded from discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

8.0 CONCLUSIONS

Based on all of the studies completed to date at the Station, CRA concludes:

Groundwater Flow

- There are two groundwater aquifers within the first 230 feet beneath the Station: the Galena-Platteville aquifer (upper aquifer) and the St. Peter Sandstone aquifer (lower aquifer).
- The two aquifers are separated by a semi-confining shale layer of the Glenwood Formation and, therefore, not hydraulically connected under the Station.
- Groundwater (the water table) is first encountered in the upper fractured portions of the Galena-Platteville aquifer. Near the Rock River, the bedrock has been eroded, and the water table is in unconsolidated alluvial material.
- The general direction of groundwater flow in both aquifers is to the west toward the Rock River.
- The groundwater flows radially away from the facility.
- The horizontal gradient in the Galena-Platteville aquifer is shallow. There is a slight downward vertical gradient between the upper portion and bottom of the Galena-Platteville aquifer.

Groundwater Quality

- Tritium concentrations in groundwater were not detected at concentrations greater than the USEPA drinking water standard of 20,000 pCi/L.
- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in samples collected from the five monitoring wells located in the PA.
- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in 35 of the 39 groundwater samples collected. Concentrations of tritium in the four remaining samples, all collected near vacuum breakers, ranged between 234 ± 128 pCi/L to 3,260 ± 367 pCi/L.
- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the most recent water samples collected as part of this investigation.
- Strontium-89/90 was not detected at concentrations greater than the LLD of 2 pCi/L in any sample collected as part of this investigation.

- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in the water samples collected from the residential water wells.
- The HIR data indicate that tritium is not migrating off the Station property.

AFE-Byron-1 - Former Fiberglass Blowdown Line

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the 13 groundwater samples collected from the four monitoring wells in the vicinity of AFE-Byron-1.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2 pCi/L in any of the 13 groundwater samples collected from the four monitoring wells in the vicinity of AFE-Byron-1.
- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in any of the groundwater samples collected from the four monitoring wells in the vicinity of AFE-Byron-1.
- There is no current impact from this AFE to groundwater.

AFE-Byron-2 - Vacuum Breaker Vaults

- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples most recently collected from monitoring wells near AFE-Byron-2.
- Strontium-89/90 was not detected at a concentration greater than the LLD of 2 pCi/L in any of the groundwater samples collected from monitoring wells near AFE-Byron-2.
- To the west of the generating facility, near the blowdown line, the concentrations of tritium were greater than the LLD of 200 pCi/L in four monitoring wells: AR-2, AR-3, AR-4, and AR-11. These four wells are adjacent to three vacuum breaker vaults: VB-2, VB-3, and VB-4. These vaults formerly contained water with elevated concentrations of tritium.
- Two areas where tritium was found in the groundwater near VB-2 and VB-3 are limited to the shallow portions of the Galena-Platteville aquifer.
- Near VB-4, the groundwater contains tritium down to the bottom of the Galena-Platteville aquifer.

- The source of the tritium concentrations in the groundwater was periodic leaks during re-seating of the blowdown line vacuum breaker valves.
- None of the tritium concentrations detected in the groundwater exceed the USEPA drinking water standard of 20,000 pCi/L.
- The shale unit of the Glenwood Formation has a low permeability and acts as a barrier to further downward migration of impacted water down to the St. Peter Sandstone aquifer. Due to the low permeabilities of the Galena-Platteville limestones/dolomites combined with the shallow gradient of the water table, the tritiated water in the Galena-Platteville aquifer will not migrate very far laterally from the VB-2, VB-3, and VB-4 areas.
- Tritiated groundwater at the Station is isolated in three areas, and the evidence indicates that it is not migrating off Station property. This is based upon the inferred slow groundwater flow velocities and that groundwater sampling results indicate that monitoring wells outside of these three areas are not impacted. The unimpacted wells include: monitoring wells located hydraulically downgradient, monitoring wells located at the property line, and residential water wells. The tritium detected in groundwater is not the result of large failures of the blowdown line, but of minor failures of the vacuum breaker valves to re-seat during blowdown line discharge events. No knowledge or evidence of large failures of or releases from the blowdown line have been documented or identified through the investigations.
- Therefore, additional plume delineation activities or groundwater remediation are not warranted.

AFE-Byron-3 -Protected Area

- Groundwater under the PA flows radially outward due to the topographic high on which the PA was constructed. The downgradient locations of the monitoring wells were selected based on this radial groundwater flow pattern. These monitoring wells are situated to provide for an adequate indication for future leak detection.
- Tritium was not detected at concentrations greater than the LLD of 200 pCi/L in any
 of the groundwater samples collected from seven monitoring wells in the vicinity of
 AFE-Byron-3.
- Gamma-emitting radionuclides associated with licensed plant operations were not detected at concentrations greater than their respective LLDs in any of the groundwater samples most recently collected from seven monitoring wells in the vicinity of AFE-Byron-3.

- Strontium-89/90 was not detected at a concentration greater than the LLD of 2 pCi/L in any of the groundwater samples collected from monitoring wells in the vicinity of AFE-Byron-3.
- There is no current impact from this AFE to groundwater.

Potential Receptors

 Based on the results of this investigation¹, there is no current risk from exposure to radionuclides associated with licensed plant operations through any of the identified potential exposure pathways.

General Conclusions

- Based on the results of this investigation, tritium is not migrating off the Station property at detectable concentrations.
- Based on the results of this investigation, there are no known active releases into the groundwater at the Station.

¹ Using the LLD specified in this HIR.

9.0 **RECOMMENDATIONS**

The following presents CRA's recommendations for proposed activities to be completed at the Byron Station.

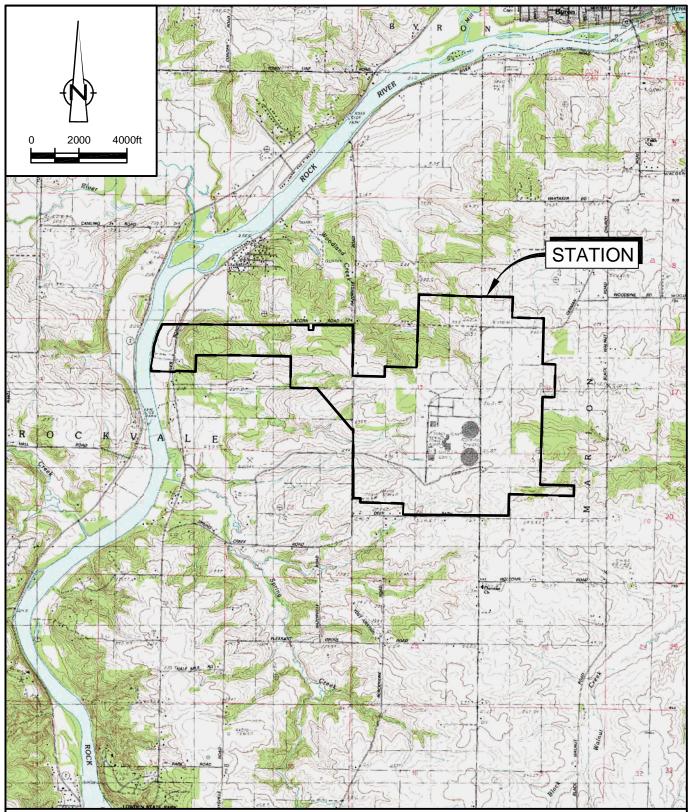
9.1 DATA GAPS

Based on the results of this hydrogeologic investigation, there are no data gaps remaining to support CRA's conclusions regarding the characterization of the groundwater regime and potential impacts from radionuclides at the Station.

9.2 GROUNDWATER MONITORING

Based upon the information collected to date, CRA recommends that Exelon conduct periodic monitoring of selected groundwater monitoring well locations.

10.0 REFERENCES


The materials referenced in the generation of this HIR include:

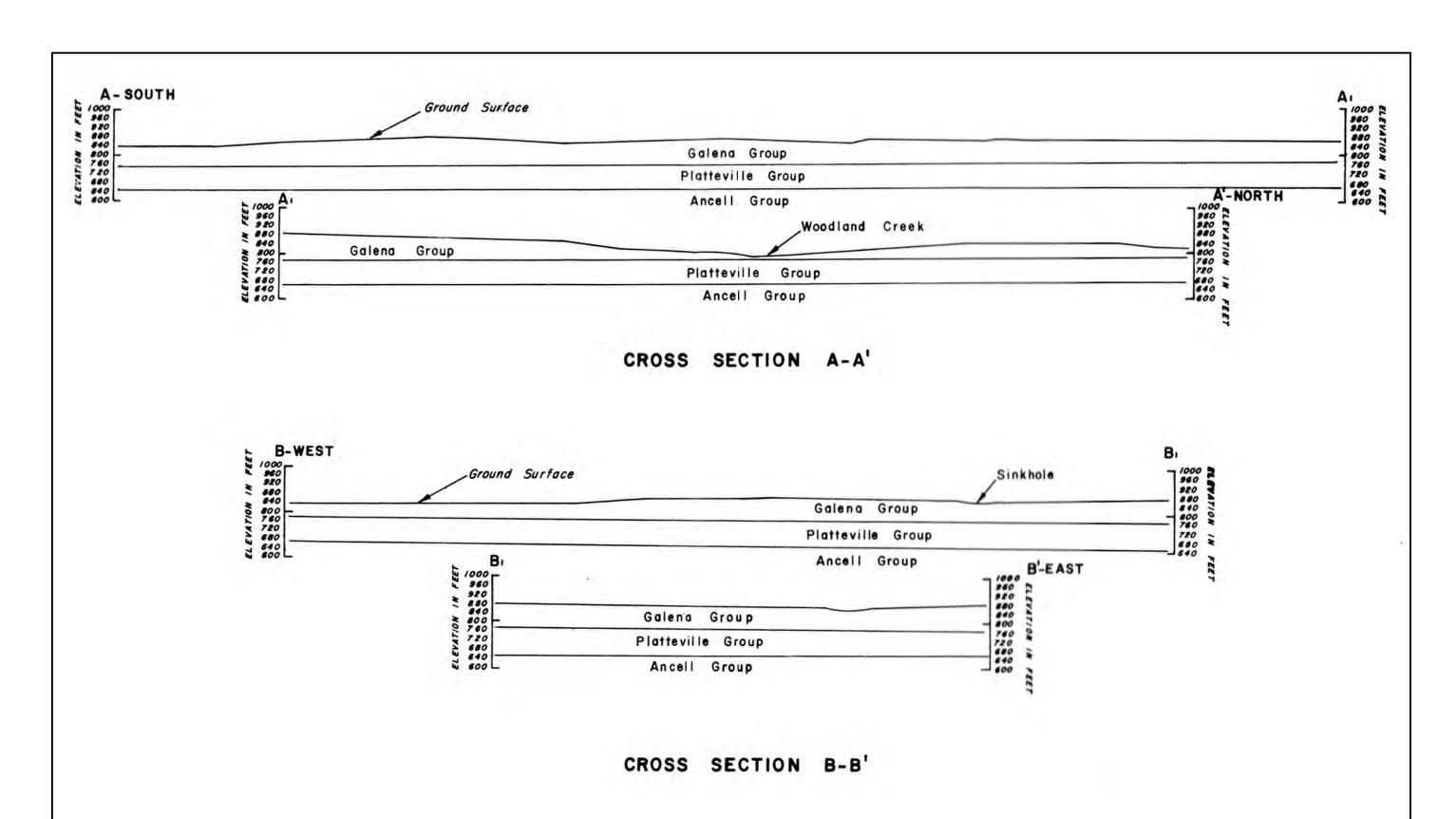
- Byron Station Radiological Environmental Monitoring Program (REMP) Reports.
- Byron Station Radiological Effluent Tracking Statistics (RETS) Reports from 1984 to 2005.
- Byron Station Updated Final Safety Analysis Report (UFSAR), Rev. #10, December 2004.
- Conestoga-Rovers & Associates, June 2001. "Remedial Design Work Plan Byron Salvage Yard".
- Conestoga-Rovers & Associates, May 2006. "Hydrogeologic Investigation Work Plan Fleetwide Tritium Assessment Byron Generating Station".
- Exelon Generation Company, May 2005. "Quad Cities Nuclear Power Station, 2004 Annual Radiological Environmental Operating Report", Exelon, Cordoa, Illinois.
- Kay, Robert T., Douglas J. Yeskis, William J. Bolen, James R. Rauman, and Scott T. Prinos, 1997. Geology, Hydrology, and Ground-Water Quality at the Byron Superfund Site Near Byron, Illinois, United States Geological Survey, Water-Resources Investigations Report 95-4240, Prepared in Cooperation with the U.S. Environmental Protection Agency Ogle County, 2006, Geographical Information System (GIS) database, http://www.Oglecountygis.org.
- Puls, R.W., and M.J. Barcelona, April 1996. Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, EPA Ground Water Issue, EPA/540/S-92/005, R. S. Kerr Environmental Research Center, United States Environmental Protection Agency, Ada, Oklahoma.
- RETEC Group, Inc., September 23, 2005. "Residential Well Survey".
- United States Department of Agriculture, 2006. Natural Resources Conservation Service website, http://www.nrcs.usda.gov.

The main references cited in the UFSAR related to this HIR include:

- Bradbury, J.C. and Atherton, E., 1965. The Precambrian Basement of Illinois, Circular 382, Illinois State Geological Survey.
- Buschbach, T.C., 1964. Cambrian and Ordovician Strata of Northeastern Illinois, Illinois State Geological Survey, Report of Investigation 218, 90 p.
- Frye, J.C., et al., 1969. Glacial Tills of Northwestern Illinois, Illinois State Geological Survey, Cir. 437, 45 p.
- Willman, H.B., et al., 1967. Geological Map of Illinois, Illinois State Geological Survey.

- Willman, H.B., et al., 1975. Handbook of Illinois Stratigraphy, Bulletin 95, Illinois State Geological Survey.
- Willman, H.B. and Frye, J.C., 1970. Pleistocene Stratigraphy of Illinois, Bulletin 94, Illinois State Geological Survey.

SOURCE: USGS QUADRANGLE MAP; STILLMAN VALLEY, ILLINOIS (1976) OREGON, ILLINOIS (1983)


figure 1.1

Exelon.

STATION LOCATION MAP BYRON GENERATING STATION EXELON GENERATION COMPANY, LLC Byron, Illinois

FIGURE 1.2 STATION BOUNDARIES AND FEATURES

(Withheld)

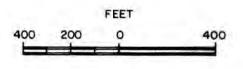
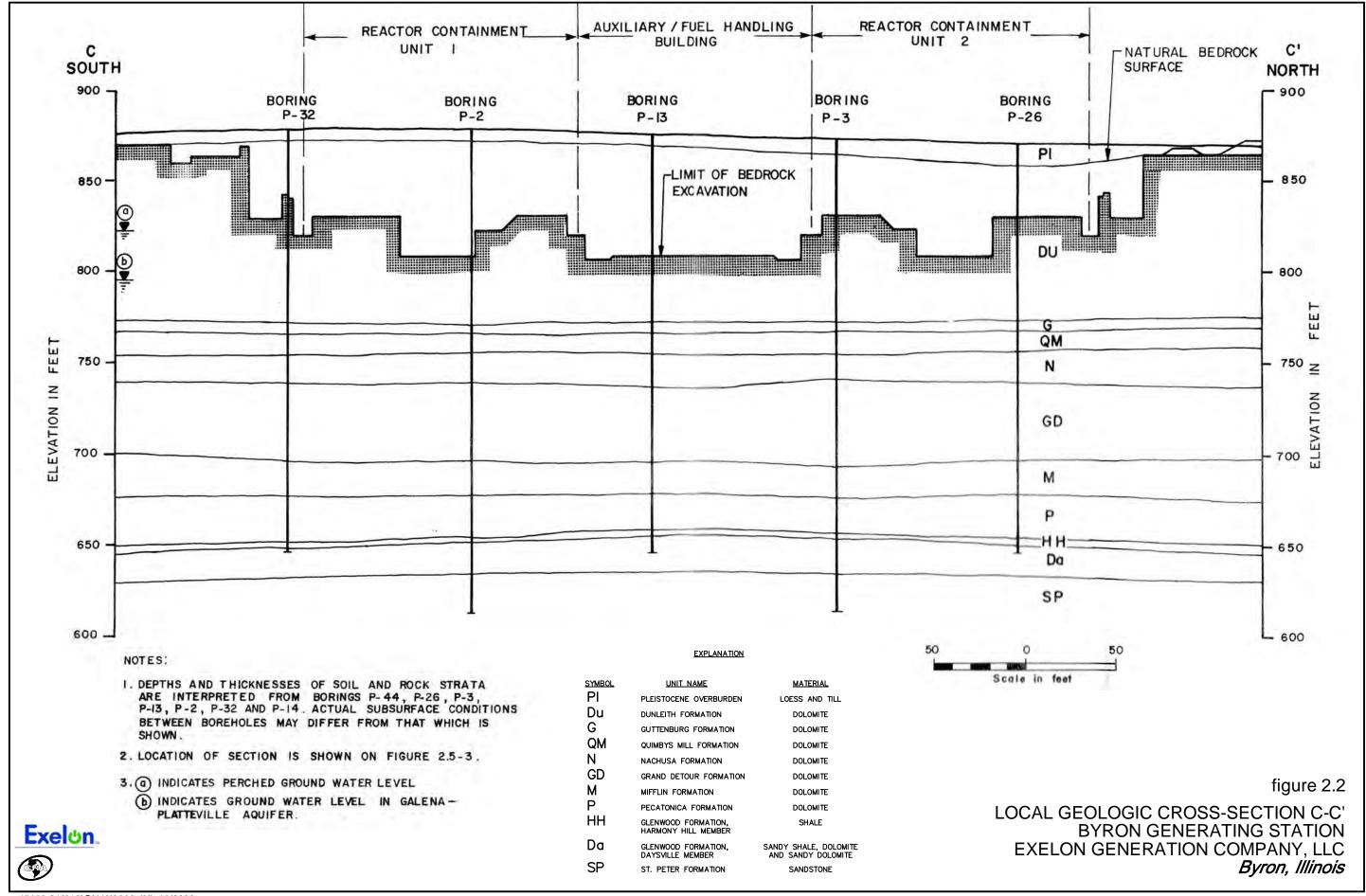



figure 2.1

LOCAL GEOLOGIC CROSS-SECTIONS A-A' AND B-B' BYRON GENERATING STATION EXELON GENERATION COMPANY, LLC Byron, Illinois

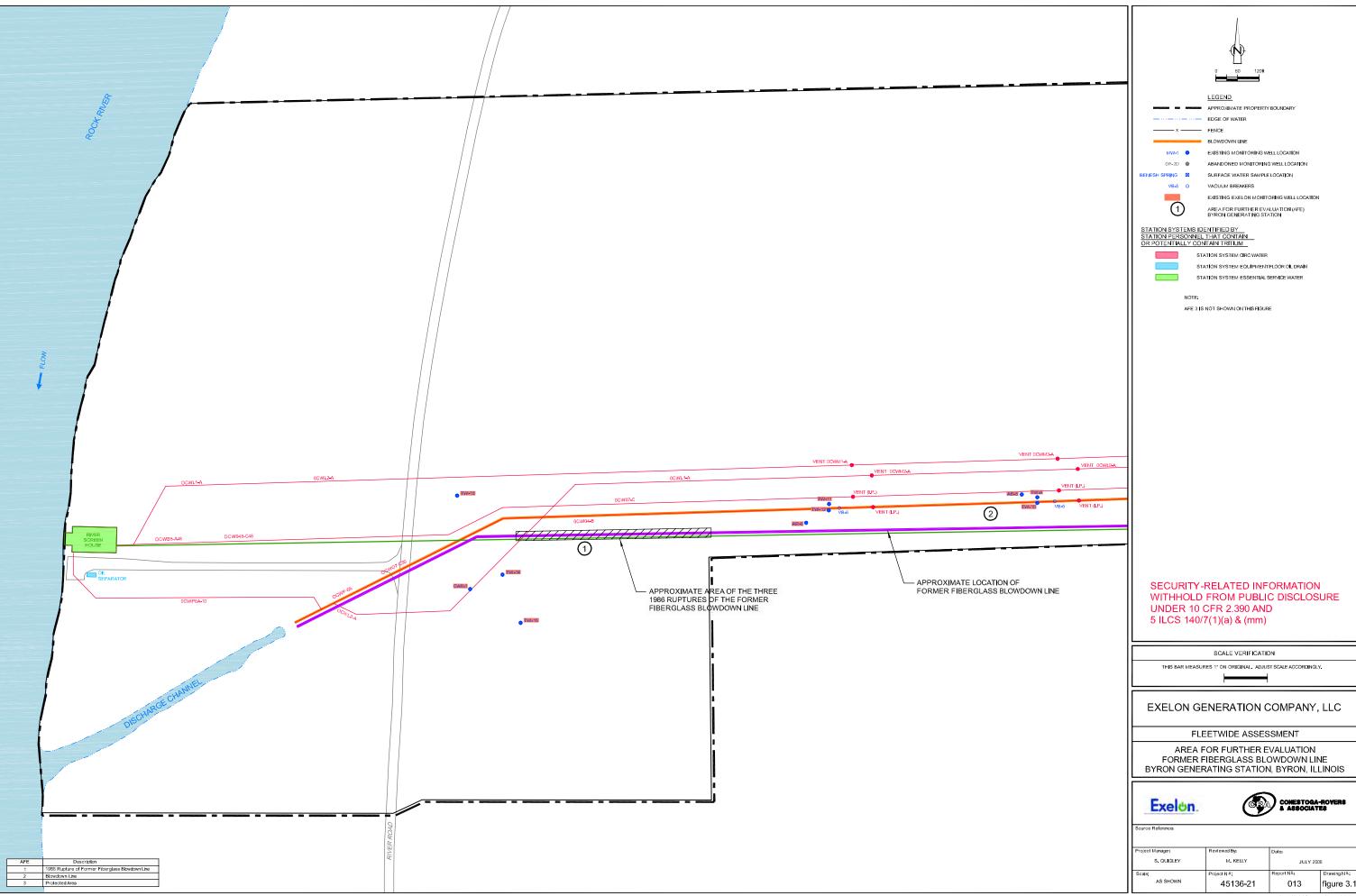
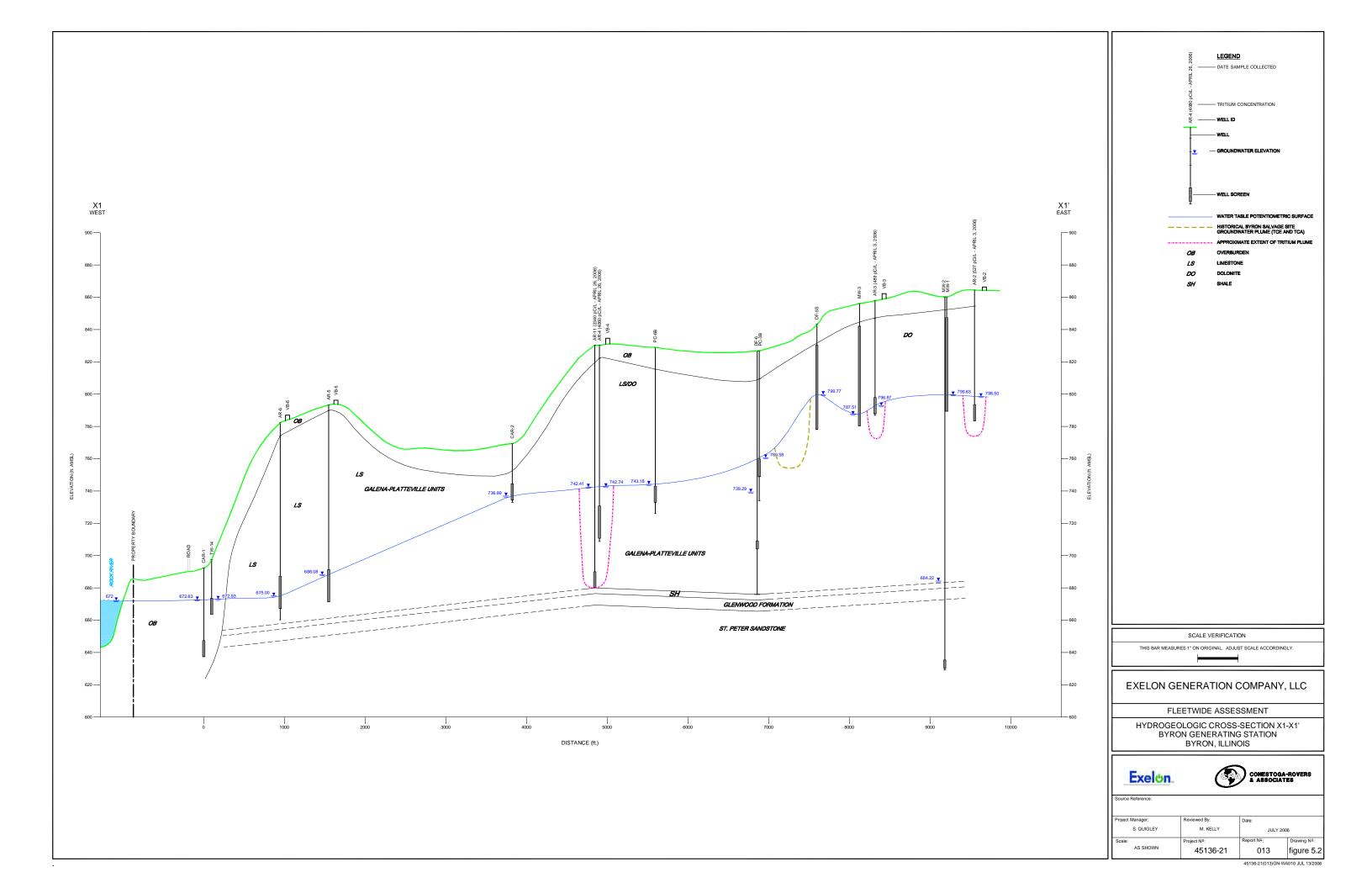
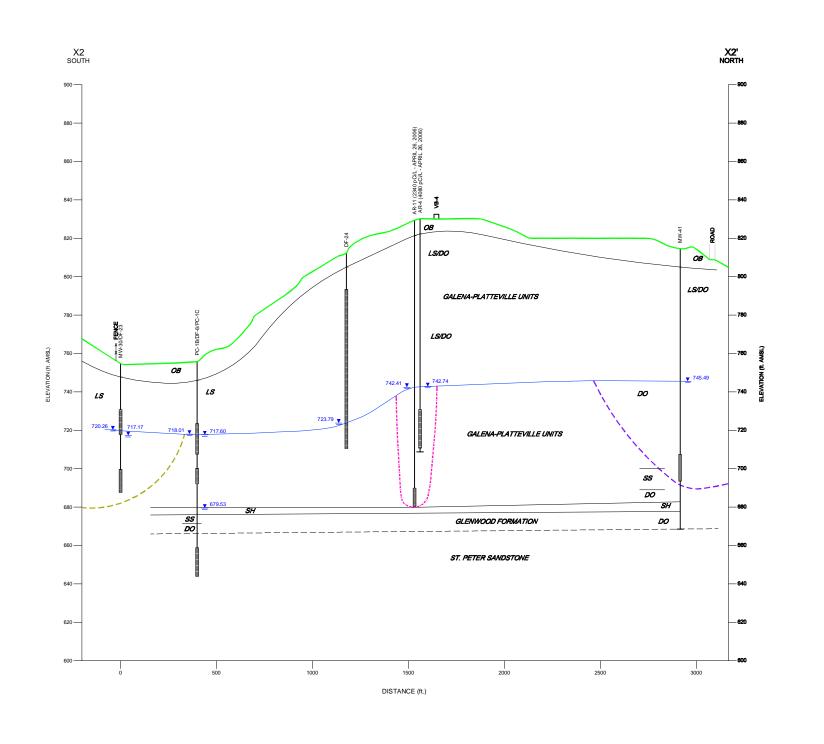


FIGURE 2.3 MONITORING WELL LOCATIONS

(Withheld)

FIGURE 2.4 GROUNDWATER CONTOUR MAP - MARCH 2006


(Withheld)



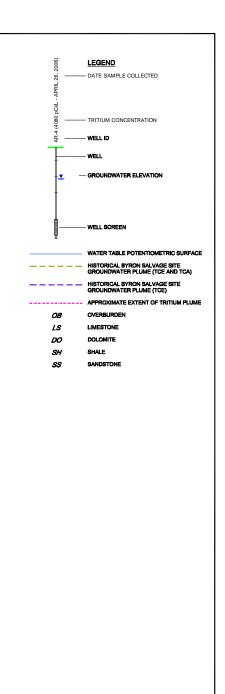

FIGURE 3.2 AREA FOR FURTHER EVALUATION – BLOWDOWN LINE

FIGURE 3.3 AREA FOR FURTHER EVALUATION – PROTECTED AREA

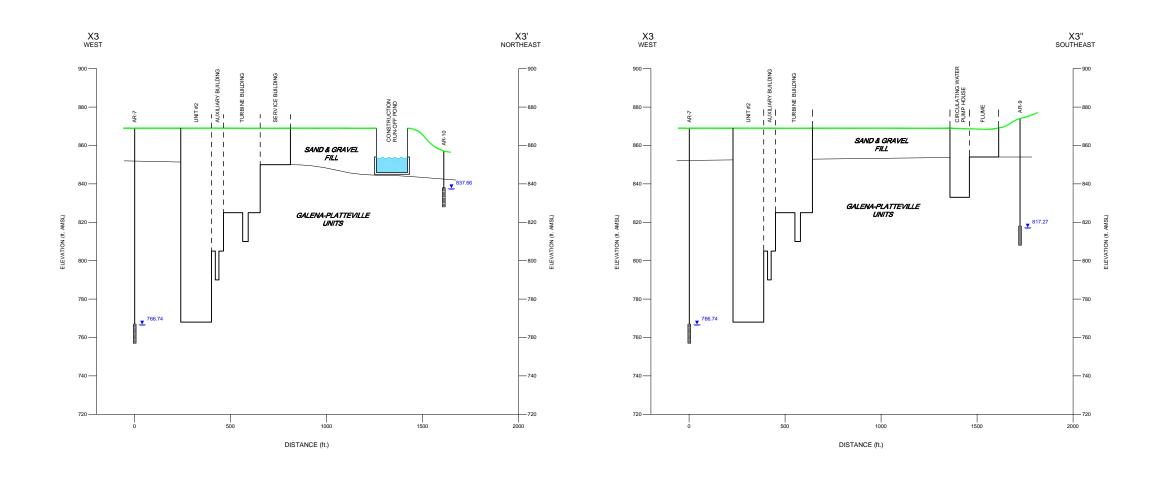
FIGURE 5.1 HYDROGEOLOGIC CROSS-SECTION LOCATIONS

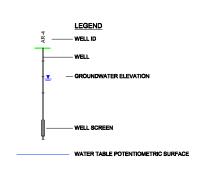
SCALE VERIFICATION

THIS BAR MEASURES 1* ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

EXELON GENERATION COMPANY, LLC

FLEETWIDE ASSESSMENT


HYDROGEOLOGIC CROSS-SECTION X2-X2' BYRON GENERATING STATION BYRON, ILLINOIS



Source Reference

oject Manager:	Reviewed By:	Date:	
S. QUIGLEY	M. KELLY	JULY 200	6
ale:	Project Nº:	Report Nº:	Drawing Nº:
AS SHOWN	45136-21	013	figure 5.3

SCALE VERIFICATION

THIS BAR MEASURES 1" ON ORIGINAL. ADJUST SCALE ACCORDINGLY.

EXELON GENERATION COMPANY, LLC

FLEETWIDE ASSESSMENT

HYDROGEOLOGIC CROSS-SECTION X3-X3' AND X3-X3" BYRON GENERATING STATION BYRON, ILLINOIS

Source Reference:

Project Manager:	Reviewed By:	Date:	
S. QUIGLEY	M. KELLY	JULY 20	006
Scale:	Project Nº:	Report Nº:	Drawing Nº:
AS SHOWN	45136-21	013	figure 5.4

FIGURE 5.5 POTENTIOMETRIC SURFACE CONTOURS - APRIL 2006 – UPPER GALENA-PLATTEVILLE AQUIFER

FIGURE 5.6 POTENTIOMETRIC SURFACE CONTOURS - APRIL 2006 – BOTTOM OF GALENA-PLATTEVILLE AQUIFER

FIGURE 5.7 POTENTIOMETRIC SURFACE CONTOURS - APRIL 2006 – ST. PETER SANDSTONE AQUIFER

FIGURE 5.8 TRITIUM CONCENTRATIONS – STATION SAMPLING LOCATIONS

FIGURE 5.9 TRITIUM CONCENTRATIONS – UPPER GALENA-PLATTEVILLE AQUIFER

FIGURE 5.10 TRITIUM CONCENTRATIONS – BOTTOM OF GALENA.PLATTEVILLE AQUIFER

FIGURE 5.11 TRITIUM CONCENTRATIONS – ST. PETER SANDSTONE AQUIFER

FIGURE 5.12 TRITIUM CONCENTRATIONS – RESIDENTIAL WELL LOCATIONS

FIGURE 5.13 RADIONUCLIDE CONCENTRATIONS

TABLE 2.1 Page 1 of 3

SUMMARY OF EXISTING WELL INFORMATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

					BYKON, ILLINOIS						
			Surface	Reference		Scre	ened Inte	erval			Hydrogeologic
	X coor.	Y coor.	Elevation	Elevation	Тор	Bottom	Тор	Bottom	Middle	Well	Unit
Sample Location	(State Plane	Coordinates)	(ft AMSL) ²	(ft AMSL)	(ft l	bgs) ³		(ft AMSL))	Construction	Screened 1
Exelon-Owned W	ells										
Previously Existing	 ng Water Well	ls									
GW-9 ⁴	2532455.60	1972488.60	841.51	841.73	NA 5	NA				6-inch open hole	GPWT
Well 7 4	2538213.33	1969732.76	891.17	891.24	NA	NA				6-inch open hole	GPWT
Deep Well 1	2537066.85	1970148.36	NA	NA	NA	~ 1500				12 to 15-inch open hole	NA
Deep Well 2	2535936.76	1969964.84	NA	NA	NA	~ 1500				12 to 15-inch open hole	NA
Monitoring Wells	Installed Dui	ring the Blowdo	own Line Investi	igation							
AR-1	2536048.98	1972460.65	868.11	871.10	50	70	818.11	798.11	808.11	2-inch PVC screen	GPWT
AR-2	2534570.16	1973401.77	864.37	867.38	71	81	793.37	783.37	788.37	2-inch PVC screen	GPWT
AR-3	2533354.08	1973345.67	857.76	860.64	60	70	797.76	787.76	792.76	2-inch PVC screen	GPWT
AR-4	2530325.59	1974343.03	830.23	832.74	99.5	119.5	730.73	710.73	720.73	2-inch PVC screen	GPWT
AR-5	2526970.90	1974279.73	793.27	795.75	102	122	691.27	671.27	681.27	2-inch PVC screen	GPWT
AR-6	2526375.64	1974201.54	782.22	784.55	95	115	687.22	667.22	677.22	2-inch PVC screen	GPWT
AR-7	2536172.26	1970914.51	868.99	871.28	102	112	766.99	756.99	761.99	2-inch PVC screen	GPWT
AR-8	2536591.62	1970080.22	869.71	872.11	30	50	839.71	819.71	829.71	2-inch PVC screen	GPWT
AR-9	2537777.21	1970783.66	873.77	876.77	55.5	65.5	818.27	808.27	813.27	2-inch PVC screen	GPWT
AR-10	2537573.15	1971916.71	856.65	859.15	19	29	837.65	827.65	832.65	2-inch PVC screen	GPWT
AR-11	2530300.13	1974330.58	829.35	831.65	139.5	149.5	689.85	679.85	684.85	2-inch PVC screen	BGP
CAR-1	2525447.90	1974018.64	692.25	694.87	45	55	647.25	637.25	642.25	2-inch PVC screen	UAWT
CAR-2	2529246.47	1974300.12	769.40	772.01	25	35	744.40	734.40	739.40	2-inch PVC screen	GPWT
CAR-3	2537064.71	1970545.52	869.11	872.16	43	63	826.11	806.11	816.11	2-inch PVC screen	GPWT
TW-1	2536119.01	1972474.04	868.81	870.70	3.5	8.5	865.31	860.31	862.81	2-inch PVC screen	Shallow Overburden
TW-2	2536137.15	1972477.09	869.11	870.73	2	7	867.11	862.11	864.61	2-inch PVC screen	Shallow Overburden
TW-3	2534676.01	1973300.70	866.92	868.35	5.5	10.5	861.42	856.42	858.92	2-inch PVC screen	Shallow Overburden
TW-4	2534674.53	1973321.59	866.53	869.48	5.5	10.5	861.03	856.03	858.53	2-inch PVC screen	Shallow Overburden
TW-5	2533371.75	1973305.18	858.37	860.78	3	8	855.37	850.37	852.87	2-inch PVC screen	Shallow Overburden
TW-6	2533370.28	1973323.29	858.07	859.93	3.5	8.5	854.57	849.57	852.07	2-inch PVC screen	Shallow Overburden
TW-7	2530360.35	1974366.22	830.91	832.25	6	11	824.91	819.91	822.41	2-inch PVC screen	Shallow Overburden
TW-8	2530358.62	1974386.10	830.10	831.67	7	12	823.10	818.10	820.60	2-inch PVC screen	Shallow Overburden
TW-9	2527013.94	1974272.31	793.82	796.42	3	8	790.82	785.82	788.32	2-inch PVC screen	Shallow Overburden
TW-10	2527013.99	1974256.60	793.70	795.88	2.5	7.5	791.20	786.20	788.70	2-inch PVC screen	Shallow Overburden
TW-11	2526439.04	1974253.50	782.38	785.16	5	10	777.38	772.38	774.88	2-inch PVC screen	Shallow Overburden
TW-12	2526438.39	1974235.97	783.38	785.32	7	12	776.38	771.38	773.88	2-inch PVC screen	Shallow Overburden
TW-13	2525412.16	1974276.44	698.03	700.47	13	18	685.03	680.03	682.53	2-inch PVC screen	Shallow Overburden

TABLE 2.1 Page 2 of 3

SUMMARY OF EXISTING WELL INFORMATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

			Surface	Reference		Screened Interval			Hydrogeologic		
	X coor.	Y coor.	Elevation	Elevation	Тор	Bottom	Тор	Bottom	Middle	Well	Unit
Sample Location	(State Plane	Coordinates)	(ft AMSL) ²	(ft AMSL)	(ft	bgs) ³		(ft AMSL)		Construction	Screened 1
TW-14	2525537.43	1974058.60	697.40	699.41	24	34	673.40	663.40	668.40	2-inch PVC screen	Shallow Overburden
TW-15	2525587.27	1973925.58	694.32	695.73	24	29	670.32	665.32	667.82	2-inch PVC screen	Shallow Overburden
Byron Salvage PRP Group-Owned Monitori		ned Monitoring	y Wells								
DF-1S	2531216.65	1973682.92	785.49	786.89	44	59	741.49	726.49	733.99	2-inch stainless steel screen	GPWT
DF-1D	2531226.90	1973676.38	786.32	787.48	79	84	707.32	702.32	704.82	2-inch stainless steel screen	BGP
DF-2S	2531242.96	1973864.59	794.44	794.96	59	74	735.44	720.44	727.94	2-inch stainless steel screen	GPWT
DF-3S	2531570.17	1973536.07	790.26	791.82	51	66	739.26	724.26	731.76	2-inch stainless steel screen	GPWT
DF-4DS	2532386.02	1973588.26	831.41	832.98	46	61	785.41	770.41	777.91	2-inch stainless steel screen	GPWT
DF-4DD	2532385.52	1973588.31	NA	832.79	144	149				2-inch stainless steel screen	BGP
DF-5S	2532646.87	1973412.71	843.19	844.12	13	65	830.19	778.19	804.19	6-inch open hole	GPWT
DF-6	2531991.61	1973735.68	826.31	827.89	118	123	708.31	703.31	705.81	2-inch stainless steel screen	BGP
DF-7S	2527903.67	1975299.65	709.98	712.38	22	27	687.98	682.98	685.48	2-inch stainless steel screen	UAWT
DF-7D	2527898.09	1975298.28	709.67	712.55	43	48	666.67	661.67	664.17	2-inch stainless steel screen	UAM
DF-8	2530141.74	1973270.87	755.05	757.47	58	63	697.05	692.05	694.55	2-inch stainless steel screen	BGP
DF-10	2532417.79	1974527.51	833.04	834.01	69	84	764.04	749.04	756.54	2-inch stainless steel screen	GPWT
DF-11	2532534.02	1974574.44	833.05	834.21	68	83	765.05	750.05	757.55	2-inch stainless steel screen	GPWT
DF-12	2532609.19	1974523.28	831.43	834.48	127	132	704.43	699.43	701.93	2-inch stainless steel screen	BGP
DF-13	2532200.73	1973830.53	836.33	838.84	106	111	730.33	725.33	727.83	2-inch stainless steel screen	MGP
DF-15	2532645.11	1972942.97	846.50	847.79	7	115	839.50	731.50	785.50	6-inch open hole	GPWT
DF-17	2531725.46	1972911.91	817.65	820.14	115	120	702.65	697.65	700.15	2-inch stainless steel screen	BGP
DF-18	2531124.33	1973590.07	777.77	780.28	45	60	732.77	717.77	725.27	2-inch stainless steel screen	GPWT
DF-19	2531143.77	1973770.63	786.13	788.53	55	65	731.13	721.13	726.13	2-inch stainless steel screen	GPWT
DF-22S	2531524.65	1972931.42	808.73	811.85	76	86	732.73	722.73	727.73	2-inch stainless steel screen	GPWT
DF-22D	2531524.95	1972931.41	808.73	811.56	101	106	707.73	702.73	705.23	2-inch stainless steel screen	BGP
DF-23	2530101.41	1972863.81	752.57	755.39	60	65	692.57	687.57	690.07	2-inch stainless steel screen	BGP
DF-24	2530081.29	1974051.80	812.28	813.68	19	102	793.28	710.28	751.78	6-inch open hole	GPWT
DF-25	2530981.83	1973779.38	785.15	786.36	NA	NA					NA
MW-1	2534233.15	1973475.34	859.96	861.77	13	71	846.96	788.96	817.96	4-inch open hole	GPWT
MW-2	2534208.57	1973479.15	860.08	861.07	225	230	635.08	630.08	632.58	2-inch stainless steel screen	SS
MW-3	2533174.54	1973415.41	855.90	858.6	14	76	841.90	779.90	810.90	4-inch open hole	GPWT

TABLE 2.1 Page 3 of 3

SUMMARY OF EXISTING WELL INFORMATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

			Surface	Reference		Scre	ened Inte	erval			Hydrogeologic
	X coor.	Y coor.	Elevation	Elevation	Тор	Bottom	Тор	Bottom	Middle	Well	Unit
Sample Location	(State Plane	Coordinates)	(ft AMSL) ²	(ft AMSL)	(ft l	ngs) ³		(ft AMSL))	Construction	Screened 1
MW-15	2532472.31	1974788.27	821.22	822.23	75	86	746.22	735.22	740.72	2-inch stainless steel screen	GPWT
MW-16	2532464.57	1974786.05	821.29	823.47	109	120	712.29	701.29	706.79	2-inch stainless steel screen	BGP
MW-20R	2532466.05	1974790.91	820.57	821.85	181	191	639.57	629.57	634.57	2-inch stainless steel screen	SS
MW-21	2532458.60	1974791.94	820.42	821.63	224	234	596.42	586.42	591.42	2-inch stainless steel screen	SS
MW-30	2530196.65	1972880.11	754.70	758.68	27	37	727.70	717.70	722.70	2-inch stainless steel screen	GPWT
MW-36	2532608.79	1973569.23	841.60	843.73	146	156	695.60	685.60	690.60	2-inch stainless steel screen	BGP
MW-37	2532608.88	1973558.19	841.16	843.33	192	202	649.16	639.16	644.16	2-inch stainless steel screen	SS
MW-39	2532616.75	1974389.87	834.18	836.67	175	185	659.18	649.18	654.18	2-inch stainless steel screen	SS
MW-41	2531156.40	1975401.53	814.46	816.87	111	121	703.46	693.46	698.46	2-inch stainless steel screen	BGP
MW-42	2532613.32	1974380.69	834.21	836.31	141	151	693.21	683.21	688.21	2-inch stainless steel screen	BGP
PC-1B	2530160.35	1973268.15	755.49	757.28	36	46	719.49	709.49	714.49	2-inch stainless steel screen	GPWT
PC-1C	2530162.01	1973286.18	755.80	757.89	101	111	654.80	644.80	649.80	2-inch stainless steel screen	SS
PC-2B	2532010.43	1974162.53	840.43	842.54	85	103	755.43	737.43	746.43	2-inch stainless steel screen	GPWT
PC-3B	2532010.72	1973717.55	826.58	828.3	67	78	759.58	748.58	754.08	2-inch stainless steel screen	GPWT
PC-4B	2531377.35	1973122.19	800.53	802.8	71	81	729.53	719.53	724.53	2-inch stainless steel screen	GPWT
PC-5B	2530689.47	1973701.97	786.26	788.35	62	72	724.26	714.26	719.26	2-inch stainless steel screen	GPWT
PC-6B	2531016.38	1974314.45	828.85	831.01	86	96	742.85	732.85	737.85	2-inch stainless steel screen	GPWT

Notes:

BGP, well open to the base of the Galena-Platteville aquifer MGP, well open to the middle of the Galena-Platteville aquifer UAWT, well open to the water table in the unconsolidated aquifer UAM, well open to the middle of the unconsolidated aquifer SS, well open to the St. Peter Sandstone aquifer

¹ Hydrogeologic unit screened: GPWT, well open to the water table in the Galena-Platteville aquifer

² ft AMSL - feet Above Mean Sea Level

³ ft bgs - feet below ground surface

⁴ The tops of the wells for GW-9 and Well 7 are located underground within concrete vaults. The surveyed reference elevation is actually the top of the metal rim of the concrete vault at the ground surface.

⁵ NA - not available

TABLE 4.1 Page 1 of 2

SUMMARY OF MONITORING WELL DEVELOPMENT - BLOWDOWN LINE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Date	Volume Purged (gallons)	pH (Std. Units) ¹	Conductivity (µS/cm) ²	Temperature (°C) ³	Observations
AR-1	3/23/06	100	NR ⁴	NR	NR	NR
AR-2	3/21/06	100	NR	NR	NR	NR
AR-3	3/22/06	75	NR	NR	NR	NR
AR-4	3/27/06	NR	7.04	1,300	12.5	Murky
		NR	7.47	1,405	12.8	Murky
		15	7.32	863	12.6	Murky
AR-5	03/23/06	7	NR	NR	NR	NR
AR-6	3/22/06	1.5	NR	NR	NR	Misty, turbid
	3/23/06	5	NR	NR	NR	NR
	3/ 23/ 00	7	7.79	637	10.4	Murky
		9	8.01	638	10.3	Murky
		•	Well going dry			
AR-7	3/28/06	50	NR	NR	NR	NR
AR-8	3/31/06	10	NR	NR	NR	NR
AR-9	4/4/06	12	NR	NR	NR	NR
AR-10	4/5/06	25	NR	NR	NR	NR
AR-11	4/11/06	Development con	nducted by the dril	lling company.		
CAR-1	3/22/06	100	7.43	577	11.1	Clear
0.11.1	5 , 22 , 55	105	7.44	577	11.2	Clear
CAR-2	3/22/06	7	NR	NR	NR	NR
5111 . 2	5 , 22 , 55	Well runs dry	- 1-1-1	1111		2 121
CAR-3	3/29/06	40	NR	NR	NR	NR
		Well runs dry				
		45	NR	NR	NR	NR
		Well runs dry				
TW-13	3/7/06	8	7.41	743	10.7	Cloudy, light brown
		10	7.45	744	10.5	Cloudy, light brown
		12	7.42	744	10.7	Cloudy, light brown

TABLE 4.1 Page 2 of 2

SUMMARY OF MONITORING WELL DEVELOPMENT - BLOWDOWN LINE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Date	Volume Purged (gallons)	pH (Std. Units) ¹	Conductivity (μS/cm) ²	Temperature (°C) ³	Observations
TW-14	3/7/06	Well is dry				
	4/5/06	75	NR	NR	NR	Clear
TW-15	3/7/06	1.0	NR	NR	NR	Light brown
		Well runs dry				
		1.3	NR	NR	NR	NR
		Well runs dry				
		6.3	7.54	737	9.7	Cloudy
		11.3	7.62	704	10.6	Cloudy
		16.3	7.57	689	10.6	Cloudy

Notes:

¹ Std. Units - standard units

² μS/cm - microSiemens per centimeter ³ degrees Celsius ⁴ NR - Not Reported

TABLE 4.2 Page 1 of 2

SUMMARY OF GROUNDWATER ELEVATIONS - MARCH/APRIL 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

		March 23, 2	006	April 4, 2006			
Sample	Reference	Depth to	Groundwater	Depth to	Groundwater		
Location	Elevation	Water	Elevation	Water	Elevation		
	(ft AMSL) (1)	(feet below Reference)	(feet AMSL)	(feet below Reference)	(feet AMSL)		
	y r invise,	geer vereur Regerence,	yeer minot,	yeer below regerence,	yeer minot,		
AR-1	871.10	39.70	831.40	39.72	831.38		
AR-2	864.37	65.69	798.68	66.06	798.31		
AR-3	857.76	59.60	798.16	60.27	797.49		
AR-5	793.27	105.37	687.90	104.21	689.06		
AR-6	782.22	107.75	674.47	107.54	674.68		
AR-7	868.99			103.02	765.96		
AR-8	869.71			53.57	816.14		
CAR-1	692.25	20.03	672.22	20.06	672.20		
CAR-2	769.40	32.90	736.50	26.84	742.56		
CAR-3	869.11			44.49	824.62		
DF-12	834.48	90.13	744.35				
DF-13	838.84	94.45	744.39	94.16	744.68		
DF-15	847.79	102.30	745.49	107.32	740.47		
DF-17	820.14	91.00	729.14	90.87	729.27		
DF-18	780.28	55.60	724.68	55.48	724.80		
DF-19	788.53	64.02	724.51	63.90	724.63		
DF-1D	787.48	62.92	724.56	62.75	724.73		
DF-1S	786.89	61.92	724.97	61.80	725.09		
DF-22D	811.56	85.78	725.78				
DF-22S	811.85	75.99	735.86	85.86	725.99		
DF-23	755.39	28.73	726.66	60.02	695.37		
DF-24	813.68	91.28	722.40	91.11	722.57		
DF-2S	794.96	69.48	725.48	69.00	725.96		
DF-3S	791.82	65.54	726.28	65.46	726.36		
DF-4DD	832.79	88.30	744.49	88.01	744.78		
DF-6	827.89	90.71	737.18	89.72	738.17		
DF-8	757.47	40.57	716.90	40.47	717.00		
DF-9S	707.43	21.63	685.80	21.35	686.08		
MS-1	728.94	34.91	694.03	35.60	693.34		
MS-2	730.86	53.95	676.91	54.08	676.78		
MW-1	861.77	61.82	799.95	61.01	800.76		
MW-11	747.68			34.01	713.67		
MW-12I	726.57	21.65	704.92	21.67	704.90		
MW-12S	728.15	23.70	704.45	21.86	706.29		
MW-15	822.23	78.25	743.98	78.02	744.21		
MW-16	823.47	79.54	743.93	79.28	744.19		
MW-2	861.07	177.45	683.62	176.89	684.18		
MW-20R	821.85	141.20	680.65	141.12	680.73		
MW-21	821.63	141.05	680.58	140.93	680.70		
MW-30	758.68	38.27	720.41				
MW-36	843.73	99.26	744.47	99.00	744.73		
MW-37	843.33	161.72	681.61	161.60	681.73		
MW-39	836.67	155.73	680.94	155.61	681.06		
MW-41	816.87	73.02	743.85	72.74	744.13		
MW-42	836.31	92.17	744.14	91.84	744.47		
OS-NW-1D	825.05	148.85	676.20	81.93	743.12		

TABLE 4.2 Page 2 of 2

SUMMARY OF GROUNDWATER ELEVATIONS - MARCH/APRIL 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

		March 23, 2	2006	April 4, 2006			
Sample	Reference	Depth to	Groundwater	Depth to	Groundwater		
Location	Elevation	Water	Elevation	Water	Elevation		
	(ft AMSL) (1)	(feet below Reference)	(feet AMSL)	(feet below Reference)	(feet AMSL)		
OS-NW-1S	825.10	82.50	742.60	50.94	774.16		
OS-SW-1	729.34	59.40	669.94	50.91	678.43		
OS-SW-2D	734.21	54.45	679.76	54.32	679.89		
OS-SW-2I	734.38	54.50	679.88	54.38	680.00		
OS-SW-2S	734.26	49.75	684.51	49.20	685.06		
OS-SW-3D	799.65	117.13	682.52	140.53	659.12		
OS-SW-3S	800.11	104.29	695.82	126.28	673.83		
PC-1B	757.28	40.07	717.21	40.03	717.25		
PC-1C	757.89	78.90	678.99	78.90	678.99		
PC-2B	842.54			86.26	756.28		
PC-4B	802.80	76.65	726.15	76.53	726.27		
PC-5B	788.35	65.44	722.91	65.88	722.47		
PC-6B	831.01	81.19	749.82	90.43	740.58		
RR-9	688.97	18.05	670.92	17.92	671.05		
RR-10	675.83			3.66	672.17		

Notes:

(1) feet AMSL - feet Above Mean Sea Level

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units)	Conductivity (μS/cm) ⁽¹⁾	Temperature (°C)	Turbidity (NTU) ⁽²⁾	Observations
	_ ,_ , , ,							
AR-1	3/24/06			7.79 7.89	609 600	10.3 10.8	17 14.6	
			7	7.66	588	11.0	14.0	
	2 /20 /0/			7.00	F71	10.6	20.2	
	3/29/06			7.82 7.68	571 572	10.6 11.2	29.2 12.1	
				7.52	565	11.4	7.9	
			7	7.54	560	11.3	6.2	
	4/6/06		5	7.35	574	11.5	121	
			10	7.39	570	11.6	74	
			15	7.41	568	11.6	47	
	4/12/06			8.44	638	14.3		Clear to murky
				7.89	572	13.3		Clear to murky
			7	7.79	564	13.4		Clear to murky
AR-2	3/24/06			7.53	806	9.0	216	
			2-	7.53	811	9.9	510	
			2.5	7.78	862	9.8	625	
	3/27/06	2.5		8.39	807	10.3	80.5	
				7.94	792	10.2	65	
				7.78 7.73	800 812	10.6 10.2	41.6 40.3	
			3.5	7.69	801	10.1	37.8	
	3/29/06			7.02	825	11.2	91.9	
	3/29/00			7.93 7.71	830	11.2 12.1	82.7	
				7.55	831	11.9	74.5	
			5	7.68	821	11.9	89.3	
	4/3/06			7.75	845	13.2	78.9	
	, ,			7.67	854	13.3	125	
			5	7.65	870	13.6	127	
	4/10/06			7.45	880	12.5	166	
				7.56	857	12.3	135	
			3	7.43	871	13.4	117	
AR-3	3/24/06	0.2		7.30	735	9.6	300	
				7.17	724	10.6	310	
			5	7.14	732	10.6	315	
	3/27/06			7.30	731	10.9	64.9	
				7.19	714	11.1	46.4	
				7.18 7.19	722 723	11.3 11.4	25.2 15.3	
			7				12.5	
	3/29/06			7.27	708	11.2	15.05	
	3/27/00			7.28	714	11.2	7.48	
			7	7.21	711	11.5	4.82	
	4/3/06			7.40	762	13.1	22	
	1, 5, 55			7.40	712	11.9	12	
			8	7.43	715	12.2	9.6	
	4/10/06			7.26	734	13.8	84.4	
	, ,			7.37	728	13.4	78.2	
			8	7.15	726	13.4	75.3	
AR-4	3/28/06	4.9		7.31	1,220	12.6	560	
				7.31	1,215	13.0	416	
			5	7.41	1,213	12.2	518	
	3/29/06	1.4		7.45	1,169	13.0	116	
				7.22	1,168	13.5	165.2	
			6.5	7.32	1,162	13.3	160.2	
	4/4/06			7.16	1,223	11.3	608	
			10	7.65	1,224	12.3	574 511	
			10	7.62	1,221	12.3	511	
	4/10/06			6.61	1,209	11.3	522	
				6.72 6.85	1,148	13.3	439	
			9.5	7.05	1,129 1,160	14.2 14.4	204 336	
	0/0:/0:							
AR-5	3/24/06			8.14 7.86	998 930	10.0 10.1	908 552	
					250	10.1	332	

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units)	Conductivity (µS/cm) (1)	Temperature (°C)	Turbidity (NTU) ⁽²⁾	Observations
				7.71	880	10.2	950	
	3/29/06	2.6		7.85	895	10.6	205	
	3/25/00	2.0		7.68	888	12.2	160	
			4.5	7.63	892	13.3	163.7	
	4/6/06			7.81	1,104	10.4	355	
				7.90	1,025	11.2	313	
				7.81	1,037	11.6		
	4/11/06			7.20	1,047	12.7	862	
			4.5	7.16 7.18	1,077 1,072	14.5 14.9	884 927	
AR-6	3/24/06			7.87	334	9.7	1,041	
			2.5	8.06 7.96	628 624	10.0 10.2	1,065 1,030	
	3/29/06	1.3		8.00	635	11.6	1,080	
	-,,			7.78	614	11.3	1,182	
			3.5	7.69	616	11.9	1,052	
	4/6/06		3.5	7.92	606	13.7	123	
	4/11/06			7.36	629	12.5	430	
				7.36	645	12.5	381	
4 D 7	2 /20 /0/	1.5		7.36	648	12.6	422	
AR-7	3/30/06	1.5	6.8	7.94	1,100	13.5	>999 439	
	4/5/06		1 1.5	7.98 7.58	1,189 1,168	12.1 13.1	420	
			2.5	7.56	1,151	13.4	415	
	4/11/06	1.1		8.08	1,205	14.4		Murky
				7.78	1,178	13.9		Murky
			2	7.78	1,160	13.7		Murky
AR-8	4/5/06		0.5	8.15	522	11.5	343	
			0.75 2	8.26 8.46	509 543	11.9 11.7	400 609	
	4/11/06	3.0		8.08	572	12.6		
	, ,			8.02	571	12.7		
			3	8.35	536	12.6		
AR-9	4/5/06		0.75	7.77	985	13.6	452	
			1.25	7.78 7.69	989 919	13.0 13.1	470	
	4/11/06	1.6		7.61	909	14.6	114	
	4/11/00	1.0		7.81	912	13.8	202	
			2.5	7.88	911	13.8	286	
AR-10	4/6/06	1.6	1.6	7.11	4.64	10.5	624	
			3 4.5	7.00 6.97	4.28 4.20	10.6 10.6	711 763	
	4/12/06	1.6		7.00	2.050	11.7		Cl
	4/12/06	1.6		7.22 7.08	3,850 3,870	11.7 11.3		Clear to murky Clear to murky
			3	7.03	3,800	11.2		Clear to murky
AR-11	4/18/06	10.1	7.5 11.5	Water le		e top of the pump, readings	no readings	Clear, no odor Clear, no odor
CAR-1	3/23/06	5.6		7.08	566	11.0	63	
	, ,			7.48 7.45	562 561	11.7 10.9	50.2 34	
	3/29/06			7.75	565	10.1	405	
	-, -,, 00			7.63	551	10.4	203	
				7.55	559	10.5	69.7	
				7.54	561	10.5	31.7	
	412102		8			10.0	11.6	
	4/6/06	5.5	20	7.76	547	10.8	72	 Cl + 1
	4/12/06			7.92 7.97	572 562	13.8		Clear to murky
			5	7.90	562 565	12.7 13.0		Clear to murky Clear to murky

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units)	Conductivity (µS/cm) (1)	Temperature (°C)	Turbidity (NTU) ⁽²⁾	Observations
CAR-2	3/24/06	0.6	1	7.11	878	9.8	>999	
	3/29/06	0.4		7.72	809	11.4	1210	
	3/25/00	0.4	0.33	7.42	807	11.0	1232	
	4/6/06	1.4	1.5	7.67	800	11.3	>999	
	, ,		3	7.60	793	11.1	>999	
	4/12/06			7.79	865	12.0		
				7.38	864	11.7		
			1	7.37	858	12.1		
CAR-3	3/30/06	2.9	3	7.98	920	17.1	>999	
	4/5/06		1.25	7.75	956	16.4	168	
			3.5	7.67 7.65	947 957	16.4 16.5	144 108	
	4 /44 /07	2.1		7.5 0	022	15.0		
	4/11/06	3.1		7.79 7.89	933 945	17.0 17.1		
			4	7.87	949	17.2		
DF-1S	3/30/06	0.25		7.28	823	11.6	170	
	, ,			7.27	818	11.1	182	
			1	7.24	815	11.1	161	
	4/6/06	0.24	0.25	7.77	838	8.4	>999	
			0.5 0.75	7.71 7.69	844 846	8.4 8.4	>999 >999	
DE 4D	2 /20 /0/	2.6						
DF-1D	3/29/06	3.6		7.38 7.38	820 812	12.2 11.9	7.65 2.37	
			8.5	7.41	811	11.9	3.62	
	4/6/06	3.5	3.5	6.54	387	9.4	36	
			7	6.50	426	9.5	41	
			10.5	6.40	444	9.5	10	
DF-2S	3/29/06	1.1		7.87	690	14.8	217	
				7.27 7.20	681 684	13.4 13.5	217 217	
				ow purge rate				
	4/6/06	1.2 Dry at app	1 roximately 1.0	gallon	No r	eadings		
DF-3S	3/31/06	0.6		8.16	795	10.8	760	Murky
D1 00	-//			7.99	793	10.6	683	Murky
			2	7.94	793	10.6	694	Murky
	4/6/06	0.54	2		No r	eadings		
DF-4DS	3/30/06	0.94		8.05	707	11.9	1415	
			3	7.93 7.98	712 718	11.1 11.1	1398 1440	
	1/6/06	0.04						
	4/6/06	0.91	3	7.94	727	11.1	>999	
DF-6	3/30/06	5.3		7.18 7.21	668 656	14.0 14.6	10.55 11.58	
			6	7.26	651	14.1	13.7	
	4/6/06			7.27	691	10.9	19.1	
	4/0/00			7.26	670	11.2	20.2	
			10	7.30	656	11.4	23.2	
DF-12	3/31/06	7.5		7.70	771	11.9	1.47	
			8.5	7.35 7.28	773 771	11.6 11.6	0.97 1.07	
	4/6/06			7.27 7.26	779 782	11.8 12.1	2.08 0.99	
			8.5	7.26	782	12.1	0.82	
DF-19	3/30/06	0.5	5	7.22	837	11.0	289	
	4/6/06	0.29	3	7.31	848	9.5	61	
DF-24	3/30/06			7.62 7.32	850 844	13.4 13.2	49.4 34.9	
				7.27	845	13.2	25.4	

				DIRON,	ILLINOIS			
Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units)	Conductivity (µS/cm) (1)	Temperature (°C)	Turbidity (NTU) ⁽²⁾	Observations
			20	7.29	843	13.2	34.5	
	4/6/06			7.22	844	11.3	2.84	
	, ,			7.16	846	11.4	0.8	
			22	7.15	848	11.4	0.37	
GW-9	3/7/06	39	20	7.43	816	12.6		Clear, no odor
GW-9	3/ // 00	39	40	7.43	814	12.6		Clear, no odor
			60	7.39	811	12.4		Clear, no odor
3.674	2 /21 /0/	1.0		7.44	EE4	10.7	F1/	
MW-1	3/31/06	1.8		7.44 7.67	554 542	10.7 10.4	516 600	
			4	7.39	541	10.3	502	
	1/6/06			7.70	F(0	10.4	1777	
	4/6/06		7	7.73 7.71	560 559	10.4 10.5	176 160	
			,	7.71	339	10.5	160	
MW-2	3/31/06	6.5		8.39	397	13.9	6.17	
	, ,			8.18	543	13.7	15.4	
			15	7.65	563	13.9	5.43	
	4/6/06			7.50	589	12.6	3.28	
				7.47	594	12.8	1.70	
			15	7.49	584	12.8	1.28	
3.574.0	2 /21 /0/	4.4		7.7	470	44.5	454	
MW-3	3/31/06	1.4		7.67	670	11.7	156	
			2.8	7.33 7.29	663 665	11.6 11.6	210 199	
			2.0	7.27	003	11.0	199	
	4/6/06	1.4	6	7.29	644	11.6	142	
MW-30	3/31/06	0.5		7.60	589	9.8	840	
				7.55	587	10.1	972	
			0.8	7.52	589	10.1	1,024	
	4/6/06	0.4	1		No r	readings		
MW-36	3/31/06	9.5		7.30	842	12.9	74.9	
				7.28	815	12.1	39.3	
			18	7.32	812	12.6	39.8	
	4/6/06			7.15	831	11.9	9.82	
	4/0/00			7.13	833	11.9	8.19	
			12	7.10	831	10.9	6.19	
MW-37	3/31/06	6.5		7.46	616	15.0	11.8	
				7.41	604	14.6	4.81	
			15	7.38	604	14.4	0.67	
	4/6/06			7.21	609	12.5	5.2	
				7.27	609	12.9	2.94	
			8	7.29	615	12.9	2.43	
MW-39	3/31/06	2.2		12.20	2,630	13.1	8.41	
	0,01,00			11.45	1,002	14.3	128	
				10.55	357	13.6	9.79	
				9.41	393	13.2		
			10	9.27	394	13.5		
	4/6/06			9.31	543	12.6	23	
				9.16	553	12.8	14.26	
			8	8.96	573	12.9	13.28	
PC-1B	3/31/06	1 2		7.37	783	9.4	1 190	
1 C-1D	3/31/06	1.3		7.37	783 788	9.4 9.9	1,180 1,124	
			3.5	7.32	788	9.9	1,098	
						-	,	
	4/6/06	1.25	3	7.88	825	9.0	72.1	
PC-1C	3/31/06	6		7.42	615	11.7	12.95	

TABLE 4.3 Page 5 of 5

SUMMARY OF MONITORING WELL PURGING PARAMETERS - MARCH/APRIL 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Date	Well Volume (gallons)	Volume Purged (gallons)	pH (Std. Units)	Conductivity (µS/cm) (1)	Temperature (°C)	Turbidity (NTU) ⁽²⁾	Observations
				7.37	615	11.9	6.89	
			7.5	7.47	615	11.9	4.76	
	4/6/06		5	7.44	655	10.3	98.3	
PC-2B	3/31/06	1.2		7.49	683	12.0	798	
				7.46	686	11.1	752	
			4	7.33	664	11.1	722	
	4/6/06	1.2	3.5	7.33	657	11.1	641	
PC-5B	3/31/06	1.4		7.69	776	10.6	1040	
				7.35	782	10.5	182	
				7.27	778	10.7	144	
			3.5	7.27	775	10.7	138	
	4/6/06	1.4	1.5	7.97	763	10.6	210	
	4/0/00	1.1	3	7.48	741	10.7	164	
PC-6B	3/31/06	1.2		7.15	975	14.1	540	
				7.06	990	11.6	566	
			2.5	7.08	987	12.0	612	
	4/6/06	1.25	3.5	7.69	830	9.0	>999	
TW-13	3/8/06	0.4	0.5	7.59	757	10.3		Clear
			1	7.54	757	10.3		Clear
			1.5	7.54	756	10.3		Clear
	4/6/06	0.48	1	7.64	800	9.9	>999	
	4/12/06	0.5		7.77	791	11.1		Murky
				7.70	770	10.4		Murky
			1	7.72	775	10.3		Murky
TW-14	4/6/06	1.5	1	7.83	842	10.6	>999	
	, ,		2	7.77	836	10.7	>999	
			3	7.69	819	10.7	>999	
	4/12/06	1.4		7.59	793	11.2		Murky
	4/12/00	1.4		7.66	785	10.9		Murky
			2.5	7.60	779	10.8		Murky
TT. 1 - 5					.			
TW-15	3/8/06	0.9	13	7.49	678	11.7		Slightly cloudy
			14 15	7.48 7.43	681 681	11.7 11.7		Slightly cloudy Slightly cloudy
								-
	4/6/06	1.12	1	7.71	782 N	9.8	>999	
			Dry at 2 3			readings		
			3		NO 1	readings		
	4/12/06	1.1		7.53	814	11.5		Murky
	•			7.52	775	10.3		Murky
			2.5	7.51	776	10.3		Murky

Notes:

⁽¹⁾ $\mu S/cm$ - microSiemens per centimeter

⁽²⁾ NTU - nephelometric turbidity units

TABLE 4.4 Page 1 of 3

SAMPLE SUMMARY - BLOWDOWN LINE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINIOS

Sample Location	Sample Identification	QC Sample	Sample Date	Sample Analyses	
GW-9	GW-030806-KD-01		3/8/2006	Tritium	
TW-13	GW-030806-KD-02		3/8/2006	Tritium	
TW-13	GW-030806-KD-03	Duplicate	3/8/2006	Tritium	
TW-15	GW-030806-KD-04		3/8/2006	Tritium	
CAR-1	GW-19232-032306-SP-CAR-1		3/23/2006	Tritium	
AR-1	GW-19232-032306-SP-AR-1		3/24/2006	Tritium	
AR-2	GW-19232-032306-SP-AR-2		3/24/2006	Tritium	
AR-3	GW-19232-032306-SP-AR-3		3/24/2006	Tritium	
AR-5	GW-19232-032306-SP-AR-5		3/24/2006	Tritium	
AR-6	GW-19232-032306-SP-AR-6		3/24/2006	Tritium	
CAR-2	GW-19232-032306-SP-CAR-2		3/24/2006	Tritium	
AR-3	GW-19232-032706-NK-AR-3		3/27/2006	Tritium	
AR-2	GW-19232-032708-EV-AR-2		3/27/2006	Tritium	
AR-4	GW-19232-032806-NK-CAR-4		3/28/2006	Tritium	
AR-5	GW-19232-032906-EV-AR-5		3/29/2006	Tritium	
AR-6	GW-19232-032906-EV-AR-6		3/29/2006	Tritium	
CAR-2	GW-19232-032906-EV-CAR-2		3/29/2006	Tritium	
AR-4	GW-19232-032906-EV-CAR-4		3/29/2006	Tritium	
AR-1	GW-19232-032906-NK-AR-1		3/29/2006	Tritium	
AR-2	GW-19232-032906-NK-AR-2		3/29/2006	Tritium	
AR-3	GW-19232-032906-NK-AR-3		3/29/2006	Tritium	
CAR-1	GW-19232-032906-NK-CAR-1		3/29/2006	Tritium	
AR-7	AR-7		3/30/2006	Tritium	
CAR-3	CAR-3		3/30/2006	Tritium	
DF-19	DF-19		3/30/2006	Tritium	
DF-1D	DF-1D		3/30/2006	Tritium	
DF-1S	DF-1S		3/30/2006	Tritium	
DF-24	DF-24		3/30/2006	Tritium	
DF-2S	DF-2S		3/30/2006	Tritium	
DF-4DS	DF-4DS		3/30/2006	Tritium	
DF-6	DF-6		3/30/2006	Tritium	
DF-12	DF-12		3/31/2006	Tritium	
DF-3S	DF-3S		3/31/2006	Tritium	
MW-1	MW-1		3/31/2006	Tritium	
MW-2	MW-2		3/31/2006	Tritium	
MW-3	MW-3		3/31/2006	Tritium	
MW-30	MW-30		3/31/2006	Tritium	
MW-36	MW-36		3/31/2006	Tritium	
MW-37	MW-37		3/31/2006	Tritium	
MW-39	MW-39		3/31/2006	Tritium	
PC-1B	PC-1B		3/31/2006	Tritium	
PC-1C	PC-1C		3/31/2006	Tritium	

TABLE 4.4 Page 2 of 3

SAMPLE SUMMARY - BLOWDOWN LINE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINIOS

Sample Location	Sample Identification	QC Sample	Sample Date	Sample Analyses
PC-2B	PC-2B		3/31/2006	Tritium
PC-5B	PC-5B		3/31/2006	Tritium
PC-5B	PC-5B	Duplicate	3/31/2006	Tritium
PC-6B	PC-6B		3/31/2006	Tritium
AR-2	GW040306-NK-AR-2		4/3/2006	Tritium
AR-3	GW040306-NK-AR-3		4/3/2006	Tritium
AR-4	GW040406-NK-AR-4		4/4/2006	Tritium
AR-7	GW-040506-NK-AR-7		4/5/2006	Tritium and Radionuclides (1)
AR-8	GW-040506-NK-AR-8		4/5/2006	Tritium and Radionuclides
AR-9	GW-040506-NK-AR-9		4/5/2006	Tritium and Radionuclides
CAR-3	GW-040506-NK-CAR-3		4/5/2006	Tritium and Radionuclides
AR-5	GW-040606-NK-AR-5		4/6/2006	Tritium and Radionuclides
AR-6	GW-040606-NK-AR-6		4/6/2006	Tritium and Radionuclides
DF-12	GW-040606-NK-DF-12		4/6/2006	Tritium
DF-24	GW-040606-NK-DF-24		4/6/2006	Tritium
DF-6	GW-040606-NK-DF-6		4/6/2006	Tritium
DF-6	GW-040606-NK-DF-6	Duplicate	4/6/2006	Tritium
MW-1	GW-040606-NK-MW-12		4/6/2006	Tritium
MW-2	GW-040606-NK-MW-12		4/6/2006	Tritium
MW-36	GW-040606-NK-MW-36		4/6/2006	Tritium
MW-37	GW-040606-NK-MW-37		4/6/2006	Tritium
MW-39	GW-040606-NK-MW39		4/6/2006	Tritium
PC-1C	GW-040606-NK-PC-1C		4/6/2006	Tritium
MW-3	GW-19232-0406060-BW-MW-3		4/6/2006	Tritium
AR-1	GW-19232-040606-BW-AR-1		4/6/2006	Tritium and Radionuclides
AR-10	GW-19232-040606-BW-AR-10		4/6/2006	Tritium and Radionuclides
CAR-1	GW-19232-040606-BW-CAR-1		4/6/2006	Tritium and Radionuclides
CAR-2	GW-19232-040606-BW-CAR-2		4/6/2006	Tritium and Radionuclides
DF-19	GW-19232-040606-BW-DF-19		4/6/2006	Tritium
DF-1D	GW-19232-040606-BW-DF-1D		4/6/2006	Tritium
DF-1S	GW-19232-040606-BW-DF-1S		4/6/2006	Tritium
DF-2S	GW-19232-040606-BW-DF-2S		4/6/2006	Tritium
DF-4DS	GW-19232-040606-BW-DF-4DS		4/6/2006	Tritium
DF-4DS	GW-19232-040606-BW-DF-4DS	Duplicate	4/6/2006	Tritium
PC-1B	GW-19232-040606-BW-PC-1B		4/6/2006	Tritium
PC-2B	GW-19232-040606-BW-PC-2B		4/6/2006	Tritium
PC-5B	GW-19232-040606-BW-PC-5B		4/6/2006	Tritium
PC-6B	GW-19232-040606-BW-PC-6B		4/6/2006	Tritium
TW-13	GW-19232-040606-BW-TW-13		4/6/2006	Tritium and Radionuclides
TW-14	GW-19232-040606-BW-TW-14		4/6/2006	Tritium and Radionuclides
TW-15	GW-19232-040606-BW-TW-15		4/6/2006	Tritium and Radionuclides
DF-3S	GW-19232-040606-DW-DF-3S		4/6/2006	Tritium

TABLE 4.4 Page 3 of 3

SAMPLE SUMMARY - BLOWDOWN LINE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINIOS

Sample Location	Sample Identification	QC Sample	Sample Date	Sample Analyses
MW-30	GW-19232-040606-GW-MW-30		4/6/2006	Tritium
AR-2	GW-19232-041006-EV-AR-2		4/10/2006	Tritium and Radionuclides
AR-3	GW-19232-041006-EV-AR-3		4/10/2006	Tritium and Radionuclides
AR-4	GW-19232-041006-EV-AR-4		4/10/2006	Tritium and Radionuclides
AR-5	GW-19232-041106-EV-AR-5		4/11/2006	Tritium and Radionuclides
AR-6	GW-19232-041106-EV-AR-6		4/11/2006	Tritium and Radionuclides
AR-7	GW-19232-041106-EV-AR-7		4/11/2006	Tritium and Radionuclides
AR-8	GW-19232-041106-EV-AR-8		4/11/2006	Tritium and Radionuclides
AR-9	GW-19232-041106-EV-AR-9		4/11/2006	Tritium and Radionuclides
CAR-3	GW-19232-041106-EV-CAR-3		4/11/2006	Tritium and Radionuclides
AR-1	GW-19232-041106-EV-AR-1		4/12/2006	Tritium and Radionuclides
AR-10	GW-19232-041106-EV-AR-10		4/12/2006	Tritium and Radionuclides
CAR-1	GW-19232-041106-EV-CAR-1		4/12/2006	Tritium and Radionuclides
CAR-2	GW-19232-041106-EV-CAR-2		4/12/2006	Tritium and Radionuclides
CAR-2	GW-19232-041106-EV-CAR-2	Duplicate	4/12/2006	Tritium and Radionuclides
TW-14	GW-19232-041106-EV-TW-14		4/12/2006	Tritium and Radionuclides
TW-15	GW-19232-041106-EV-TW-15		4/12/2006	Tritium and Radionuclides
TW-13	GW-19232-041206-EV-TW-13		4/12/2006	Tritium and Radionuclides
AR-11	GW-041806-KD-AR-11		4/18/2006	Tritium and Radionuclides

Notes:

QC - Quality Control

⁽¹⁾ Radionuclides: Sr-89/90, Mn-54, Fe-59, Co-58, Co-60, Zn-65, Zr-Nb-95, I-131, Cs-134, Cs-137, and Ba-La-140

TABLE 4.5 Page 1 of 2

SUMMARY OF GROUNDWATER ELEVATIONS - APRIL 24, 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

		April 24, 2006			
Sample Location	Reference Elevation (ft AMSL)	Depth to Water (ft below Reference)	Groundwater Elevation (ft AMSL)		
Exelon-Owned W					
AR-1	871.10	35.16	835.94		
AR-2	867.38	68.88	798.50		
AR-3	860.64	63.77	796.87		
AR-4	832.74	90.00	742.74		
AR-5	795.75	107.67	688.08		
AR-6	784.55	109.55	675.00		
AR-7	871.28	104.54	766.74		
AR-8	872.11	33.56	838.55		
AR-9	876.77	59.50	817.27		
AR-10	859.15	21.49	837.66		
AR-11	831.65	89.24	742.41		
CAR-1	694.87	22.24	672.63		
CAR-2	772.01	35.12	736.89		
CAR-3	872.16	45.64	826.52		
TW-13	700.47	17.11	683.36		
TW-14	699.41	26.48	672.93		
TW-15	695.73	22.84	672.89		
GW-9	841.73	96.27	745.46		
Well 7	891.24	115.77	775.47		
Byron Salvage PR	RP Group-Owned Wel	lls			
DF-1S	786.89	60.85	726.04		
DF-1D	787.48	61.81	725.67		
DF-2S	794.96	67.88	727.08		
DF-3S	791.82	64.49	727.33		
DF-4DS	832.98	67.16	765.82		
DF-4DD	832.79	86.62	746.17		
DF-5S	844.12	44.35	799.77		
DF-6	827.89	88.69	739.20		
DF-7S	712.38	Dry			
DF-7D	712.55	37.47	675.08		
DF-8	757.47	39.87	717.60		
DF-10	834.01	Dry			
DF-11	834.21	85.21	749.00		
DF-12	834.48	88.42	746.06		
DF-13	838.84	92.78	746.06		
DF-15	847.79	106.81	740.98		
DF-17	820.14	90.38	729.76		
DF-18	780.28	54.56	725.72		

TABLE 4.5 Page 2 of 2

SUMMARY OF GROUNDWATER ELEVATIONS - APRIL 24, 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

		April 24, 2	006	
Sample	Reference	Depth to	Groundwater	
Location	Elevation	Water	Elevation	
	(ft AMSL)	(ft below Reference)	(ft AMSL)	
DF-19	788.53	62.93	725.60	
DF-22S	811.85	85.51	726.34	
DF-22D	811.56	85.22	726.34	
DF-23	755.39	38.22	717.17	
DF-24	813.68	89.89	723.79	
DF-25	786.36	17.25	769.11	
MW-1	861.77	62.14	799.63	
MW-2	861.07	176.85	684.22	
MW-3	858.6	71.09	787.51	
MW-15	822.23	76.67	745.56	
MW-16	823.47	77.91	745.56	
MW-20R	821.85	140.66	681.19	
MW-21	821.63	140.47	681.16	
MW-30	758.68	38.42	720.26	
MW-36	843.73	97.59	746.14	
MW-37	843.33	161.18	682.15	
MW-39	836.67	155.18	681.49	
MW-41	816.87	71.38	745.49	
MW-42	836.31	90.46	745.85	
PC-1B	757.28	39.27	718.01	
PC-1C	757.89	78.36	679.53	
PC-2B	842.54	86.31	756.23	
PC-3B	828.3	67.72	760.58	
PC-4B	802.8	76.31	726.49	
PC-5B	788.35	64.75	723.60	
PC-6B	831.01	87.83	743.18	

Notes:

ft AMSL - feet above Mean Sea Level

SAMPLE SUMMARY - FLEETWIDE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Sample Identification	QC Sample	Sample Date	Sample Analyses
DF-12	WG-BYN-042506-SS-01		4/25/06	Tritium
DF-4DS	WG-BYN-042506-JK-02	4.4	4/25/06	Tritium
DF-1D	WG-BYN-042506-SS-03		4/25/06	Tritium
DF-1S	WG-BYN-042506-JK-04		4/25/06	Tritium
DF-6	WG-BYN-042506-SS-05		4/25/06	Tritium
DF-2S	WG-BYN-042506-JK-06		4/25/06	Tritium
PC-2B	WG-BYN-042506-SS-07		4/25/06	Tritium
DF-3S	WG-BYN-042506-JK-08		4/25/06	Tritium
MW-36	WG-BYN-042506-SS-09	MS/MSD	4/25/06	Tritium
DF-3S	WG-BYN-042506-JK-10	Duplicate	4/25/06	Tritium
PC-5B	WG-BYN-042506-SS-11		4/25/06	Tritium
DF-19	WG-BYN-042506-JK-12		4/25/06	Tritium
DF-24	WG-BYN-042506-SS-13		4/25/06	Tritium
MW-1	WG-BYN-042606-JK-14		4/26/06	Tritium
	RB-BYN-042606-SS-15	Rinsate	4/26/06	Tritium
	WG-BYN-042606-JK-16	Rinsate	4/26/06	Tritium
PC-6B	WG-BYN-042606-SS-17		4/26/06	Tritium
MW-3	WG-BYN-042606-JK-18		4/26/06	Tritium
PC-6B	WG-BYN-042606-SS-19	Duplicate	4/26/06	Tritium
AR-3	WG-BYN-042606-JK-20	**	4/26/06	Tritium and Radionuclides (1)
PC-1C	WG-BYN-042606-SS-21		4/26/06	Tritium
AR-2	WG-BYN-042606-JK-22		4/26/06	Tritium and Radionuclides
PC-1B	WG-BYN-042606-SS-23		4/26/06	Tritium
AR-10	WG-BYN-042606-JK-24		4/26/06	Tritium and Radionuclides
AR-1	WG-BYN-042606-SS-25		4/26/06	Tritium and Radionuclides
AR-9	WG-BYN-042706-KD-26	4.4	4/27/06	Tritium and Radionuclides
AR-11	WG-BYN-042606-SS-27	44	4/26/06	Tritium and Radionuclides
CAR-3	WG-BYN-042706-KD-28	4.4	4/27/06	Tritium and Radionuclides
MW-39	WG-BYN-042606-SS-29	22	4/26/06	Tritium
AR-8	WG-BYN-042706-KD-30		4/27/06	Tritium and Radionuclides

TABLE 4.6 Page 2 of 2

SAMPLE SUMMARY - FLEETWIDE INVESTIGATION FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample			Sample	
Location	Sample Identification	QC Sample	Date	Sample Analyses
DF-13	WG-BYN-042606-SS-31		4/26/06	Tritium
AR-7	WG-BYN-042706-KD-32		4/27/06	Tritium and Radionuclides
MW-37	WG-BYN-042606-SS-33		4/26/06	Tritium
MW-2	WG-BYN-042706-SS-34		4/27/06	Tritium
	RB-BYN-042706-SS-35	Rinsate	4/27/06	Tritium and Radionuclides
CAR-1	WG-BYN-042706-SS-36		4/27/06	Tritium and Radionuclides
TW-14	WG-BYN-042706-SS-37		4/27/06	Tritium and Radionuclides
TW-15	WG-BYN-042706-SS-38		4/27/06	Tritium and Radionuclides
TW-13	WG-BYN-042706-SS-39		4/27/06	Tritium and Radionuclides
TW-13	WG-BYN-042706-SS-40	Duplicate	4/27/06	Tritium and Radionuclides
AR-6	WG-BYN-042706-SS-41		4/27/06	Tritium and Radionuclides
AR-5	WG-BYN-042706-SS-42		4/27/06	Tritium and Radionuclides
	RB-BYN-042706-SS-43	Rinsate	4/27/06	Tritium and Radionuclides
AR-4	WG-BYN-042706-SS-44		4/27/06	Tritium and Radionuclides
Well 7	WG-BYN-042706-KD-45		4/27/06	Tritium and Radionuclides
Well 7	WG-BYN-042706-KD-46	Duplicate	4/27/06	Tritium and Radionuclides
CAR-2	WG-BYN-042706-SS-47		4/27/06	Tritium and Radionuclides
GW-9	WG-BYN-042806-KD-48	MS/MSD	4/28/06	Tritium and Radionuclides
MW-30	WG-BYN-042806-SS-49		4/28/06	Tritium

Notes:

QC - Quality Control

MS/MSD - matrix spike/matrix spike duplicate

(1) Radionuclides: Sr-89/90, Mn-54, Fe-59, Co-58, Co-60, Zn-65, Zr-Nb-95, I-131, Cs-134, Cs-137, and Ba-La-140

TABLE 4.7 Page 1 of 8

SUMMARY OF MONITORING WELL PURGING PARAMETERS - FLEETWIDE SAMPLING EVENT FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) ⁽¹⁾	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
AR-1	4/26/06	34.91	7	7.70	13.37	543	11.3	53.6	10.79	37.30	
			12	7.51	13.72	538		57.3	9.68		
							nt malfunction				
			58	8.14	14.23	531	7.5	43.7	9.42	38.02	
			63	7.89	13.69	531	4.3	54.7	10.64	42.45	
			68	7.72	13.69	529	3.2	60.4	10.54	43.36	
			73	7.66	13.82	530	2.4	61.5	10.94	43.62	
			76	7.68	13.82	528	2.5	62.8	10.16	43.45	
AR-2	4/26/06	68.72	10	7.18	13.28	814	50	112	8.20	72.45	Slightly cloudy, no odor
			15	7.16	13.54	820	27	112	8.15	73.90	Slightly cloudy, no odor
			20	7.11	13.84	814	22	114	7.97	74.03	Clear
			25	7.13	13.22	814	18	114	7.89	74.10	Clear
			30	7.15	13.20	820	15	110	7.86	74.14	Clear
			35	7.14	13.18	824	16	109	7.82	74.17	Clear
AR-3	4/26/06	63.90	10	7.02	13.09	683	50	91	6.58	64.10	Slightly cloudy, no odor
			15	7.01	13.23	684	50	95	6.57	64.12	Slightly cloudy, no odor
			20	6.98	13.20	682	33	100	6.32	64.13	Clear
			25	7.01	13.17	683	19	101	6.29	64.15	Clear
			30	6.98	13.22	682	12	105	6.40	64.17	Clear
AR-4	4/27/06	89.63	8	7.99	15.90	1,138	232	30.1	7.45	93.27	
			13	9.22	15.86	1,133	265	31.4	6.97	93.59	
			18	9.69	15.44	1,125	294	30.3	6.48	93.91	
			23	9.66	15.79	1,125	282	29.3	5.90	94.31	
			28	9.60	15.86	1,123	270	28.3	5.40	94.62	
			33	9.27	16.10	1,124	252	31.3	5.11	94.88	
			36	9.33	16.19	1,124	226	30.2	4.92	95.00	
			39	9.25	16.57	1,124	208	29.7	4.72	95.09	
			42	9.20	16.67	1,125	188	30.6	4.62	95.15	
AR-5	4/27/06	107.49	5	7.55	16.16	988	497	20.4	4.88	110.99	
			10	7.83	16.94	997	404	16.3	3.09	111.37	
			15	7.96	17.52	1,002	349	17.3	2.90	111.69	
			20	8.19	18.23	1,008	332	13.8	2.97	112.10	
			25	8.38	18.52	1,013	318	10.1	2.91	112.38	
			28	8.39	18.77	1,017	308	8.0	2.94	112.51	
AR-6	4/27/06	109.51	5	7.55	15.83	606	119	15.1	5.58	111.75	
			10	7.76	15.48	599	167	11.7	3.23	112.47	
			15	7.60	17.21	608	167	17.5	2.83	112.43	
			20	7.49	17.93	612	197	18.1	2.70	112.74	
			25	7.54	18.56	617	154	16.5	2.52	113.10	

TABLE 4.7 Page 2 of 8

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) (1)	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
			30	7.52	19.82	615	99.1	17.9	2.17	113.50	
			35	7.52	20.94	616	90.2	18.4	2.04	113.59	
			38	7.51	21.23	619	75.9	18.3	2.02	113.66	
AR-7	4/27/06	104.61	10	7.28	19.45	1,206	800	325	4.63	104.40	Brown color, no odor
			15	7.42	19.08	1,199	577	333	3.70	104.60	Very cloudy
			20	7.45	19.15	1,196	454	338	3.67	104.40	Very cloudy
			25	7.31	21.10	1,221	978	335	3.46	104.40	Very cloudy
			30	7.11	21.47	1,199	>1000	329	3.70	104.40	Brown color
			35	7.39	18.58	1,190	304	337	3.79	104.40	Cloudy
			40	7.60	18.38	1,191	79	340	3.76	104.40	Slightly cloudy
			45	7.38	18.54	1,189	41.1	342	3.74	104.40	Slightly cloudy
			48	7.29	18.65	1,190	25.5	343	3.75	104.40	Slightly cloudy
			51	7.24	18.75	1,188	23	344	3.70	104.40	Clear
			54	7.24	18.75	1,187	24	344	3.71	104.40	Clear
AR-8	4/27/06	33.30	10	7.90	17.80	644	167	286	7.61	34.45	Cloudy
			15	7.76	18.20	642	154	283	7.64	34.55	Cloudy
			20	7.58	18.20	642	127	285	7.59	34.65	Cloudy
			25	7.42	18.90	639	115	291	7.45	34.63	Cloudy
			30	7.30	189.00	639	109	267	7.30	34.63	Cloudy
			33	7.28	19.00	639	112	266	7.29	34.63	Cloudy
AR-9	4/27/06	59.30	10	6.95	18.80	910	263	231	6.20	61.16	Cloudy
			20	6.87	19.80	907	83	182	5.98	61.60	Slightly cloudy
			25	6.83	20.80	906	32	175	5.59	61.90	Clear
			28	6.80	20.50	907	29	180	5.60	61.90	Clear
			31	6.80	20.50	908	29	175	5.59	61.90	Clear
			33	6.80	20.50	908	29	177	5.59	61.90	Clear
AR-10	4/26/06	21.46	10	7.05	13.00	3,220	90	119	1.11	21.55	Cloudy
			15	7.04	12.56	3,225	70	118	1.11	21.55	Slightly cloudy
			20	7.03	12.45	3,220	29	121	1.04	21.58	Clear
			25	7.02	12.42	3,225	17	127	0.93	21.60	Clear
			30	7.04	12.40	3,220	11	127	0.90	21.60	Clear
AR-11	4/26/06	87.12	18	8.27	14.78	979	179	-0.8	5.89		
			23	8.82	14.40	983	200	5.5	2.36	97.57	
			28	8.69	15.17	983	138	16.6	1.70	98.32	
			33	8.66	14.83	979	111	18.2	1.36	99.72	
			38	7.49	15.55	980	77.7	29.6	1.14	100.20	
			43	8.48	15.40	977	69.3	19.6	1.03	100.71	
			48	8.53	15.86	978	59.5	16.7	0.99	100.70	
			53	8.32	15.53	972	79	22.7	0.95	100.70	
			58	8.38	14.75	975	115	21.2	0.91	101.09	

TABLE 4.7 Page 3 of 8

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) (1)	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
			61	8.37	14.78	967	101	20.0	0.86	101.68	
			64	8.45	14.76	964	68.5	19.0	0.78	102.15	
			67	8.43	14.71	966	52.1	16.9	0.69	102.43	
			70	8.43	14.92	969	46.1	15.9	0.69	102.59	
			73	8.43	14.79	967	46.5	15.3	0.69	102.75	
CAR-1	4/27/06	22.51	7	7.93	12.80	552	514	42.9	7.52	22.63	
			12	6.96	13.15	547	285	52.3	6.78	22.61	
			17	8.22	13.13	546	102	44.3	6.69	22.61	
			22	8.32	13.06	548	41.1	42.3	6.70	22.63	
			27	6.22	13.08	547	16.6	55.9	6.67	22.64	
			32	6.56	13.23	546	8.4	51.3	6.62	22.64	
			35	6.52	13.20	548	8.4	49.6	6.74	22.63	
			38	6.59	13.17	546	5.5	48.7	6.71	22.63	
CAR-2	4/27/06	35.23	0	8.06	14.02	822	32.5	29.3	10.74		
			3	8.20	12.60	817	23.8	19.9	10.40		
CAR-3	4/27/06	45.40	10	7.15	21.40	974	12	244	7.00	46.10	Clear
			13	7.08	21.50	986	10	254	7.00	46.10	Clear
			16	7.08	21.50	990	7.5	255	6.99	46.10	Clear
			19	7.08	21.50	991	4.8	256	6.99	46.10	Clear
DF-1D	4/25/06	61.81	7	8.43	12.89	801	4.16	25.7	3.58	61.95	
			12	8.26	13.23	808	2.21	27.0	2.88	61.95	
			17	8.30	13.42	808	1.79	33.6	2.70	61.95	
			22	8.41	13.36	809	1.78	18.2	2.63	61.95	
			25	8.49	13.26	807	1.74	13.9	2.60	61.95	
			28	8.52	13.32	807	1.71	10.5	2.59	61.95	
			31	8.49	13.24	809	1.87	11.7	2.59	61.95	
			36	8.62	13.19	807	1.5	10.4	2.55	61.95	
DF-1S	4/25/06	60.83	10	6.98	14.09	804	100	-110	0.40	61.03	Slightly cloudy, no odor
			15	7.00	13.34	794	65	-115	0.40	60.96	Slightly cloudy, no odor
			20	7.04	14.10	798	65	-125	0.33	60.97	Slightly cloudy, no odor
			25	7.02	14.12	792	50	-130	0.29	60.99	Slightly cloudy, no odor
			30	6.99	14.04	788	40	-123	0.28	61.02	Slightly cloudy, no odor
DF-2S	4/25/06	67.81	10	7.00	12.25	687	9.4	65	3.17	70.74	Clear
			15	7.05	11.54	691	13	39	2.50	71.42	Clear
			20	7.00	11.55	694	9.4	40	2.29	72.40	Clear
			25	6.98	11.55	691	7.1	42	2.28	72.66	Clear
			30	6.99	11.54	690	7	40	2.25	72.69	Clear

TABLE 4.7 Page 4 of 8

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) (1)	Turbidity (NTU) ⁽²⁾	ORP ⁽³⁾ (mV) ⁽⁴⁾	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
DF-3S	4/25/06	64.47	10	6.95	10.81	728	110	140	4.44	64.52	Cloudy, yellow, no odor Slightly cloudy, yellow, no
			15	6.95	10.87	737	70	141	3.89	64.52	odor
			20	6.96	10.98	745	37	139	3.38	64.52	Slightly cloudy
DF-4DS	4/25/06	57.20	10	6.96	9.68	669	55	139	7.21	59.15	Slightly cloudy, no odor
	, ,		15	6.96	10.45	670	37	130	7.48	60.35	Slightly cloudy, no odor
			20	6.96	10.70	668	270	89.0	6.83	61.35	Cloudy
DF-6	4/25/06	88.18	13	8.99	11.99	881	12.3	12.2	1.60	96.10	
			18	8.69	12.46	671	12.3	15.1	1.13	98.00	
			23	8.54	13.36	665	12.9	9.4	1.13	98.61	
			28	8.81	14.35	660	12.9	8.6	1.08	100.30	
			31	8.60	14.80	661	12.9	14.3	1.07	101.02	
			34	8.60	14.75	661	12.7	18.7	1.03	101.95	
DF-12	4/25/06	88.42	10	6.52	12.51	775	2.4	11.4	7.58	88.39	
	, ,		15	6.77	12.51	772	1.9	20.7	7.08	88.42	
			20	6.98	12.51	772	1.8	-2.1	6.97	88.41	
			30	8.67	11.89	768	1.6	-26.6	7.00	88.42	
			35	9.24	11.91	768	1.5	-34.3	6.97	88.40	
			40	9.55	11.90	768	1.1	-41.5	6.99	88.40	
			45	9.80	11.90	767	1.4	-45.8	6.97	88.40	
			48	9.81	11.90	767	1.3	-44.6	6.97	88.40	
			51	10.16	11.90	767	0.8	-53.2	6.94	88.40	
			54	10.17	11.90	767	1	-51.2	6.90	88.40	
			57	10.23	11.91	767	1.2	-53.7	6.84	88.40	
DF-13	4/26/06	93.13	5	10.03	14.87	825	25.6	-5.5	3.43	93.30	
D1 15	1/ 20/ 00	30.10	10	9.77	15.12	807	20	5.7	2.16	93.30	
			15	9.50	15.37	794	12.5	4.8	1.97	93.30	
			20	9.42	15.41	788	9.5	5.5	1.97	93.30	
			25	9.29	15.33	785	7.5	7.1	1.97	93.30	
			28	9.31	15.28	784	7	5.5	1.97	93.30	
DF-19	4/25/06	62.93	10	6.95	10.48	760	>1000	73	2.48	63.04	Orange, no odor
			15	6.97	11.12	781	>1000	32	1.28	63.08	Very cloudy, orange
			20	6.98	11.07	785	589	1	1.01	63.07	Cloudy, orange tint
			25	6.95	11.09	791	334	-7	0.93	63.08	Cloudy
			30	6.98	11.19	786	191	-18	0.96	63.08	Cloudy
			35	6.97	11.41	785	128	-19	0.96	63.08	Cloudy
			40	6.98	11.34	785	120	-13	0.95	63.08	Cloudy
			45	6.95	11.35	786	85	-11	0.97	63.08	Cloudy
DF-24	4/25/06	89.91	7	9.33	12.49	855	3.75	21.5	7.28	89.91	

TABLE 4.7 Page 5 of 8

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) ⁽¹⁾	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
			12	9.33	13.01	850	28.2	19.8	7.21	89.91	
			17	8.88	13.10	843	22.4	28.6	7.42	89.91	
			22	8.74	13.16	842	19.4	31.3	7.51	89.91	
			25	8.75	13.08	840	17.3	30.7	7.56	89.91	
GW-9	4/28/06	96.30	10	7.21	14.40	963	11	389	5.68	97.00	Clear
			15	6.65	15.20	962	7	395	5.70	97.50	Clear
			20	6.65	15.20	962	6.6	396	5.73	97.50	Clear
			23	6.63	15.20	962	6.8	396	5.72	97.50	Clear
			26	6.63	15.20	961	7	396	5.72	97.50	Clear
MW-1	4/26/06	62.30	10	7.03	10.09	543	>1000	-17	5.12	63.75	Tan color, no odor
	, ,		15	7.03	10.75	549	>1000	-11	4.97	64.25	Tan color, no odor
			20	7.03	11.11	549	>1000	-2	4.63	64.55	Tan color, no odor
			25	7.01	11.38	549	>1000	10	4.56	64.81	Tan color, no odor
			30	7.00	11.41	553	>1000	3.7	4.75	64.95	Brownish color
			35	7.06	11.72	539	>1000	26	5.31	65.70	Very cloudy
			40	6.99	11.46	536	>1000	38	5.31	65.95	Very cloudy
			45	7.00	11.40	535	>1000	40	5.36	65.99	Very cloudy
			50	7.01	11.45	537	>1000	41	5.35	65.99	Very cloudy
			55	7.04	11.36	533	950	44	5.41	66.00	Very cloudy
			60	7.04	11.33	531	950	46	5.45	66.00	Very cloudy
MW-2	4/27/06	177.10	5	8.06	13.06	489	4.5	-68.9	1.79	178.34	- -
	-, ,		10	8.01	14.16	509	8.4	-72.5	0.98	178.51	
			15	7.72	14.26	564	4.2	-37.3	0.84	178.60	
			20	7.62	14.02	568	2.3	-21.2	0.72	178.66	
			25	7.56	13.88	569	1.9	-11.8	0.68	178.66	
			30	7.53	13.96	568	2.4	-7.3	0.63	178.70	
			33	7.52	13.92	569	2	-4.7	0.61	178.70	
MW-3	4/26/06	71.45	10	6.97	11.13	639	100	37	8.15	72.39	Slightly cloudy
	-,,		15	7.02	11.70	639	90	37	8.08	73.53	Slightly cloudy
			20	7.02	11.94	638	65	41	8.01	73.86	Slightly cloudy
			25	7.00	11.99	637	65	47	8.05	74.37	Slightly cloudy
			30	6.99	12.05	638	60	55	8.02	74.87	Slightly cloudy
			35	6.99	12.09	637	55	60	7.94	74.90	Slightly cloudy
			40	6.99	12.10	637	55	63	8.06	74.92	Slightly cloudy
MW-30	4/28/06	38.51	15	6.51	11.26	579	>1000	148.9	10.55		
MW-36	4/25/06	97.16	5	9.26	12.19	974	79.4	23.8	3.66	99.70	
			10	8.55	13.46	973	32.2	25.9	1.59	99.80	
			15	9.59	13.32	852	20	11.3	1.04	99.80	

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) (1)	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
			20	9.99	13.31	828	20	2.2	0.91	99.80	
			25	9.98	13.34	818	12.3	1.6	0.82	99.80	
			30	9.88	13.45	814	9.86	10.9	0.73	99.93	
MW-37	4/26/06	161.37	5	8.99	14.14	602	17.2	35.6	1.80	161.95	
			10	8.57	15.06	603	8.8	34.3	0.90	161.97	
			15	8.82	14.83	601	4.9	32.2	0.65	162.03	
			20	8.82	14.68	599	3.5	32.2	0.57	162.02	
			23	8.69	14.62	598	3.1	33.3	0.54	162.02	
MW-39	4/26/06	154.82	5	10.98	13.76	637	682	-10.8	6.35	157.18	
			10	10.25	16.16	551	325	19.5	1.99	157.50	
			15	9.88	15.75	589	54.5	26.4	1.35		
			20	9.77	15.58	598	28.9	26	1.05		
			25	9.84	15.57	598	18.8	24.9	0.89	157.64	
			30	9.83	15.59	599	16.3	23.5	0.76	157.64	
			33	9.68	15.65	600	15.4	24.9	0.69	157.54	
			36	9.74	15.67	598	16.8	23.8	0.66	157.64	
PC-1B	4/26/06	39.28	35	7.18	12.53	790	6.7	56.9	6.70	39.23	
			40	7.30	12.59	792	6.2	59.0	6.29	39.23	
			45	7.33	12.60	794	4.7	60.7	6.26	39.34	
			48	7.64	12.59	794	3.85	54.0	6.27	39.34	
			51	7.64	12.56	795	3.54	52.7	6.27	39.34	
			54	7.69	12.59	794	3.27	51.4	6.27	39.34	
PC-1C	4/26/06	78.63	9	9.10	12.61	619	393	17.0	8.07	79.44	
			14	8.58	12.64	617	275	21.0	3.83	79.44	
			19	8.44	12.65	615	187	24.0	3.54	79.44	
			24	8.34	12.67	615	103	26.1	3.50	79.44	
			29	8.28	12.68	614	58.3	27.8	3.49	79.46	
			34	8.22	12.71	612	42.3	29.3	3.53	79.46	
			37	8.18	12.75	612	37.7	29.9	3.57	79.46	
			40	8.19	12.80	612	34.7	30.9	3.56	79.46	
			43	8.16	12.85	610	30.7	31.6	3.61	79.46	
PC-2B	4/25/06	86.67	10	9.80	13.40	696	21.1	28.4	9.60	87.79	
			15	8.68	13.93	695	23	0.8	7.26	87.90	
			20	7.22	14.88	686	18.6	53.3	7.18	88.17	
			25	8.11	14.50	691	22.5	27.3	6.99	88.85	
			30	8.17	13.77	692	13.2	26.3	6.97	89.38	
			35	8.35	12.72	694	22.4	19.7	6.89	89.78	
			40	8.52	11.76	693	22.6	13.6	6.93	89.95	
			45	8.61	11.06	692	23.9	17.5	6.75	90.28	

TABLE 4.7 Page 7 of 8

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) (1)	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
			50	8.26	18.73	705		14.7	6.07		
PC-5B	4/25/06	164.94	5	9.92	12.84	813	79.9	-11.6	6.62	64.94	
			10	9.23	13.02	815	25	-11.0	4.90	64.94	
			15	9.17	13.05	815	10.1	-5.7	4.70	64.94	
			20	9.15	13.02	815	5.48	-4.4	4.69	64.94	
			25	9.13	13.02	815	4.34	-3.7	4.69	64.94	
			28	9.13	13.01	816	3.75	-3.6	4.69	64.94	
PC-6B	4/26/06	87.78	10	8.27	14.38	929	123	-2.5	6.77	90.11	
			15	8.24	14.59	927	145	-2.2	6.37	90.20	
			20	8.18	15.42	932	141	-1.7	5.94	90.21	
			25	8.10	15.81	934	114	-0.6	5.57	90.15	
			30	8.03	16.00	936	93.2	1.3	5.52	89.97	
			35	8.02	15.96	936	77.2	1.5	5.40	89.93	
			40	7.94	15.82	935	67.1	3	5.15	89.73	
			45	7.93	15.75	936	58.1	2.1	5.22	89.73	
			50	7.92	16.01	937	48.1	0.7	5.18	89.69	
TW-13	4/27/06	17.16	7	6.69	13.16	784	>1000	26.7	12.38	17.37	
			12	6.87	11.90	769	268	36.2	10.52	17.37	
			17	6.87	12.03	768	71.8	43.7	10.42	17.37	
			22	6.89	11.97	769	26.2	43.3	10.44	17.37	
			27	6.93	11.91	771	12.1	41.6	10.58	17.37	
			32	6.94	11.94	770	8	39.8	10.48	17.37	
			35	6.89	11.96	770	6.6	39.6	10.47	17.37	
TW-14	4/27/06	26.72	7	7.31	13.28	742	712	43.0	8.88	26.73	
			12	7.33	14.34	738	570	39.2	7.57	26.74	
			17	7.34	14.66	742	448	38.1	7.50	26.75	
			22	7.26	14.64	742	362	38.3	7.58	26.74	
			27	6.89	14.78	740	299	39.3	7.47	26.75	
			32	6.93	14.90	738	257	38.4	7.41	26.72	
			35	7.21	14.98	739	236	35.0	7.19	26.74	
			38	7.06	15.11	739	203	36.6	7.23	26.73	
			41	7.56	15.24	739	178	32.7	7.19	26.73	
			44	7.49	15.45	739	164	33.8	7.26	26.73	
			47	7.46	15.48	739	158	33.4	7.17	26.73	
TW-15	4/27/06	23.08	13	7.08	12.83	738	261	34.3	8.18	23.08	
			18	7.34	12.82	735	107	40.4	7.95	23.08	
			23	6.91	12.81	734	49	46.6	7.99	23.08	
			28	6.85	12.88	732	25.4	47.4	7.99	23.08	
			31	6.89	12.69	732	18.5	46.3	8.06	23.08	

TABLE 4.7 Page 8 of 8

SUMMARY OF MONITORING WELL PURGING PARAMETERS - FLEETWIDE SAMPLING EVENT FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Date	Initial Depth to Water (ft below Reference)	Time Purged (minutes)	pH (Std. Units)	Temperature (°C)	Conductivity (µS/cm) ⁽¹⁾	Turbidity (NTU) ⁽²⁾	ORP (3) (mV) (4)	Dissolved Oxygen (mg/L) ⁽⁵⁾	Depth to Water (ft below Reference)	Observations
			34	6.92	12.62	732	15.1	45.0	8.16	23.08	
			37	6.90	12.70	731	9.7	43.4	8.19	23.08	
Well 7	4/27/06	115.60	10	8.00	14.60	791	10	369	7.50	115.60	Clear
			15	7.36	15.90	790	12	375	7.30	115.60	Clear
			18	7.27	16.20	790	11	375	7.26	115.60	Clear
			21	7.25	16.30	790	10	376	7.24	115.60	Clear
			24	7.25	16.30	790	10	376	7.24	115.60	Clear

Notes:

- (1) $\mu S/cm$ microSiemens per centimeter
- (2) NTU nephelometric turbidity units
- (3) ORP oxidation reduction potential
- (4) mV millivolts
- (5) mg/L milligrams per liter

TABLE 5.1 Page 1 of 1

CALCULATED VERTICAL HYDRAULIC GRADIENTS FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Well Cluster	Elevation of Screen Middle (ft AMSL) ⁽¹⁾	Water Level April 24, 2006 (ft AMSL)	Vertical Gradient (ft/ft downward)
Water Table to	o Lower Galena-Plattevil	!le	
AR-4	720.7	742.74	0.009
AR-11	684.9	742.41	
TW-14	668.4	672.93	0.011
CAR-1	642.3	672.63	
DF-1S	734.0	726.04	0.013
DF-1D	704.8	725.67	
PC-3B	754.1	760.58	0.443
DF-6	705.8	739.20	
DF-11	757.6	749.00	0.053
DF-12	701.9	746.06	
DF-22S	727.7	726.34	0.0
DF-22D	705.2	726.34	
MW-30	722.7	720.26	0.095
DF-23	690.1	717.17	
MW-15	740.7	745.56	0.0
MW-16	706.8	745.56	
PC-1B	714.5	718.01	0.021
DF-8	694.6	717.60	
Across the Gle	enwood Formation		
MW-1	818.0	799.63	0.622
MW-2	632.6	684.22	
MW-16	706.8	745.56	0.892
MW-20R	634.6	681.19	
MW-36	690.6	746.14	1.379
MW-37	644.2	682.15	
MW-42	688.2	745.85	1.893
MW-39	654.2	681.49	
DF-8	694.6	717.60	0.850
PC-1C	649.8	679.53	
Within the St.	Peter Sandstone		
MW-20R	634.6	681.19	0.001
MW-21	591.4	681.16	

Notes:

(1) ft AMSL - feet above Mean Sea Level

TABLE 5.2 Page 1 of 1

SUMMARY OF TRITIUM CONCENTRATIONS IN WATER - STATION SAMPLING LOCATIONS FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

					Result
Sample Location	Sample Identification	Sample Date	Laboratory Analysis	Tritium (pCi/L)	Error
ABANDONED VAULT	ABANDONED VAULT	2/3/2006	EI	ND (200)	-
CROP	CROP	3/23/2006	EI	ND (200)	-
CWBD STEEL POT	CWBD STEEL POT	2/27/2006	EI	ND (200)	-
CWBD STEEL POT	1CW	4/24/2006	EI	263	+/-89
OREPRO10	OREPRO10	2/27/2006	EI	ND (200)	-
Potable Water	POTABLE WATER	3/23/2006	EI	ND (200)	-
VAULT #1	1 Blowdown	3/16/2006	EI	ND (1960) *	-
VAULT #2	VAULT #2	2/3/2006	EI	40727	+/-552
VAULT #2	VAULT #2	2/16/2006	EI	33900	NR
VAULT #2	VAULT #2	3/2/2006	EI	1680	NR
VAULT #2	2 Blowdown	3/16/2006	EI	ND (1960) *	-
VAULT #3	VAULT #3	2/3/2006	EI	37895	+/-523
VAULT #3	VAULT #3	2/16/2006	EI	34400	NR
VAULT #3	3 Blowdown	3/16/2006	EI	7730	NR
VAULT #4	VAULT #4	2/3/2006	EI	80123	+/-756
VAULT #4	VAULT #4	2/16/2006	EI	72300	NR
VAULT #4	VAULT #4	3/2/2006	EI	18100	NR
VAULT #4	4 Blowdown	3/16/2006	EI	9100	NR
VAULT #4	Vault 4	4/24/2006	EI	375	+/-93
VAULT #5	VAULT #5	2/3/2006	EI	1843	+/-138
VAULT #5	VAULT #5	2/16/2006	EI	5430	NR
VAULT #5	5 Blowdown	3/16/2006	EI	3130	NR
VAULT #5	Vault 5	4/24/2006	EI	423	+/-95
VAULT #6	VAULT #6	2/3/2006	EI	29162	+/-460
VAULT #6	VAULT #6	2/16/2006	EI	29600	NR
VAULT #6	6 Blowdown	3/16/2006	EI	7580	NR
VAULT #6	Vault 6	4/24/2006	EI	645	+/-103

Notes:

EI - Environmental, Inc.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

* - Non-detect at the value in parentheses.

NR - +/- value not reported.

TABLE 5.3 Page 1 of 3

SUMMARY OF TRITIUM CONCENTRATIONS IN GROUNDWATER - FEBRUARY - APRIL 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Sample Identification	Sample Date	QC Sample	Lab	oratory Analyses	Tritium (pCi/L)	Result Error
AR-1	GW-19232-032306-SP-AR-1	3/24/2006		EI		ND (200)	-
AR-1	GW-19232-032906-NK-AR-1	3/29/2006		EI		ND (200)	_
AR-1	GW-19232-040606-BW-AR-1	4/6/2006		EI		ND (200)	_
AR-1	GW-19232-041106-EV-AR-1	4/12/2006		EI		ND (200)	-
AR-1	WG-BYN-042606-SS-25	4/26/2006		TBE		ND (200)	-
AR-2	GW-19232-032306-SP-AR-2	3/24/2006		EI		205	+/-84
AR-2	GW-19232-032306-SP-AR-2	3/24/2006		EI	Recount	ND (200)	-
AR-2	GW-19232-032306-SP-AR-2	3/24/2006		EI	Repeat Recount	ND (200)	-
AR-2	GW-19232-032708-EV-AR-2	3/27/2006		EI	•	315	+/-96
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI		361	+/-95
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI	Original Recount	208	+/-96
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI	Original Recount #2	223	+/-97
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI	1st Repeat	ND (200)	-
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI	1st Repeat Recount	200	+/-96
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI	2nd Repeat	ND (200)	-
AR-2	GW-19232-032906-NK-AR-2	3/29/2006		EI	2nd Repeat Recount	ND (200)	-
AR-2	GW040306-NK-AR-2	4/3/2006		EI		442	+/-100
AR-2	GW040306-NK-AR-2	4/3/2006		EI	Recount	475	+/-93
AR-2	GW-19232-041006-EV-AR-2	4/10/2006		EI		566	NR
AR-2	WG-BYN-042606-JK-22	4/26/2006		TBE		432	+/-140
AR-2	WG-BYN-042606-JK-22	4/26/2006		TBE	Re-run	527	+/-142
AR-3	GW-19232-032306-SP-AR-3	3/24/2006		EI		214	+/-84
AR-3	GW-19232-032306-SP-AR-3	3/24/2006		EI	Recount	ND (200)	-
AR-3	GW-19232-032306-SP-AR-3	3/24/2006		EI	Repeat Recount	271	+/-95
AR-3	GW-19232-032706-NK-AR-3	3/27/2006		EI	_	459	+/-124
AR-3	GW-19232-032706-NK-AR-3	3/27/2006		EI	Recount	346	+/-109
AR-3	GW-19232-032906-NK-AR-3	3/29/2006		EI		372	+/-122
AR-3	GW040306-NK-AR-3	4/3/2006		EI		489	+/-102
AR-3	GW-19232-041006-EV-AR-3	4/10/2006		EI		351	NR
AR-3	WG-BYN-042606-JK-20	4/26/2006		TBE		234	+/-128
AR-4	GW-19232-032806-NK-CAR-4	3/28/2006		EI	D (3572	+/-198
AR-4	GW-19232-032806-NK-CAR-4	3/28/2006		EI	Recount	3631	+/-192
AR-4	GW-19232-032906-EV-CAR-4	3/29/2006		EI EI		3817	+/-202
AR-4 AR-4	GW040406-NK-AR-4	4/4/2006		EI		3741	+/-183 NR
AR-4 AR-4	GW-19232-041006-EV-AR-4 WG-BYN-042706-SS-44	4/10/2006 4/27/2006		TBE		3469 3260	+/-367
AR-4	WG-BYN-042706-SS-44	4/27/2006		TBE	Re-run	4080	+/-463
AR-5	GW-19232-032306-SP-AR-5	3/24/2006		EI	Ke-run	ND (200)	
AR-5	GW-19232-032906-EV-AR-5	3/29/2006		EI		ND (200)	_
AR-5	GW-040606-NK-AR-5	4/6/2006		EI		ND (200)	_
AR-5	GW-19232-041106-EV-AR-5	4/11/2006		EI		ND (200)	_
AR-5	WG-BYN-042706-SS-42	4/27/2006		TBE		ND (200)	_
AR-6	GW-19232-032306-SP-AR-6	3/24/2006		EI		ND (200)	_
AR-6	GW-19232-032906-EV-AR-6	3/29/2006		EI		ND (200)	_
AR-6	GW-040606-NK-AR-6	4/6/2006		EI		ND (200)	-
AR-6	GW-19232-041106-EV-AR-6	4/11/2006		EI		ND (200)	-
AR-6	WG-BYN-042706-SS-41	4/27/2006		TBE		ND (200)	-
AR-7	AR-7	3/30/2006		EI		ND (200)	-
AR-7	GW-040506-NK-AR-7	4/5/2006		EI		ND (200)	-
AR-7	GW-19232-041106-EV-AR-7	4/11/2006		EI		ND (200)	-
AR-7	WG-BYN-042706-KD-32	4/27/2006		TBE		ND (200)	-
AR-8	GW-040506-NK-AR-8	4/5/2006		EI		ND (200)	-
AR-8	GW-19232-041106-EV-AR-8	4/11/2006		EI		ND (200)	-
AR-8	WG-BYN-042706-KD-30	4/27/2006		TBE		ND (200)	-
AR-9	GW-040506-NK-AR-9	4/5/2006		EI		ND (200)	-
AR-9	GW-19232-041106-EV-AR-9	4/11/2006		EI		ND (200)	-
AR-9	WG-BYN-042706-KD-26	4/27/2006		TBE		ND (200)	-
AR-10	GW-19232-040606-BW-AR-10	4/6/2006		EI		ND (200)	-
AR-10	GW-19232-041106-EV-AR-10	4/12/2006		EI		ND (200)	-
AR-10	WG-BYN-042606-JK-24	4/26/2006		TBE		ND (200)	-
AR-11	GW-041806-KD-AR-11	4/18/2006		EI	D :	2260	+/-162
AR-11	GW-041806-KD-AR-11	4/18/2006		EI	Repeat	1965	NR
AR-11	WG-BYN-042606-SS-27	4/26/2006		TBE	D	2340	+/-282
AR-11	WG-BYN-042606-SS-27	4/26/2006		TBE	Re-run	2340	+/-282

TABLE 5.3 Page 2 of 3

SUMMARY OF TRITIUM CONCENTRATIONS IN GROUNDWATER - FEBRUARY - APRIL 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

						Result
Sample Location	Sample Identification	Sample Date	QC Sample	Laboratory Analyses	Tritium (pCi/L)	Error
CAR-1	GW-19232-032306-SP-CAR-1	3/23/2006		EI	ND (200)	-
CAR-1	GW-19232-032906-NK-CAR-1	3/29/2006		EI	ND (200)	-
CAR-1 CAR-1	GW-19232-040606-BW-CAR-1 GW-19232-041106-EV-CAR-1	4/6/2006		EI EI	ND (200)	-
CAR-1 CAR-1	WG-BYN-042706-SS-36	4/12/2006 4/27/2006		TBE	ND (200) ND (200)	_
CAR-1	GW-19232-032306-SP-CAR-2	3/24/2006		EI	ND (200)	-
CAR-2	GW-19232-032906-EV-CAR-2	3/29/2006		EI	ND (200)	_
CAR-2	GW-19232-040606-BW-CAR-2	4/6/2006		EI	ND (200)	-
CAR-2	GW-19232-041106-EV-CAR-2	4/12/2006		EI	ND (200)	-
CAR-2	GW-19232-041106-EV-CAR-2	4/12/2006	Duplicate (CAR-2)	EI	ND (200)	-
CAR-2	WG-BYN-042706-SS-47	4/27/2006		TBE	ND (200)	-
CAR-3	CAR-3	3/30/2006		EI	ND (200)	-
CAR-3	GW-040506-NK-CAR-3	4/5/2006		EI	ND (200)	-
CAR-3	GW-19232-041106-EV-CAR-3	4/11/2006		EI TBE	ND (200)	-
CAR-3 DF-1D	WG-BYN-042706-KD-28 DF-1D	4/27/2006		EI	ND (200)	-
DF-1D DF-1D	GW-19232-040606-BW-DF-1D	3/30/2006 4/6/2006		EI	ND (200) ND (200)	_
DF-1D	WG-BYN-042506-SS-03	4/25/2006		TBE	ND (200)	_
DF-1S	DF-1S	3/30/2006		EI	ND (200)	_
DF-1S	GW-19232-040606-BW-DF-1S	4/6/2006		EI	ND (200)	-
DF-1S	WG-BYN-042506-JK-04	4/25/2006		TBE	ND (200)	-
DF-2S	DF-2S	3/30/2006		EI	ND (200)	-
DF-2S	GW-19232-040606-BW-DF-2S	4/6/2006		EI	ND (200)	-
DF-2S	WG-BYN-042506-JK-06	4/25/2006		TBE	ND (200)	-
DF-3S	DF-3S	3/31/2006		EI	ND (200)	-
DF-3S DF-3S	GW-19232-040606-DW-DF-3S	4/6/2006 4/25/2006		EI TBE	ND (200)	-
DF-3S	WG-BYN-042506-JK-08 WG-BYN-042506-JK-10	4/25/2006	Duplicate (JK-08)	TBE	ND (200) ND (200)	-
DF-4DS	DF-4DS	3/30/2006	Duplicate (JK-00)	EI	ND (200)	-
DF-4DS	GW-19232-040606-BW-DF-4DS	4/6/2006		EI	ND (200)	_
DF-4DS	GW-19232-040606-BW-DF-4DS	4/6/2006	Duplicate (DF-4DS)	EI	ND (200)	-
DF-4DS	WG-BYN-042506-JK-02	4/25/2006	- , ,	TBE	ND (200)	-
DF-6	DF-6	3/30/2006		EI	ND (200)	-
DF-6	GW-040606-NK-DF-6	4/6/2006		EI	ND (200)	-
DF-6	GW-040606-NK-DF-6	4/6/2006	Duplicate (DF-6)	EI	ND (200)	-
DF-6	WG-BYN-042506-SS-05	4/25/2006		TBE EI	ND (200)	-
DF-12 DF-12	DF-12 GW-040606-NK-DF-12	3/31/2006 4/6/2006		EI EI	ND (200) ND (200)	-
DF-12	WG-BYN-042506-SS-01	4/25/2006		TBE	ND (200)	-
DF-13	WG-BYN-042606-SS-31	4/26/2006		TBE	ND (200)	_
DF-19	DF-19	3/30/2006		EI	ND (200)	-
DF-19	GW-19232-040606-BW-DF-19	4/6/2006		EI	ND (200)	-
DF-19	WG-BYN-042506-JK-12	4/25/2006		TBE	ND (200)	-
DF-24	DF-24	3/30/2006		EI	ND (200)	-
DF-24	GW-040606-NK-DF-24	4/6/2006		EI	ND (200)	-
DF-24	WG-BYN-042506-SS-13	4/25/2006		TBE	ND (200)	-
GW-9 GW-9	GW-030806-KD-01 WG-BYN-042806-KD-48	3/8/2006 4/28/2006		EI TBE	ND (200) ND (200)	-
MW-1	MW-1	3/31/2006		EI	ND (200)	_
MW-1	GW-040606-NK-MW-12	4/6/2006		EI	ND (200)	_
MW-1	WG-BYN-042606-JK-14	4/26/2006		TBE	ND (200)	-
MW-2	MW-2	3/31/2006		EI	ND (200)	-
MW-2	GW-040606-NK-MW-12	4/6/2006		EI	ND (200)	-
MW-2	WG-BYN-042706-SS-34	4/27/2006		TBE	ND (200)	-
MW-3	MW-3	3/31/2006		EI	ND (200)	-
MW-3	GW-19232-0406060-BW-MW-3	4/6/2006		EI	ND (200)	-
MW-3	WG-BYN-042606-JK-18	4/26/2006		TBE	ND (200)	-
MW-30 MW-30	MW-30 GW-19232-040606-GW-MW-30	3/31/2006 4/6/2006		EI EI	ND (200) ND (200)	-
MW-30	WG-BYN-042806-SS-49	4/28/2006		TBE	ND (200) ND (200)	-
MW-36	MW-36	3/31/2006		EI	ND (200)	_
MW-36	GW-040606-NK-MW-36	4/6/2006		EI	ND (200)	-
MW-36	WG-BYN-042506-SS-09	4/25/2006		TBE	ND (200)	-
MW-37	MW-37	3/31/2006		EI	ND (200)	-

TABLE 5.3 Page 3 of 3

SUMMARY OF TRITIUM CONCENTRATIONS IN GROUNDWATER - FEBRUARY - APRIL 2006 FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Sample Identification	Sample Date	QC Sample	Laboratory Analyses	Tritium (pCi/L)	Result Error
MW-37	GW-040606-NK-MW-37	4/6/2006		EI	ND (200)	-
MW-37	WG-BYN-042606-SS-33	4/26/2006		TBE	ND (200)	-
MW-39	MW-39	3/31/2006		EI	ND (200)	-
MW-39	GW-040606-NK-MW39	4/6/2006		EI	ND (200)	-
MW-39	WG-BYN-042606-SS-29	4/26/2006		TBE	ND (200)	-
PC-1B	PC-1B	3/31/2006		EI	ND (200)	-
PC-1B	GW-19232-040606-BW-PC-1B	4/6/2006		EI	ND (200)	-
PC-1B	WG-BYN-042606-SS-23	4/26/2006		TBE	ND (200)	-
PC-1C	PC-1C	3/31/2006		EI	ND (200)	-
PC-1C	GW-040606-NK-PC-1C	4/6/2006		EI	ND (200)	-
PC-1C	WG-BYN-042606-SS-21	4/26/2006		TBE	ND (200)	-
PC-2B	PC-2B	3/31/2006		EI	ND (200)	-
PC-2B	GW-19232-040606-BW-PC-2B	4/6/2006		EI	ND (200)	-
PC-2B	WG-BYN-042506-SS-07	4/25/2006		TBE	ND (200)	-
PC-5B	PC-5B	3/31/2006		EI	ND (200)	-
PC-5B	PC-5B	3/31/2006	Duplicate (PC-5B)	EI	ND (200)	-
PC-5B	GW-19232-040606-BW-PC-5B	4/6/2006		EI	ND (200)	-
PC-5B	WG-BYN-042506-SS-11	4/25/2006		TBE	ND (200)	-
PC-6B	PC-6B	3/31/2006		EI	ND (200)	-
PC-6B	GW-19232-040606-BW-PC-6B	4/6/2006		EI	ND (200)	-
PC-6B	WG-BYN-042606-SS-17	4/26/2006		TBE	ND (200)	-
PC-6B	WG-BYN-042606-SS-19	4/26/2006	Duplicate (SS-17)	TBE	ND (200)	-
TW-13	GW-030806-KD-02	3/8/2006		EI	ND (200)	-
TW-13	GW-030806-KD-03	3/8/2006	Duplicate (KD-02)	EI	ND (200)	-
TW-13	GW-19232-040606-BW-TW-13	4/6/2006		EI	ND (200)	-
TW-13	GW-19232-041206-EV-TW-13	4/12/2006		EI	ND (200)	-
TW-13	WG-BYN-042706-SS-39	4/27/2006		TBE	ND (200)	-
TW-13	WG-BYN-042706-SS-40	4/27/2006	Duplicate (SS-39)	TBE	201	+/-110
TW-14	GW-19232-040606-BW-TW-14	4/6/2006		EI	ND (200)	-
TW-14	GW-19232-041106-EV-TW-14	4/12/2006		EI	ND (200)	-
TW-14	WG-BYN-042706-SS-37	4/27/2006		TBE	ND (200)	-
TW-15	GW-030806-KD-04	3/8/2006		EI	ND (200)	-
TW-15	GW-19232-040606-BW-TW-15	4/6/2006		EI	ND (200)	-
TW-15	GW-19232-041106-EV-TW-15	4/12/2006		EI	ND (200)	-
TW-15	WG-BYN-042706-SS-38	4/27/2006		TBE	ND (200)	-
Well 7	WG-BYN-042706-KD-45	4/27/2006		TBE	ND (200)	-
Well 7	WG-BYN-042706-KD-46	4/27/2006	Duplicate (KD-45)	TBE	ND (200)	-

Notes:

EI - Environmental, Inc.

 \mbox{TBE} - Teledyne Brown Engineering, Inc. ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

QC - Quality Control

NR - +/- value not reported.

TABLE 5.4 Page 1 of 1

SUMMARY OF TRITIUM CONCENTRATIONS IN WATER - RESIDENTIAL WATER SUPPLY WELLS FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location	Sample Identification	Sample Date	Laboratory Analyses	Tritium (pCi/L)	Result Error
ALEXANDER WELL	ALEXANDER WELL	2/28/2006	EI	ND (200)	-
BLANCHARD WELL	BLANCHARD RESIDENCE	2/16/2006	EI	ND (200)	-
BLANCHARD WELL	BLANCHARD WELL	2/28/2006	EI	ND (200)	-
BRENDEL WELL	BRENDEL WELL	2/28/2006	EI	ND (200)	-
DILLINGER WELL	DILLINGER WELL	2/28/2006	EI	ND (200)	-
GORAL WELL	GORAL WELL	2/28/2006	EI	ND (200)	-
LANDIS WELL	LANDIS WELL	2/28/2006	EI	ND (200)	-
MASTNY WELL	MASTNY WELL	2/28/2006	EI	ND (200)	-
STORZ WELL	STORZ WELL	2/28/2006	EI	ND (200)	-
VANCKO WELL	VANECKO RESIDENCE	2/16/2006	EI	ND (200)	-
VANCKO WELL	VANCKO WELL	2/28/2006	EI	ND (200)	-
WILSON WELL	WILSON WELL	2/28/2006	EI	ND (200)	-

Notes:

EI - Environmental, Inc.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

TABLE 5.5 Page 1 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-1 GW-19232-040606-BW-AR-1 4/6/2006	AR-1 Result Error	AR-1 GW-19232-041106-EV-AR-1 4/12/2006	AR-1 Result Error	AR-1 WG-BYN-042606-SS-25 4/26/2006	AR-1 Result Error	AR-2 GW-19232-041006-EV-AR-2 4/10/2006	AR-2 Result Error
Laboratory: Analysis:		EI		EI		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18) U*	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	NA	-	ND (2)	-	NA	-
Strontium-90	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	NA	-	RNI	-	NA	-
Thorium-228 (1)	pCi/L	NA	-	NA	-	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

TABLE 5.5 Page 2 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-2 WG-BYN-042606-JK-22 4/26/2006	AR-2 Result Error	AR-3 GW-19232-041006-EV-AR-3 4/10/2006	AR-3 Result Error	AR-3 WG-BYN-042606-JK-20 4/26/2006	AR-3 Result Error	AR-4 GW-19232-041006-EV-AR-4 4/10/2006	AR-4 Result Error
Laboratory: Analysis:		TBE		EI		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18) U*	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10) U*	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	NA	-	ND (2)	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	NA	-	ND (2)	-	NA	-
Strontium-90	pCi/L	NA	-	ND (2)	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30)	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	RNI	-	NA	-	RNI	-	NA	-
Thorium-228 ⁽¹⁾	pCi/L	RNI	-	NA	-	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

TABLE 5.5 Page 3 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-4 WG-BYN-042706-SS-44 4/27/2006	AR-4 Result Error	AR-5 GW-040606-NK-AR-5 4/6/2006	AR-5 Result Error	AR-5 GW-19232-041106-EV-AR-5 4/11/2006	AR-5 Result Error	AR-5 WG-BYN-042706-SS-42 4/27/2006	AR-5 Result Error
Laboratory: Analysis:		TBE		EI		EI		TBE	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10)	-	ND (10)	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Strontium-89	pCi/L	NA	-	ND (2)	-	ND (2)	-	NA	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	NA	-	NA	-	ND (2)	-
Strontium-90	pCi/L	NA	-	ND (2)	-	ND (2)	-	NA	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30)	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	RNI	-	NA	-	NA	-	RNI	-
Thorium-228 (1)	pCi/L	RNI	-	NA	-	NA	-	5.123	+/-2.552

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

 $RNI\mbox{-}\mbox{-}\mbox{Radionuclide}$ Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-6 GW-040606-NK-AR-6 4/6/2006	AR-6 Result Error	AR-6 GW-19232-041106-EV-AR-6 4/11/2006	AR-6 Result Error	AR-6 WG-BYN-042706-SS-41 4/27/2006	AR-6 Result Error	AR-7 GW-040506-NK-AR-7 4/5/2006	AR-7 Result Error
Laboratory: Analysis:		EI		EI		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	NA	-	ND (2)	-	NA	-
Strontium-90	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	NA	-	RNI	-	NA	-
Thorium-228 ⁽¹⁾	pCi/L	NA	-	NA	-	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

 $RNI\text{--}\ Radionuclide\ Not\ Identified\ during\ analysis.}$

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

 $\ensuremath{\mathsf{LLD}}$ - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity

concentration exceeds Minimum Detectable Concentration and 3 sigma.

TABLE 5.5 Page 5 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-7 GW-19232-041106-EV-AR-7 4/11/2006	AR-7 Result Error	AR-7 WG-BYN-042706-KD-32 4/27/2006	AR-7 Result Error	AR-8 GW-040506-NK-AR-8 4/5/2006	AR-8 Result Error	AR-8 GW-19232-041106-EV-AR-8 4/11/2006	AR-8 Result Error	AR-8 WG-BYN-042706-KD-30 4/27/2006
Laboratory: Analysis:		EI		TBE		EI		EI		TBE
Target Radionuclides	Units									
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	-	ND (10)	-	ND (10) U*
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)
Niobium-95	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	-	ND (10)	-	ND (10) U*
Strontium-89	pCi/L	ND (2)	-	NA	-	ND (2)	-	ND (2)	-	NA
Strontium-89/90 (Total)	pCi/L	NA	-	ND (2)	-	NA	-	NA	-	ND (2)
Strontium-90	pCi/L	ND (2)	-	NA	-	ND (2)	-	ND (2)	-	NA
Zinc-65	pCi/L	ND (30)	-	ND (30) U*	-	ND (30)	-	ND (30)	-	ND (30) U*
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)
Non-Target Radionuclides (1)										
Potassium-40 (1)	pCi/L	NA	-	RNI	-	NA	-	NA	-	RNI
Thorium-228 (1)	pCi/L	NA	-	RNI	-	NA	-	NA	-	RNI

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

 $RNI\mbox{-}$ Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

- - Non-detect value, +/- value not reported.

q018AI-XT2-WG WS-Historical-37-TH-RADIO 7/13/2006

TABLE 5.5 Page 6 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-8 Result Error	AR-9 GW-040506-NK-AR-9 4/5/2006	AR-9 Result Error	AR-9 GW-19232-041106-EV-AR-9 4/11/2006	AR-9 Result Error	AR-9 WG-BYN-042706-KD-26 4/27/2006	AR-9 Result Error	AR-10 GW-19232-040606-BW-AR-10 4/6/2006	AR-10 Result Error
Laboratory: Analysis:			EI		EI		TBE		EI	
Target Radionuclides	Units									
Barium-140	pCi/L	-	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	-	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	-	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	-	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	-	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	-	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	-	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	-	NA	-	NA	-	ND (2)	-	NA	-
Strontium-90	pCi/L	-	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Zinc-65	pCi/L	-	ND (30)	-	ND (30)	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	-	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)										
Potassium-40 (1)	pCi/L	_	NA	_	NA	_	RNI	_	NA	_
Thorium-228 (1)	pCi/L	-	NA	-	NA	-	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

 $\ensuremath{\mathsf{TBE}}$ - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station. RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

TABLE 5.5 Page 7 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		AR-10 GW-19232-041106-EV-AR-10 4/12/2006	AR-10 Result Error	AR-10 WG-BYN-042606-JK-24 4/26/2006	AR-10 Result Error	AR-11 GW-041806-KD-AR-11 4/18/2006	AR-11 Result Error	AR-11 WG-BYN-042606-SS-27 4/26/2006	AR-11 Result Error
Laboratory: Analysis:		EI		TBE		EI		TBE	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18) U*	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	13.6	NR	ND (10) U*	-	ND (10)	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	NA	-	ND (2)	-	NA	-
Strontium-89/90 (Total)	pCi/L	NA	-	ND (2)	-	NA	-	ND (2)	-
Strontium-90	pCi/L	ND (2)	-	NA	-	ND (2)	-	NA	-
Zinc-65	pCi/L	ND (30)	-	ND (30) U*	-	ND (30)	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	_	RNI	_	NA	_	RNI	_
Thorium-228 (1)	pCi/L	NA	-	6.173	+/-3.26	NA	-	RNI	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		CAR-1 GW-19232-040606-BW-CAR-1 4/6/2006	CAR-1 Result Error	CAR-1 GW-19232-041106-EV-CAR-1 4/12/2006	CAR-1 Result Error	CAR-1 WG-BYN-042706-SS-36 4/27/2006	CAR-1 Result Error	CAR-2 GW-19232-040606-BW-CAR-2 4/6/2006	CAR-2 Result Error
Laboratory: Analysis:		EI		EI		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	NA	-	ND (2)	-	NA	-
Strontium-90	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	NA	-	RNI	-	NA	-
Thorium-228 (1)	pCi/L	NA	-	NA	-	6.113	+/-3.568	NA	_

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

TABLE 5.5 Page 9 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		CAR-2 GW-19232-041106-EV-CAR-2 4/12/2006	CAR-2 Result Error	CAR-2 GW-19232-041106-EV-CAR-2 4/12/2006 Dupintate	CAR-2 Result Error	CAR-2 WG-BYN-042706-SS-47 4/27/2006	CAR-2 Result Error	CAR-3 GW-040506-NK-CAR-3 4/5/2006	CAR-3 Result Error
Laboratory: Analysis:		EI		EI		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	NA	-	ND (2)	-	NA	-
Strontium-90	pCi/L	ND (2)	-	ND (2)	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30)	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	NA	-	RNI	-	NA	-
Thorium-228 (1)	pCi/L	NA	-	NA	-	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		CAR-3 GW-19232-041106-EV-CAR-3 4/11/2006	CAR-3 Result Error	CAR-3 WG-BYN-042706-KD-28 4/27/2006	CAR-3 Result Error	GW-9 WG-BYN-042806-KD-48 4/28/2006	GW-9 Result Error	TW-13 GW-19232-040606-BW-TW-13 4/6/2006	TW-13 Result Error
Laboratory: Analysis:		EI		TBE		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10) U*	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	NA	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	ND (2)	-	ND (2)	-	NA	-
Strontium-90	pCi/L	ND (2)	-	NA	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30) U*	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	RNI	_	40.44	+/-23.27	NA	_
Thorium-228 (1)	pCi/L	NA	-	6.427	+/-2.496	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

ND () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

TABLE 5.5 Page 11 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		TW-13 GW-19232-041206-EV-TW-13 4/12/2006	TW-13 Result Error	TW-13 WG-BYN-042706-SS-39 4/27/2006	TW-13 Result Error	TW-13 WG-BYN-042706-SS-40 4/27/2006 Dupmate	TW-13 Result Error	TW-14 GW-19232-040606-BW-TW-14 4/6/2006	TW-14 Result Error
Laboratory: Analysis:		EI		TBE		TBE		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10) U*	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10) U*	-	ND (10) U*	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	NA	-	NA	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	ND (2)	-	ND (2)	-	NA	-
Strontium-90	pCi/L	ND (2)	-	NA	-	NA	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30) U*	-	ND (30) U*	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	RNI	-	RNI	-	NA	-
Thorium-228 (1)	pCi/L	NA	-	RNI	-	RNI	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 \mbox{ND} () - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

 U^{\ast} - Compound/Analyte not detected.

Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

TABLE 5.5 Page 12 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		TW-14 GW-19232-041106-EV-TW-14 4/12/2006	TW-14 Result Error	TW-14 WG-BYN-042706-SS-37 4/27/2006	TW-14 Result Error	TW-15 GW-19232-040606-BW-TW-15 4/6/2006	TW-15 Result Error	TW-15 GW-19232-041106-EV-TW-15 4/12/2006	TW-15 Result Error
Laboratory: Analysis:		EI		TBE		EI		EI	
Target Radionuclides	Units								
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	-	ND (10)	-
Cesium-137	pCi/L	ND (18)	-	ND (18)	-	ND (18)	-	ND (18)	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10)	-	ND (10) U*	-	ND (10)	-	ND (10)	-
Strontium-89	pCi/L	ND (2)	-	NA	-	ND (2)	-	ND (2)	-
Strontium-89/90 (Total)	pCi/L	NA	-	ND (2)	-	NA	-	NA	-
Strontium-90	pCi/L	ND (2)	-	NA	-	ND (2)	-	ND (2)	-
Zinc-65	pCi/L	ND (30)	-	ND (30) U*	-	ND (30)	-	ND (30)	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)									
Potassium-40 (1)	pCi/L	NA	-	RNI	-	NA	-	NA	-
Thorium-228 ⁽¹⁾	pCi/L	NA	-	RNI	-	NA	-	NA	-

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

RNI- Radionuclide Not Identified during analysis.

NA - Data not available or not analyzed.

 $ND\ (\,)$ - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity

concentration exceeds Minimum

Detectable Concentration and 3 sigma.

CRA 45136 (13) Byron Generating Station

TABLE 5.5 Page 13 of 13

SUMMARY OF RADIONUCLIDE CONCENTRATIONS IN GROUNDWATER FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Sample Location: Sample Identification: Sample Date:		TW-15 WG-BYN-042706-SS-38 4/27/2006	TW-15 Result Error	Well 7 WG-BYN-042706-KD-45 4/27/2006	Well 7 Result Error	Well 7 WG-BYN-042706-KD-46 4/27/2006 Dupintate	Well 7 Result Error
Laboratory: Analysis:		TBE		TBE		TBE	
Target Radionuclides	Units						
Barium-140	pCi/L	ND (60)	-	ND (60)	-	ND (60)	-
Cesium-134	pCi/L	ND (10) U*	-	ND (10) U*	-	ND (10) U*	-
Cesium-137	pCi/L	ND (18)	-	ND (18) U*	-	ND (18) U*	-
Cobalt-58	pCi/L	ND (15)	-	ND (15)	-	ND (15) U*	-
Cobalt-60	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Iron-59	pCi/L	ND (30)	-	ND (30)	-	ND (30)	-
Lanthanum-140	pCi/L	ND (15)	-	ND (15) U*	-	ND (15)	-
Manganese-54	pCi/L	ND (15)	-	ND (15)	-	ND (15)	-
Niobium-95	pCi/L	ND (10) U*	-	ND (10) U*	-	ND (10) U*	-
Strontium-89	pCi/L	NA	-	NA	-	NA	-
Strontium-89/90 (Total)	pCi/L	ND (2)	-	ND (2)	-	ND (2)	-
Strontium-90	pCi/L	NA	-	NA	-	NA	-
Zinc-65	pCi/L	ND (30) U*	-	ND (30) U*	-	ND (30) U*	-
Zirconium-95	pCi/L	ND (10)	-	ND (10)	-	ND (10)	-
Non-Target Radionuclides (1)							
Potassium-40 (1)	pCi/L	RNI	-	RNI	-	RNI	
Thorium-228 (1)	pCi/L	RNI	-	RNI	-	RNI	

Notes:

EI - Environmental, Inc.

TBE - Teledyne Brown Engineering, Inc.

(1) - These non-targeted radionuclides are included in this table but excluded from the discussion in this report. These radionuclides were either a) naturally occurring and thus not produced by the Station, or b) could be definitively evaluated as being naturally occurring due to the lack of presence of other radionuclides which would otherwise indicate the potential of production from the Station.

 $RNI\hbox{--} Radionuclide\ Not\ Identified\ during\ analysis.$

NA - Data not available or not analyzed.

 $ND\ (\,)$ - Non-detect; value in parentheses is the LLD.

LLD - Lower limit of detection.

U* - Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds Minimum

Detectable Concentration and 3 sigma.

Revision 0

APPENDIX A

WATER SUPPLY WELL INFORMATION

FIGURE A.1

(Withheld)

Illinois State Water Survey

Main Office • 2204 Griffith Drive • Champaign, IL 61820-7495 • Tel (217) 333-2210 • Fax (217) 333-6540

Peoria Office • P.O. Box 697 • Peoria, IL 61652-0697 • Tel (309) 671-3196 • Fax (309) 671-3106

3/13/2006

Mr. Ken Duwall CRA 8615 West Bryn Maur Chicago, IL 60631

Dear Mr. Duwall:

As you requested during our telephone conversation on March 14, 2006, we are enclosing printouts from our Private Well Database and Public, Industrial, Commercial Survey (PICS) Database for the following locations:

<u>COUNTY</u>	TOWNSHIP	RANGE	SECTIONS
OGLE & ST. CLATR	24 NORTH	10 EAST	11-15, 22-27
ST.CLAIR	24 NORTH	11 EAST	7, 8, 17-20, 29, 30

No available information is indicated on the printout by the statement "0 records were found for the specified locations." Also enclosed are explanations of the Illinois State Water Survey Private Well and PICS Databases.

The data included in the Private Well Database are those non-municipal wells which are known to the Illinois State Water Survey, and the PICS Database is an inventory of municipal well information and large industrial groundwater users. We may not have a copy of well records for these groundwater users.

The enclosed statement reflects the charges for this request which includes a \$35.00 query fee for PICS information, a \$35.00 query fee for Private well information, and a \$0.10 per page charge for 16 pages, plus a \$5.00 shipping and handling fee, totaling \$76.60.

If you have any questions or if I can be of further assistance, please call.

Sincerely,

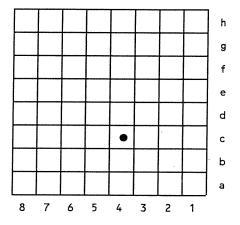
Susie Dodd-Casey

Associate Supportive Scientist Center for Groundwater Science

Phone: (217) 333-9043

Enclosures as stated

ISWS 10-ACRE PLOT LOCATION SYSTEM


The following is an explanation of the ISWS Private Well Database location system.

The location system uses Township, Range, and Section. The location consists of five parts: County abbreviation, Township, Range, Section, and coordinate within the section (subsection or 10-acre plot). Sections are divided into rows of 1/8-mile squares. Each 1/8-mile square contains 10 acres and corresponds to a quarter of a quarter of a quarter section. A normal section of 1 square mile contains 8 rows of 1/8-mile squares; an odd-sized section contains more or fewer rows. Rows are numbered from east to west and lettered from south to north as shown in the diagram.

Example:

St. Clair County, FIP No. 163

T2N, R10W Section 23

The location of the well shown above is 163 2N10W-23.4c. The well point is located at the center of this 10-acre plot.

ILLINOIS STATE WATER SURVEY PRIVATE WELL DATABASE EXPLANATION

WID Illinois State Water Survey Identification Number

FIPS County Code Number

TWN Civil Township

RNG Range SEC Section

PLOT 10-acre Plot Location within the Section

OWNER Well Owner

DRILLER Well Drilling Contractor of Well

DATE DRILLEDDate Initially Drilled
Depth (well to nearest ft)

RECORD TYPE Record Type (types of information on file)

R - Construction Report

G - GeologyS - SealedA - Affidavit

C - Chemical Analysis

I - Inventory

X - Indicates Comment in Owners Field Something Unusual

O - Any Other Type of Record

P - Pump Installation

USE Well Use (two-letter code indicating the usage of the well)

CO - Conservation

CS - Community Supply

DO - Domestic

DW - De-Watering

IC - Industrial/Commercial

IN - Injection Well

IR - Irrigation

MO - Monitoring

NC - Non-Community NW - Non-Well Source

OB - Observation

PK - Park

RC - Recovery Well

RW - Relief Well

SC - School

ST - State

USE

(Continued)

TB - Test Boring
TH - Test Hole
TW - Test Well
~ - Unknown

WELL TYPE

Well Type (two-letter code indicating the type of well)

BLANK - Assumed Drilled

BD - Bored DL - Drilled

DU - Dug (Being Phased Out)

DR - Driven NW - Non-Well SP - Sand Point SG - Spring

- Assumed Drilled or Possibly Unknown

AQUIFER TYPE

Aquifer Type (two-letter code indicating aquifer type)

BR - Bedrock
DH - Dry Hole
SW - Surface Water
UN - Unconsolidated
~ - Unknown

STAT LVL PUMP LVL PUMP GPM Static Level - Reported non-pumping water level

Pumping Level - Reported water level during initial pumping of the well

Pumping GPM - Gallons per minute at time of well construction

THE DATA IN THE PRIVATE WELL DATABASE IS A LISTING OF THE NON-COMMUNITY WELLS WHICH ARE KNOWN TO THE ILLINOIS STATE WATER SURVEY (ISWS). THIS INFORMATION HAS BEEN ENTERED VERBATIM FROM WELL LOGS SUBMITTED BY THE DRILLER, FROM CHEMICAL ANALYSIS REPORTS, FROM WELL SEALING FORMS, OR WELL INVENTORY FORMS FROM THE 1930-34 WELL SURVEY AND OTHER SPECIAL PROJECTS. THE ACCURACY OF THIS DATA IS CONTROLLED BY THOSE WHO SUBMITTED THE FORM. INFORMATION IN THE PRIVATE WELL DATABASE HAS NOT BEEN VERIFIED.

ILLINOIS STATE WATER SURVEY PICS DATABASE EXPLANATION

SWS ID

ISWS Facility ID Number

NAME

Facility Name

WELL#

ISWS Point Source Well/Intake Number

STATUS

Point Source Status of Well/Intake

A = Abandoned - no longer in existence, no affidavit on file, or

do not know if it has been filled in

C = Capped - cap attached to top

D = Disconnected - disconnected from system
 E = Emergency - available for standby use
 I = In Use - produces major portion of water

O = Observation - used for water level measurements

S = Sealed - filled in

U = Unused - exists but not used

FIPS

County Code Number

TWN

Civil Township

RNG

Range

SEC

Section

PLOT

10-acre Plot Location within the Section

DEPTH

Depth (well to nearest ft)

TYPE LOG

D = Driller's log

O = OtherX = Chemic

X = ChemicalC = Correlated log

S = Sample study log

- = Log not available

YEAR

Year Point Source Initially Constructed

DRILLER

Well Drilling Contractor of Well

Illinois State Water Survey Private Well Database

Tuesday, March 14, 2006

County: OGLE.

Township: 24N

Range: 10E

Sections: 11-15,22-27

Records Found: 120

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions:

Please cite the Illinois State Water Survey's Private Well Database in all publications based wholly or partially on this information. Publication:

entered verbatim from well logs submitted by the driller, chemical analysis reports, well sealing forms, well inventory forms from the 1930-1934 well survey, and other special projects. The accuracy of this data is controlled by those submitting the forms. Information in the Private Well Database has not been verified. Note: The data in the Private Well Database is a listing of non-municipal wells which are known to the Illinois State Water Survey (ISWS). This information has been

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

Location of a 10-acre-plot within a section:

The origin can be found at the lower right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot 3d'

												- ' .			
GPM	10	01	15	∞	9	40	12	10	20	40	40		·	30	40
LVL	29	61	20	55	24	69	59	84	66	24	112			4	34
LVL	24	14	55	45	6	58	49	49	74	17	Ξ			59	12
USE TYPE TYPE LVL	N D	<u>8</u>	BR	BR.	3	BR	BR	BR	BR	3	BR			BR	BR
TYPE	DL	DF	ם	DT.	DC	70	DF.	DF	DF	DF	DF	DL	DL	DĽ	<u>1</u>
USE	OQ .	OQ .	8	00	00	8	8	00	8	8	00	МО	МО	8	00
TYPE	RG	RG	RG RG	RG	RG	RG	RG	RG	RG	RG	RG	¥ .	٧	RG	RG
DATE DEPTH	06/02/1985 50	05/07/1986 45	00/00/1946 143	00/00/1953 150	12/20/1974 64	05/15/1979 240	11/20/1979 110	08/27/1980 185	09/08/1983 200	07/19/1982 114	08/02/1973 230	00/00/1989 40 Sealed: 4/28/04	00/00/1990 58 Sealed: 4/28/04	02/02/1978 165	08/22/1986 165
DRILLER	LIVINGSTON	LIVINGSTON	BLANCHARD	BLANCHARD	LIVINGSTON	MARTIN	BULL	NOSTO	OLSON	MCKINNEY	MARTIN	ALTECH SERVICES	ALTECH SERVICES	MARTIN	MARTIN
OWNER												BYRON SALVAGE PRP GROUP	BYRON SALVAGE PRP GROUP		
SEC PLOT					UBD.	≡	26	38	3B	3H	GS .	SE	SE	SF	SG
SEC	= <u>.</u>	= 2	=	=	11 ACE S	=	=	=	=	=	=	=	=	=	11 3D.
RNG	10E	10E	10E	10E	10E	10E	10E SUBD	10E	10E	10E SUBD.	10E	10E	10E	10E	10E
TWN RNG	82523 141 24N 10E 1 OT 8 FOUR SEASONS SUBD.	82525 141 24N 10E OT 5 FOUR SEASONS SUBD	24N	24N	82522 141 24N 10E 11 OT 44 ROCK RIVER TERRACE SUBD.	24N	82527 141 24N 10E OT 13 RIVER OAKS SUBD	24N	24N	2532 141 24N 10E OT 6 RIVER OAKS SUBD	24N	.24N	24N	24N	2535 141 24N 10E IT 2 FOUR SEASON'S SUBD
FIPS	141 OUR SI	141 OUR SI	141	141	141 ROCK	141	141 RIVER	141	141	141 IVER C	32533 141 OT 10 BLK 24	141	141	141	141 OUR SE
9	82523)T 8 F(82525)T 5 F(82520	82521	82522 JT 44 I	82526 141	82527)T 13 B	82528	32530	32532)T 6 RJ	32533)T 10 E	16153	58192	12534	12535 IT 2 FC

										•					
GPM	01	10	30		40	12	0.	10	30	01	300	40	10	0	
.VL	119	74	011	:	34	104			09	24	170	179	87	93	
LVI	66	- 29	104		. 11	94	59		. 48	19	170	174	68	68	
USE TYPE TYPE	BR	BR	BR	, I ·	BR	BR	BR	BR	BR	5	BR	BR	RR.	BR	BR
YPE	ם	DT.	מר	11	ם	DI	DE	DI	DI	J.	DE.	김	DC] : D[:	DI
USE T	8	8	OD .	00	<u>8</u>	DO	DO	DO	8	00	Ħ	8	8	OO	00
TYPE	RG	RG	RG	ပ	RG	RG	RG	RG	RG	RG	RG	RG	RGP	RG	RG
DEPTH	185	130	200	180	140	160	120	200	120	46	300	320	325	325	001
DATE	08/22/1979	07/00/1975	06/19/1970	0000/00/00	05/18/1984	10/27/1975	05/20/1975	01/04/1976 200	11/16/1981	09/16/1983	00/00/1954	04/09/1982	10/10/1997	12/01/1997	00/00/1946 100
DRIL. D	OLSON 0	BULL	MARTIN 0		MARTIN	BEAMAN 1	BULL	BULL 0	MARTIN 1	LIVINGSTON 0	BLANCHARD 0	MARTIN 0	BULL DRLG/MARTIN	BULL DRLG/MARTIN 1	BLANCHARD 0
SEC PLOT OWNER								site.	25.						
PLO.	Æ	6	69	6E 86	99	Н9	5	5	8B	8		2	9	2B	HE 34
SEC	=	=	=	7-23-	= .	=	=	=	=]= .	12	12	. 2	12	12
'N RNG		10E	10E	10E TE OF	10E	10E	10E	10E	10E	10E 4S SUB	10E	10E	10E	10E	10E
ž	Z	24N	24N	24N HAS DA	24N	24N	24N	24N	24N	24N SEASON	24N	24N	24N	24N	24N
FIPS	141	141	141	141 ENT F	<u> </u>	141	141	14	14	141 VR S	14	141	141	14	4
γID F	282536 141	282537	282538	282539 141 24N 10E 1:1 6 30CUMENT HAS DATE OF 7-23-86	282540 141	282542 .OT 14	282543	282544	282545	282546 141 24N 10E J	282548 141	282549	302386	302413	282547

ID FIPS		TWN RNG		SEC PLOT	r owner		DRILLER	DATE DEPTH	TYPE 1	USE 1	TYPE TYPE		LVL LVL	GPM	3 •
8 7	11 24N AINES #4	N 10E	L	2	1	EXELON BYRON GENERATING STATION	LAYNE-WESTERN	00/00/1975 600 Sealed: 10/23/03	4	IC .	DL				
13167 141	11 24N	N 10E	13	2D	СОММО	COMMONWEAL' PH EDISON #2	WEHLING WELL WORKS	09/29/1975 600	RGC	2	:	BR	150 340	840	
82550 14	141 24N	N 10E	3 13				MARTIN	08/19/1969 275	RG	00	Jū	BR ·	169 177	25.	. I
68187 14	141 24N	N 10E	41	7A			JONAS MARTIN DRILLING/IOE	02/11/2004 215	RG	00	DĽ	BR	67 79	20	ı 1
89952 14	141 24N	N 10E	4	7E			MARTIN	07/12/1996 200	RG	8	DF	BR	82 110	30	1
82551 14	141 24N	N 10E	51	,			MARTIN	00/00/1942 72	RG	8	DF	BR	42 0	50	ı
87725 141 24N QUESTRIAN POINTE	141 24N RIAN POINT	N 10E	21 5	IA			MCKINNEY	06/12/1994 240	RG	DO	DC	BR	49 79		1
28253 141 24N 10E 15 1 OT 7 EQUESTRAIN POINT ESTES.	41 24N JESTRAIN	N 10E IN POINT	E 15 VT EST	IA res.			BULL DRILLING	09/26/2000 63	RGP	DO	DF	5	21 28	01	1
68212 14	141 24N	N 10E	21 25	DI .			BULL DRILLING/DAVE 09/08/2003 SCHUUR (BILL)	E 09/08/2003 185	RG	DO .	DL	BR	59 64	9	ı
74719 141	1	24N 10E	E 15.	2	WENBE	WENBERG HOMEBUILDERS	BULL WELL DRILLING/DAVE	06/20/2005 205	RG	OQ.	DE	BR	29 34	-	:
87257 1	141 24N	N 10E	. 15	2B			MC KINNEY	04/12/1994 200	RG	DO	ਰ	BR	59 84		. 1
02373 141 24N 10 2UESTRIAN CT. LOT 6	141 24N RIAN CT. LO	IN 10E LOT 6	E · 15	2B		ike e	BULL DRLG/MARTIN	02/20/1997 165	RG	8	DL	BR	29 33	01	_ 1
57551 141	.	24N 10E	E 15	2D			BULL DRILLING/DAVE 09/06/2003 & BILL SCHUUR	E 09/06/2003 185	RGP	8	70	BR	59 69	01	_ · i
95732 1	141 24	24N 10E	E 15	3 2E			MARTIN	09/26/1989 238	RG	8		BR S	118	•	1
94390	141 24	24N 10E	E 15	3 2G			LIVINGSTON	07/01/1989 260	RG	00	1.	AK Y	00		

· · · · ,

						•				•		. :			
GPM	20	40	10	12	40	01	30				40				
,VL	49	44	32	79	21	14	91		74	64	14				•
LVI	39	31	29	79	33	6	=	15	74	. 65	6	80	47		•
TYPE TYPE	BR	BR	N _D	BR	BR	3	BR	BR	BR	BR	BR	BR	BR	BR	
TYPE	DF	DF	DF	DF	TO (DI	DI	-	DI	TO C	日日		-	Dr. Of	DIF
USE	DO	DO	20	DO	DO	OQ .	IC	DO	OO .	DO	OG	00 .	00	DO	
TYPE	RGP	RG	RG	RG	RG	RG	RG	RG	RGP	RG	RG	RG	88	RG	∢ .
DEPTH	180	081	98 /	8 165	8 210	7 65	7 210	0 155	4 200	8 195	7 200	9 185	9 208	1 120	2 8 7/02
DATE	07/18/2001	09/09/1981	11/22/1997	09/19/1988	08/01/1978	10/06/1997	12/29/199	03/15/1990	04/17/1994	04/20/1968	01/15/1987	02/28/1989	08/02/1989	00/00/1941	28 Sealed: 8/7/02
DRII	JONAS MARTIN DRILLING	MARTIN	BULL DRLG/MARTIN	BULL	MARTIN	ACE P&W/ALLABAUGH	JONAS MARTIN/ROOP 12/29/1997	MARTIN	MC KINNEY	MARTIN	MARTIN	BULL	MARTIN	MARTIN	BILL SCHUUR
SEC PLOT OWNER	TROS (AAA BUILDERS)						COMMONWEALTH EDISON CO./#1	. Pa						A	
PLOJ	3A .D.	4 4	4D IBD.	4E	8	SE	SH	¥9	6B	7.8	7.8	8D	8 E		89
SEC	15 SUB	15	15 E SU	15	15	15	15 VSHO	15	15 E	15	15	15	15	22	22
'N RNG	10E OINTE	10E	10E POINT	10E	10E	30 E	10E JSE WA	10E	10E POINT	10E	10E	10E	10E	10E	10E
	.4N RIAN P	24N	24N STRIAN	24N	24N	24N	24N 1 EN HOUSE BUILDING	24N	24N STRAIN	24N	24N	24N	24N	24N	24N
FIPS	141 2UST	141	141 QUES	141	141	4	CREE	141	141 QUES	141	141	141	141	141	4
VID.	59 8 E	282552	302415 141 24N 10E 15 4D OT 1 EQUESTRIAN POINTE SUBD.	282554	282556	310319	302450 141 24N 10E 15 SIVER SCREEN HOUSE WASHING TOOR IN BUILDING	209459	287258 141 24N 10E JOT 3 EQUESTRAIN POINTE	282571	282572	210458	194398	282580	352826

٠.								•			•	-			٠.
GPM	10	40	40		30	25	40	40	20	50	40		20	30	30
LVL	46.	<i>L</i> 9	99	20		95	43	53	61 .	52	23		29	48	4
LVL	. 44 .	39	58	49	80	84	. 37	32	3.	45	8	123	e	38	15
rype	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR
TYPE TYPE	DIT	DE	DI	1	1	; .	IG	DI	JG.	DIT .	DL	DL	DF	DF	:
USE	00	00	00	00	00	00	8	8	00	00	DO	DO	00	DO	DO .
TYPE	RG	RG	RG .	RG	RGP	RG	RG	RG	RG	RG	RG	RG	RG	RGP	RG
DEPTH	185	215	200	200	180	225	147	140	155	179	172	250	165	185	163
_	08/03/2002	04/24/1986	03/19/1983	07/14/1992 200	02/15/1994	08/26/1992	00/00/1967	07/05/1968	01/07/2005 155	01/20/1975	05/20/1969	00/00/1957	03/12/1973	03/04/1995	12/20/1993 163
DATE)/80	047	03/	//_0	/70	7/80	00)//_0	01/(2/10	7/50)/00	03/1	03/0	1272
	URT					· ·		,	E H				· .		
LER	BULL WELL DRILLING/CURT	골	E .	VAN	ALBRECHT	Z.	E .	NI.	JONAS MARTIN DRILLING/JOE	N.E.	<u> </u>	BLANCHARD	E	NE.	Z.
DRILLER	BULL	MARTIN	MARTIN	BEAMAN	ALBF	MARTIN	MARTIN	MARTIN	JONA	MARTIN	MARTIN	BLAN	MARTIN	MARTIN	MARTIN
]. !		ļ . .						-						
				io											
				THREE HAMMERS											
NER				EE HA											
OWNER				THR											
SEC PLOT	18	2B	25	2F	3C	4C	40	£.	4E	4F	4G	\$ A	SE	SE	G9
SEC	22	22	22	77	22	22	22	22	22	22	22	22	22	22	22
	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E
TWN RNG	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N
FIPS T	141	141	141	141	141	141	141	141	141	141	141	141	141	141	
		82581 1	82582 1	1 16614	151947	:41855 1	82583 1	82584 1	74718 1	82585 1	82586 1	82587 1	82588	67632 1	46157 141
Œ/	65077	28	.82	141	:51	4.	82	82;	74.	82.	82;	82,	82.	159	16

GPM	-10	}			20	25		40 ·		20	40	300	30	40	01
ĽVĽ	25	55_	20	1.5	139	59	94	84		99	87	84	09	27.	36
3	. 61	45	14	14	06	46	79	79	74	49	99	54	.	23	24
TYPE	3	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR	BR
USE TYPE TYPE LVI	DO DE	DO DE	OQ	DO DE	DO DE	DO DE	DO DE	DO DE	: 00	DO DI	DO DE))	DO	DO DL	DO DE
TYPE US	RG C	RGP D	RG L	RG	RG I	RG I	RG_I	RG	RG	RG	RG .	RG 1	RG	RG	
DATE DEPTH 1	04/28/1970 47	05/06/1993 200	10/07/1993 165	10/11/1993 165	10/20/1996 240	04/03/1976 150	04/10/1994 200	06/30/1977 200	ль 06/18/1992 200	09/23/1988 184	08/21/1987 220	01/09/1976 460	10/19/1991 185	08/05/1976 169	07/20/1971 65
DRII. '	OLSON	MC KINNEY	BULL	BULL	JESSIE BEAMAN	MCKINNEY	MC KINNEY	MARTIN	OLSON WELL & PUMP 06/18/1992	ROSENQUIST	MARTIN	MARTIN	MARTIN	MARTIN	HINKLE
OWNER					K.M. BUILDERS							MR STEVE BENESH/STONE QUARRY			
SEC PLOT	8A	8A	8B	#8 H	æ	2	10	2 A	28	2D	5B	SE	8A	8E	
SEC	22	22	22	22	23	23	23	23	23	23	23	23	23	23	24
	1	10E	10E	10E JBD.	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E
VN RNG	_Z	24N	24N Subd.	24N RTH SU	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N ALE
FIPS	141	141	141 marth S	141 ILMAF	141	141	141	141	141	141	141	141	141	141	141 OCKV,
A GIV	8	287271	245872 141 24N ot 2 Wilmarth Subd.	260388 141 24N 10F LOT I WILMARTH SUBD.	292105	282590	287238 141	282591	242005	282592	282593	213149	229705	282594	282597 141 24N LOT 4 ROCKVALE

Σ	30	10	40	893	1227	01	12	i	<u>o</u>		12	20	ا. ا	0 1	
GPM		. 					-				_		75	40	
LVL	134	59	190	232	325	129	69		79		74	285	284	130	
LVL	104	49	189	506	148	119	69		64		69	117	, ,	58	
TYPE	BR	BR	BR	BR	BR	BR	ВК	:	BR	BR	BR	BR	BR	BR	Z S
TYPE	nc	DC	DL	1	ļ ļ ;	JG	DC	•	DĽ	DĽ	JG.	DIT	DF	DL	DF
USE 1	DO	00	8	路	路	8	8	DO	8	00	00	00	00	8	8
TYPE	RG	RG	RGC	RGCI	RGC	RGP	RG	C	RG	8	RG	RGP	RGP	RG.	⋖ .
DEPTH	283	100	335	1500	1500	245	165	110	01	110	225	290	285	225	80
	06/25/1968 283	01/31/1975	09/19/1973	12/21/1979	05/27/1980	11/10/2003 245	07/19/1974	00/00/1977	09/24/1970	07/17/1/0	10/14/1988	04/00/2000	08/00/2000	07/15/1974	00/00/1983 80 Sealed: 9/14/83
DATE	06/25	01/31	61/60	12/21	05/27	Ì	07/19	00/00	09/24	07/17	10/14	04/00	00/80	07/15	00/00 Seale
DRILLER	MARTIN	HINKLE	MARTIN	WEHLING	WEHLING	BULL DRILLING/BILL SCHUUR	ROSENQUIST		HINKLE		BULL	DRESDEN DRILLING	DRESDEN DRILLING	MARTIN	MCKINNEY
OWNER				COMMONWEALTH EDISON #2	COMMONWEALTH EDISON #1										
SEC PLOT			2D	2H	4H	6B	6B	29	G9	69	6F	A7	7B	8E	
SEC]	24	24	24	24 3176	24 3175	24	24	24	24	24	24	24	24	24	25
	10E	10E	10E	10E nit #03	10E nit #03	10E	10E	10E	10E	10E	10E	10E	10E	10E	10E
TWN RNG	24N	24N SUBD.	24N	24N 34' pen	24N 53' perr	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N
FIPS 1	141	141 IR-AL	141	141 from 8	141 from 8:	141	141	141	141	141	141	141	141	141	141
/ID F	182595	382596 141 24N OT 6 HER-AL SUBD	382598	13169 141 24N 10E 24 eepened from 834' permit #033176	213168 141 24N 10E 24 eepened from 853' permit #033175	159260 141	82599	3500	:82601	82602	:82603	23231	27540	82604	82605

				, (1		PDII I	DATE DEPTH	TYPE	USE TYF	USE TYPE TYPE LVL	LVL	٧L	GPM
/ID	FIPS	- -	RNG	SEC	SEC PLOT	OWNER	DAILON		1	3	ad	9	00	40
.82607	141	7.4V	10E	25	<u>.</u> ₹		MARTIN	08/20/1986 335	3 5	20	Ad .	601		2
:54752	4	24N	10E	25	ı ≡		CHARLES MARTIN	7 / 100 Sealed: 5/24/03	<	DO DE				
154762	141	24N	10E	25	H		C. MARTIN & SONS/CHUCK	05/12/2003 365	RGP	NC DE	BR	184	199	51.
382606	141	24N	10E	25	20		BLANCHARD	00/00/1946 115	RG	Ta oa	BR	45	65	10
285358	141	24N	10Ë	25	5		MARTIN	12/18/1995 305	RGP	DO DF	L BR	153	180	20
789966	141	24N	10E	25	\$G		DRESDEN	07/23/1996 240	RG	7a oa	L BR	82	239	75
282608	141	24N	10E	25	6E		MARTIN	03/14/1974 172	RG	TO OO	L BR	45	53	40
245930	141	24N	10E	25	98		MARTIN	09/27/1993 260	RG	- 00	BR	135	180	30
282609	141	24N	10E	26	2D		MARTIN	09/07/1966 205	RG	DO DE	L BR	42	7.7	40
282610	141	24N	10E	26	2H		MARTIN	04/00/1967 220	RG	TG OG	L BR	78	83	40
293527	141	24N	10E	26	2H		JONAS MARTIN	01/23/1997 260	RGP	DO DE	L BR	82	104	37
282611	141	24N	10E	27	4 4	,AH	MARTIN	08/25/1976 320	RG	DO DF	L BR	144	152	40
242032	141	24N	10E	27	4B		MARTIN	05/25/1993 313	RGP	DO DE	L BR	173	220	30
345509	141	24N	10E	27	SH		JONAS MARTIN DRILLING/JOE	05/01/2002 260	RGP	DO D	DL BR	127	139	50
282612	141	24N	10E	27	Н9		MARTIN	07/11/1966 330	RG	00	DL BR	73	75	45
													·	

Linnois State Water Survey "ICS Database

Tuesday, March 14, 2006

County: OGLE

Township: 24N

Range: 10E

Sections: 11-15,22-27

Records Found: 3

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions:

Please cite the Illinois State Water Survey's PICS (Public-industrial-Commercial) Database in all publications based wholly or partially on this information. Publication:

information was initially entered from public water supply data and supplemented with the Illinois State Water Inventory Project data. This database is Note: The data in the PICS Database is a listing of municipal and commercial wells which are known to the Illinois State Water Survey (ISWS). This updated as additional information is received and verified.

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

	ᄪ	ρĐ	4-	ð	p	ပ	9	ď	
									-
				Г					ŗ
				_	*				٢
	Г			_					١,
		_		_		F			١
				-					V
	┢			<u> </u>	┪				ŀ
			_				┢		٥
•							—		,

Location of a 10-acre-plot within a section:

The origin can be found at the lower right-hand-comer of an 8 x 8 grid. In this example, the well is in the 10-acre plot '3d'.

			-	
YEAR DRILLER				
# DEPTH STATUS SEALED TYPE YEAR DRILLER			-	•
ratus .		· -		-
DEPTH ST		1500		1500
##	umani	7		_
DBID	12723	12722		12721
NAME	4131145 141 24N 10E 15 SH EXELON - BYRON STATION	EXELON - BYRON STATION		EXELON - BYRON STATION
PLOT	HS			
SEC 1	15	24		24
RNG	10E	10E		10E
IWN	24N	24N		24N
. SdF	141	141		141
WSID FIPS TWN RNG SEC PLOT NAME	4131145	4131145 141 24N 10E 24 2H		4131145 141 24N 10E 24 4H

Illinois State water Survey Frigate Well Database

Tuesday, March 14, 2006

County: OGLE

Township: 24N

Range: 11E

Sections: 07,08,17-20,29,30

Records Found: 36

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions:

Please cite the Illinois State Water Survey's Private Well Database in all publications based wholly or partially on this information. Publication:

entered verbatim from well logs submitted by the driller, chemical analysis reports, well sealing forms, well inventory forms from the 1930-1934 well survey, and other Note: The data in the Private Well Database is a listing of non-municipal wells which are known to the Illinois State Water Survey (ISWS). This information has been special projects. The accuracy of this data is controlled by those submitting the forms. Information in the Private Well Database has not been verified.

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

	ㅁ	90	4	ø	þ	ပ	•	B	
	$\overline{}$								-
			Т				П		7
				_	*				m
				Г			\Box		4
İ									S
Ì				Г		1			9
				-		-	_		~
				\vdash				\vdash	∞
1			_	_	_				,

Location of a 10-acre-plot within a section:

The origin can be found at the lower right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot. 3d'.

														•	
GPM	40	40	40	15	70		30	. 40	20	12	01		10	0	30
LVL	127	109	123	259	115		69	93	59	169	169	59	139	33	125
LVL	119	94	105	139	95		69	. 65	39	149	164	. 49	49	29 ·	115
TYPE TYPE	BR	BR	BR	BR	BR	1	BR	BR	BR	BR	BR	BR	BR	BR	BR
TYPE	DL	DL.	DL	DL	DL	DI	DI	DI	DG.	D	DF	DF	<u>D</u>	겁	1 0.
USE	00	DO	00 .	οά	8	ОД	00	DO	00	8	00	00	8	8	8
TYPE	RG	RG	RG	RGP	RG	۵	RG	RG	RG	RG .	RG	RG	RG	RG	RG
DEPTH	968 275	979 245	966 250	001 300	956 245	090 160	977 225	974, 250	971 83	976 220	977 220	994 100	997 150	998 205	00/00/1964 265
DATE	11/09/1968	6/61/61/01	02/08/1966	1007/60/90	00/00/1956	IN 12/19/1990	7161/11/10	06/08/1974	05/20/1971	10/09/1976	12/14/1977	08/17/1994	09/04/1997	IN 12/05/1998	00/00/1
DRILLER	MARTIN	MARTIN	MARTIN	JRB DRILLING	BLANCHARD	CHARLES L. MARTIN	RANEY	MARTIN	LIVINGSTON	BEAMAN	ВЕАМАН	NICE	COUNTRY W&P/M.NICE	BULL DRLG./MARTIN	MARTIN
COT OWNER	18	2D	3C	Н9			1C	IF C	DI	2A NNETT CONST.	2A	38	P9	98	Н8
SEC PLOT	07	07 2	0.0	0.2	80	80	80	80	80	80	80	80	80	80	80
	11E	116	11E	11E	11E	11E	11E	11E	11E	11E	11E	1E	116	112	3E
TWN RNG	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N	24N
FIPS T	141	141	141	141	141	141	14	141	141	141	141		141	1.	141
VID FI	282808 1	282809 1	282807	335648 1	282810 1	343314	282812	282813 1	282814 1	382815	182816 1	365302 141	99074	08998 141	:82811 1

Oly.	FIPS	Z	N RNG	SEC	SEC PLOT	OWNER	DRIL	DATE DEPTH TYPE	TYPE	USE	TYPE TYPE LVI	1	JAĽ.	GPM
8	141	N 42	11E	17	4.		JONAS MARTIN DRILLING/RANDY	12/10/2004 260	RG.	DO DL	BR	147	159	8.
287254	141	24N	116	17	2		MC KINNEY	08/07/1991 240	RG	DO DE	BR	59	69	
201610	141	24N	IIE	17	Ħ		LIVINGSTON	11/14/1989 240	RG	1 DO .	BR	06		
307145	141	24N	118	12	3Н.		JONAS MARTIN/LITTLE	11/24/1998 255	RGP	DO DE	BR	104	149	30
282886	141	24N	311	17	6E		BLANCHARD	00/00/1946 145	RG RG	ng òg	BR	92	86	10
282888	141	24N	IIE	17	8A		MARTIN	12/07/1972 220	RG	DO DE	BR	16	119	40
282889	141	24N	IIE	17	8H		HINKLE	03/31/1969 170	RG	DO DE	BR			0
282890	141	24N	311	18			BLANCHARD	00/00/1955 300	RG	DO DE	BR	125	135	∞
372123	4	24N	==	82	3G		BULL WELL DRILLING/BILL	04/13/2005 325	RG	DO DF	BR	42	84	0
265296	141	24N	IIE	18	4H		DRESDEN	10/03/1994 265	RG	DO DE	BR	66	139	ļ
282891	141	24N	11É	61		But.	MARTIN	00/00/1940 70	90	DO DE	BR	30	40	15
282892	141	24N	1E	16			MARTIN	00/00/1964 192	RG	DO DE	BR	55	09	30
282894	141	24N	116	61	\$A		MARTIN	06/26/1982 185	RG	DO DI	BR	39	43	40
304144	141	24N	11E	161	7.8		JRB DRLG./MARTIN	05/29/1998 200	RGP	DO DE	BR	59	79	12
299061	141	24N	11E	61	8		JRB DRLG./BEAMAN	07/25/1997 200	RG	DO DF	BR	79	79	10

I QI	FIPS	TWN	RNG	SEC	PLOT	FIPS TWN RNG SEC PLOT OWNER	DRILLER	DATE DEPTH TYPE	TYPE	USE TYPE TYPE LVL	E TYPE		LVL	GPM
99068 141	141	24N	11E	20	느		JONAS MARTIN	09/18/1997 230	RGP	DO DE	BR	39	68	34
82895 141	141	24N	3 .	20	Н8		OLSON WELL CO.	08/29/1974 105	RG	DO DE	BR	8	19	15
82921	141	24N	31	30			MARTIN	00/00/1941 117	ORG	na oa	BR	40	06	01
:82925 141	141	24N	11E	30	7A.		LIVINGSTON	98 0861/91/90	RG	- OG	BŖ			
199070 141	141	24N	11E	30	8D		JONAS MARTIN	09/18/1997 360	RG	DO DI	BR	179	202	20
82922	4	24N	3.5	30	₩	EBENZER REFORMED CHURCH	DRESDEN	00/00/1968 165	RG	NC DI	RR .	30	75	30
						±.							•	

HILLOUS STATE WATER SURVEY FICS DATABASE Tuesday, March 14, 2006

County: OGLE

Township: 24N

Range: 11E

Sections: 07,08,17-20,29,30

-/1,00,/0

Records Found: 0

Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043 Questions:

Please cite the Illinois State Water Survey's PICS (Public-industrial-Commercial) Database in all publications based wholly or partially on this information. Publication:

information was initially entered from public water supply data and supplemented with the Illinois State Water Inventory Project data. This database is Note: The data in the PICS Database is a listing of municipal and commercial wells which are known to the Illinois State Water Survey (ISWS). This updated as additional information is received and verified.

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

Ч	bū	دبسر	e	р	ပ	р.	В	
								-
								c
				-×				C.
								-
								v
								9
								٦
								×
ш						L		•

Location of a 10-acre-plot within a section: The origin can be found at the lower right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot '3d'.

19001/003 1903∂-21

You are receiving a telefax from:	CLIC
Illinois State Water Survey	TM)
2204 Griffith Dr. Champalgn, IL 61820	<i>)</i>
Verification # - (217) 333-4300 or 333-9043	
Telefax # - (217) 244-0777	
To: Ken	
Location:	• .
Fax #: 773-380-6421	-
Fax #: 773-380-6421 From: Ausia Casy	-
Date: 4-17-06	-
Total number of pages including cover page: 3	-).
Comments:	please
Duni	
Illinois Department of Natural Resources	
Matural Resources	

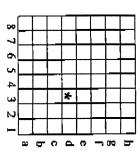
Illinois State Water Survey Private Well Database

Monday, April 17, 2006

County: Township: 24N OGLE

Sections: ᇹ Range:

Œ


Records Found:

Questions:

Publication: Please cite the Illinois State Water Survey's Private Well Database in all publications based wholly or partially on this information. Contact the Illinois State Water Survey's Ground Water Division @ (217)-333-9043

special projects. The accuracy of this data is controlled by those submitting the forms. Information in the Private Well Database has not been verified. entered verbatim from well logs submitted by the driller, chemical analysis reports, well sealing forms, well inventory forms from the 1930-1934 well survey, and other Note: The data in the Private Well Database is a listing of non-municipal wells which are known to the Illinois State Water Survey (ISWS). This information has been

This data cannot be resold or redistributed. The Illinois State Water Survey must be acknowledged in any use of this material.

Location of a 10-acre-plot within a section:

right-hand-corner of an 8 x 8 grid. In this example, the well is in the 10-acre plot '3d' The origin can be found at the lower

1	_ 6 2,00	73/	V03	_	
729934	273562 .0178 F		241856	F	
14	141 007H		4	Sala	
24N	24N TLL		24N	NAL	
101	301		301	RNG	
5	5		5	SEC	į
ద	ಜ		8	PLOT	
				OWNER	
MARTIN	ALLABAUGH		MARTIN	ONTERNA .	23 T 11 C C
07/06/1991 163	007 CK4140 (CO	UNC 3001/01/30	09 26616160		DATE DEPTH TYPE USE TYPE LYL LYL GPM
86		ı		3	RECOR
E		20 02		3	D WELL
 5×	, ; ;	본	Ş	7 12 13	E TYPE
20	3	65 	ţ	0; 0;	STATE LVL
8				8	LVL
٤	3		ı	25	GPM
	07/06/1991 163 RG DO - BK 20 00	273562 141 24N 10B 10 3G ALLABAUGH OTTRICT OT	10E 10 3G ALLABAUGH 05/10/1995 200 RGP DO DL BR 65 70	10E 10 2G MARTIN 09/19/1995 200 RGP DO DL BR 65 70 10E 10 3G MARTIN 07/06/1991 163 RG DO - BR 20 68	RNG SEC PLOT OWNER MARTIN 10E 10 2G MARTIN 10E 10 3G MARTIN 10E 10 3G MARTIN

№003/003

(Withheld)

(Withheld)

Non Oil and Gas - Wells

```
10-24N-10E
 121412360300
                         Martin. Jonas Willard
 Status: WATER
                                                SW NE NE
                                                                   Elev: 700GL
permit: permit date: 08/18/92 comp. date: 09/19/92
Lambert X: 3048645 Lambert Y: 3299716 td: 220
producing formation: td formation: latitude: longitude:
 Water from sandstone at depth 0 to 0 ft. Screen: Diam. in. Length: 0 ft. Slot:
 Casing and Liner Pipe -
       Diam. (in.) Kind and Weight From(ft)
6 WT STEEL -1
                                                                     To(ft)
                                                                     173
 Size hole below casing: 6 in.
 Static level 40 ft. below casing top which is 1 ft. above grnd level.

Pumping level 50 ft. when pumping at 25 gpm for 4 hours.
 Formations Passed Through
                                                          Thickness Bottom
                                                            5 5
   top soil
   gravel
                                                             95
                                                                          100
                                                             50
                                                                        150
   sandstone
                                                             70
                                                                      220
 121410089400
                       Martin, Lawrence W.
                                                                             10-24N-10E
                                                               10-2
1
Elev: 0
                        Etnyre Inc
                                               NE .
 Status: WATER
permit: 0 permit date: comp. date: 01/01/41
Lambert X: 3048329 Lambert Y: 3299381 td: 255
producing formation: td formation:
latitude: 42.098119 longitude: 89.321205
121410089500 Martin, Lawrence W.
Ogle Ogle Co Nat'L Bank
Status: WATER SW
                                                                              10-24N-10E
                                            SW NW NW
permit: 0 permit date:
Lambert X: 3044758 Lambert Y: 3299649
producing formation: td format
                                                                 comp. date: 01/01/42
                                                                   td: 115
                                        td formation:
 latitude: 42.098876
                                longitude: 89.334414
 121412331600
                        Martin, Jonas Willard
                                                                               10-24N-10E
 Ogle
                                             SE NW NE
Status: WATER

permit:

permit date: 06/20/91

Lambert X: 3047997

Lambert Y: 3299705

td: 163

td formation:
producing formation: td formation: latitude: longitude: Water from sandstone at depth 80 to 0 ft. Screen: Diam. in. Length: 0 ft. Slot:
 Casing and Liner Pipe -
       Diam. (in.) Kind and Weight From(ft) To(ft)

6 WT STEEL -1 10
 Size hole below casing: 6 in.

Static level 21 ft. below casing top which is 1 ft. above grnd level.

Pumping level 68 ft. when pumping at 30 gpm for 4 hours.
 Formations Passed Through
                                                          Thickness Bottom
                                                                     13
                                                             13
   clay
   yellow limestone
                                                             22
                                                                            35
   gray limestone
                                                             18
                                                                           53
   yellow limestone
                                                              8
                                                                            61
                                                              7
   soft shale
                                                                            68
   shale sandstone
                                                             12
                                                                            80
   sandstone
                                                             83
                                                                          163
```

```
121412307700
                  Martin, Jonas Willard
                                                            10-24N-10E
Status: WATER
                                     NE NW NE
                                                   Elev: 700GL
permit: 137506
                                                   comp. date: 11/25/87
                      permit date: 11/19/87
Lambert X: 3047982
                         Lambert Y: 3300366
                                                    td: 160
producing formation:
                                    td formation:
latitude:
                         longitude:
Water from sandstone at depth 97 to
                                           160 ft.
Screen: Diam. 0 in.
                     Length:
                                 0 ft.
                                           Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
6 WT STER
Size hole below casing: 6 in.
                       WT STEEL
Static level 31 ft. below casing top which is Pumping level 53 ft. when pumping at 40
                                                      1 ft. above grnd level.
                                                               4 hours.
                                             40 gpm for
Formations Passed Through
                                             Thickness Bottom
                                              17
                                                          17
  clay
  yellow limestone
                                               23
                                                          40
  gray limestone
                                               15
                                                          55
  shale
                                               10
                                                          65
  sandstone
                                               95
                                                         160
                                                             10-24N-10E
121412408600
                   Allabaugh, Neil M.
Ogle
Status: WATER
                                     SE NW NE
                                                    Elev:
                     permit date: 04/27/95
permit:
                                                  comp. date: 05/10/95
Lambert X: 3047997
                       Lambert Y: 3299705
                                                     td: 200
producing formation:
                                     td formation:
                             longitude:
latitude:
Water from sandstone at depth 97 to Screen: Diam. in. Length: 0 ft.
                                         200 ft.
                                           Slot:
Casing and Liner Pipe - .
                     Kind and Weight
     Diam. (in.)
                                           From(ft)
                       PVC
Size hole below casing: 6 in.
Static level 65 ft. below casing top which is
                                                       1 ft. above grnd level.
                  70 ft. when pumping at
                                            0 gpm for 1 hours.
Pumping level
Formations Passed Through
                                             Thickness Bottom
  brown clay
                                               28
                                                          28
  gray clay
                                                4
                                                          32
                                                6
                                                          38
  yellow clay
                                                6
                                                          44
  gray clay
  yellow clay
                                               18
                                                          62
  gray clay
                                                          75
                                               13
                                                7
  Glenwood shale
                                                          82
  yellow sandstone
                                               15
                                                          97
  white sandstone
                                              103
                                                         200
121412183300
                   Badger, Floyd
                                                             11-24N-10E
Ogle
                                                     Elev:
Status: WATER
                                      NW NE NW
                                                               0
permit: 0
                                                   comp. date: 10/01/75
                      permit date:
Lambert X: 3051245
                         Lambert Y: 3300424
                                                     td:
                                                           160
                                     td formation:
producing formation:
latitude:
                            longitude:
121412254000
                   Martin, Jonas Willard
                                                              11-24N-10E
Ogle
                  50 NL 10 EL
                                                                700GL
                                        SE NE NW
Status: WATER
                                                       Elev:
permit: 125193
                      permit date: 07/11/86
                                                   comp. date: 08/22/86
Lambert X: 3052235
                       Lambert Y: 3300063
                                                     td: 165
producing formation:
                                     td formation:
                             longitude:
latitude:
Water from sandstone at depth 114 to
                                           165 ft.
Screen: Diam. 0 in. Length:
                                  0 ft.
                                            Slot: 0
Casing and Liner Pipe -
                     Kind and Weight
     Diam. (in.)
                                           From(ft)
                                                       To(ft)
```

-2-

```
-1
                       WT STEEL
                                                             115
Size hole below casing: 6 in.
Static level 13 ft. below casing top which is 1 ft. above grnd level.
Pumping level 35 ft. when pumping at 40 gpm for 4 hours.
Formations Passed Through
                                             Thickness Bottom
                                                60
45
  sand grayel
                                                         60
  shale limestone
                                                          105
  sandstone
                                                          165
121412245700
                   Livingston, Lowell
                                                              11-24N-10E
Oale
Status: WATER
                                                     Elev:
permit: 117841
                     permit date: 05/14/85
                                                  comp. date: 06/02/85
Lambert X: 3053579
                       Lambert Y: 3299482
                                                    td: 50
producing formation:
                                     td formation:
latitude:
latitude: longitude: longitude: Water from drift at depth 0 to
                                         U ft.
Screen: Diam. 5 in. Length: 5 ft. Slot: .014
Casing and Liner Pipe -
     Diam. (in.) %Kind and Weight From(ft)
                                                        To(ft)
                       A-53
Size hole below casing: 5 in.
Static level 25 ft. below casing top which is 1 ft. above grnd Pumping level 30 ft. when pumping at 10 gpm for 3 hours. Formations Passed Through Thickness Bottom
                                                        1 ft. above grnd level.
  top soil
                                                2
  sand & gravel
                                                48
121412251900
                   Livingston, Lowell
                                                              11-24N-10E
Ogle
Status: WATER
                                      NE
                                                     Elev:
permit: 123424
                       permit date: 04/28/86
producing formation:

latitude: U4/28/86

Lambert Y: 3299482
                                                    comp. date: 05/07/86
                                                     td: 45
                                    td formation:
                             longitude
Water from drift at depth 0 to
                                         0 ft.
Screen: Diam. 5 in. Length: 5 ft.
                                          Slot: .02
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                         From(ft)
                                                        To(ft)
                       A-120
Size hole below casing: 5 in.
Static level 15 ft. below casing top which is Pumping level 20 ft. when pumping at 10
                                                        1 ft. above grnd level.
                                              10 gpm for 2 hours.
Formations Passed Through
                                              Thickness Bottom
  top soil
                                                2
                                                         2
  sand & gravel
  gravel
121412288600
                   Bull, Jack D
                                                              11-24N-10E
Status: WATER
                                      SW NE NE
                                                     Elev:
permit: 91445
                      permit date: 11/15/79
                                                    comp. date: 11/20/79
                      Lambert Y: 3299816
td formation:
Lambert X: 3053900
                                                      td: 110
producing formation:
                             longitude:
Water from rock at depth 40 to 110 ft.
Screen: Diam. 0 in. Length: 0 ft.
Casing and Liner Pipe -
     Diam. (in,) Kind and Weight
                                           From(ft)
                                                        To(ft)
                       .258 BLACK
                                                               62
Size hole below casing: 5 in.
Static level 50 ft. below casing top which is Pumping level 60 ft. when pumping at 12
                                                        1 ft. above grnd level.
                                              12 gpm for 6 hours.
Formations Passed Through
                                              Thickness Bottom
  top soil
                                                 4
  sand & gravel
                                                56
                                                           60
  limestone
                                                50
                                                          110
```

```
121412288700
                  McKinney, Melvin D.
                                                           11-24N-10E
Ogle
Status: WATER
                                    NE NW NE
                                                   Elev:
                     permit date: 06/21/82
                                                 comp. date: 07/19/82
permit: 103875
Lambert X: 3053224
                        Lambert Y: 3300459
                                                   td: 114
producing formation:
                                   td formation:
latitude:
                            longitude
Water from sand & gravel at depth 70 to
                                             II4 ft.
Screen: Diam. 0 in. Length: 0 ft.
                                         Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                    Kind and Weight
                                         From(ft)
                       STEEL
Size hole below casing: 5 in...
              18 ft. below casing top which is
                                                     1 ft. above grnd level.
Static level
                25 ft. when pumping at 40 gpm for
Pumping level
                                                             3 hours.
Formations Passed Through
                                           Thickness Bottom
  top soil
                                              1
                                                         1
  sand & gravel
                                            113
121410152500
                  Martin, Jonas
                                                           11-24N-10E
Ogle
Status: WATER
                  2244 SL 2250 WL
                                                     Elev:
                                                             810GL
                                                 comp. date: 08/01/73
permit: 0
                     permit date:
                       Lambert Y: 3297741
Lambert X: 3051928
producing formation:
                                   td formation:
latitude:
                             longitude
121412208700
                  Bull, Jack
                                                           11-24N-10E
Ogle
Status: WATER
                                    NW NE SW
                                                   Elev:
                                                 comp. date: 07/01/75
                   permit date:
permit: 0
Lambert X: 3051321
                       Lambert Y: 3297788
                                                   td: 130
producing formation:
                                    td formation:
latitude:
                             longitude
121412288800
                   Livingston, Lowell
                                                           11-24N-10E
Ogle
Status: WATER
                                    NE
                                                             O
                                                   Elev:
permit: 109084
                      permit date: 09/02/83
                                                 comp. date: 09/16/83
Lambert X: 3053579
                        Lambert Y: 3299482
                                                   td:
producing formation;
                                    td formation:
                             longitude
latitude
Water from drift at depth
                                       0 ft.
                            0 to
                    Length:
                                5 ft.
Screen: Diam. 5 in.
                                         Slot: .02
Casing and Liner Pipe -
     Diam. (in.)
                    Kind and Weight
                                         From(ft)
                      A-53
Size hole below casing: 5 in.
Static level 20 ft. below casing top which is
                                                     1 ft. above grnd level.
                 25 ft. when pumping at
                                             10 gpm for
Pumping level
                                                           4 hours.
Formations Passed Through
                                           Thickness Bottom
                                                         2
  top soil
                                              2
  sand & gravel
                                              44
                                                         46
121410089600
                  Varner C W
                                                            11-24N-10E
Ogle
Status: WATER
                                     SE NW NW
                                                    Elev:
                                                           780GL
                     permit date:
                                                  comp. date: 01/01/35
permit: 0
                        Lambert Y: 3299752
Lambert X: 3050605
                                                    td: 202
producing formation:
                                    td formation:
latitude:
                             longitude
```

121412174000

Livingston, Lowell

11-24N-10E

```
Ogle
                                                       191
Status: WATER
                                     NW SW
                                                    Elev:
                      permit date:
permit: 0
                                                  comp. date: 12/01/74
Lambert X: 3050345
                       Lambert Y: 3297434
                                                           64
                                                    td:
producing formation:
                                    td formation:
latitude:
                             longitude:
121412201500
                   Bull, Jack
                                                            11-24N-10E
Ogle
Status: WATER
                                     SE NW SW
                                                    Elev:
                                                              ٠.D
permit: 0
                      permit date:
                                                   comp. date: 01/01/76
Lambert X: 3050683
                         Lambert Y: 3297112
                                                    td:
                                                          200
producing formation:
                                    td formation:
latitude:
                              longitude:
121410003000
                                                             11-24N-10E
Ogle
Status: WATER
                                     NE NE SW
                                                    Elev:
                                                            780GL
                      permit date:
permit: 0
                                                   comp. date: 01/01/53
Lambert X: 3051979
                         Lambert Y: 3297803
                                                    td: 150
producing formation:
                                    td formation:
latitude: (
                             longitude:
121412288900
                   Olson, Robert C
                                                             11-24N-10E
Ogle
Status: WATER
                                     NE SW SE
                                                    Elev:
                     permit date: 07/13/83
permit: 108058
                                                   comp. date: 09/08/83
Lambert X: 3053328
                        Lambert Y: 3296522
                                                    td:
                                                         200
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth
                                170 to
                                          200 ft.
Screen: Diam. 0 in.
                                 0 ft.
                    Length:
                                           Slot: 0
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                          From(ft)
                                                       To(ft)
                       STEEL 19#
        66
                       SDR 21 PVC
                                                             39
Size hole below casing: 6 in.
                75 ft. below casing top which is
Static level
                                                       1 ft. above grnd level.
                 100 ft. when pumping at
Pumping level
                                               20 gpm for
                                                               2 hours.
Formations Passed Through
                                             Thickness Bottom
  top soil
                                                2
                                                          2
  sand
                                                8
                                                          10
  soft limestone
                                               10
                                                          20
                                               65 :
  limestone
                                                          85
  dolomite
                                               85
                                                         170
  sandstone
                                               30
                                                         200
121412289000
                   Martin, Jonas Willard
                                                             11-24N-10E
Ogle ·
                  100 SL 100 EL
Status: WATER
                                       SW NE NW
                                                       Elev:
permit: 112415
                      permit date: 05/16/84
                                                   comp. date: 05/18/84
Lambert X: 3051500
                        Lambert Y: 3299540
                                                     td:
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth
                                 0 to
                                            0 ft.
Screen: Diam. 0 in.
                     Length:
                                  0 ft.
                                           Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                       PVC
Size hole below casing: 6 in.
              12 ft. below casing top which is
Static level
                                                       1 ft. above grnd level.
Pumping level
                  35 ft. when pumping at
                                               40 gpm for
                                                               4 hours.
Formations Passed Through
                                             Thickness Bottom
 black & gry top soil
                                               10
                                                          10
  sand
                                               75
                                                          85
```

55

140

sandstone

```
121412289100
                 Olson, Robert C
                                                            11-24N-10E
Ogle:
Status: WATER
                                     NE SW SE
                                                    Elev:
permit: 95703
                      permit date: 08/22/80
                                                  comp. date: 08/27/80
Lambert X: 3053328
                        Lambert Y: 3296522
                                                    td: 185
producing formation:
                                    td formation:
latitude: (
                             longitude:
Water from sandstone at depth 149 to
                                          185 ft.
Screen: Diam. 0 in. Length: 0 ft.
                                           Slot: 0
Casing and Liner Pipe -
                     Kind and Weight
     Diam. (in.)
                                          From(ft)
                                                      To(ft)
                       19# STEEL
                                                            41
Size hole below casing: 6 in.
                50 ft. below casing top which is
Static level
                                                      1 ft. above grnd level.
                85 ft. when pumping at 10 gpm for
Pumping level
Formations Passed Through
                                            Thickness Bottom
  top soil
                                               2
                                                          2
  clay-sand
                                               6
                                                          8
  soft limestone
                                                         20
                                              12
  limestone
                                              45
                                                         65
  dolomite
                                              84
                                                        149
  sandstone
                                              36
                                                        185
121412289200
                   Olson, Robert C
                                                            11-24N-10E
Oale
Status: WATER
                                    NE NE NW
                                                    Elev:
permit: 86424
                      permit date: 06/08/79
                                                  comp. date: 08/22/79
Lambert X: 3051905
                      Lambert Y: 3300436
                                                    td:
producing formation:
                                    td formation:
latitude:
                             longitude: \
Water from sandstone at depth 85 to $185 ft.
Screen: Diam. 0 in. Length:
                                 0 ft.
                                          Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
        6
                       STEEL 19.5
Size hole below casing: 6 in.
Static level 100 ft. below casing top which is Pumping level 120 ft. when pumping at 10 g
                                                      1 ft. above grnd level.
                120 ft. when pumping at
Pumping level
                                              10 gpm for
                                                              1 hours.
Formations Passed Through
                                            Thickness Bottom
  top soil
                                               4
                                                          Δ
 soft limestone
                                               6
                                                         10
 limestone
                                              25
                                                         35
 dolomite
                                              50
                                                         85
  sandstone
                                             100
                                                        185
                  Martin, Jonas Willard
121412289300
                                                            11-24N-10E
Oale
                      NL 200 WL.
                                       SW SW
Status: WATER
                                                      Elev:
                                                              740GL
permit: 102024
                     permit date: 11/04/81
                                                  comp. date: 11/16/81
Lambert X: 3049910
                      Lambert Y: 3296692
                                                    td:
                                                          120
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth 73 to
                                          120 ft.
Screen: Diam. 0 in.
                    Length:
                                 0 ft.
                                           Slot: 0
Casing and Liner Pipe -
                    Kind and Weight
     Diam. (in.)
                                          From(ft)
                      RT ST 19#
        6
Size hole below casing: 6 in.
Static level 49 ft. below casing top which is
                                                      1 ft. above grnd level.
                 61 ft. when pumping at
Pumping level
                                              30 gpm for
                                                               4 hours.
Formations Passed Through
                                            Thickness Bottom
 top soil
                                               2
                                                           2
 yellow limestone
                                              29
                                                          31
 yl & gry limestone
                                              42
                                                          73
 sandstone
                                              47
                                                         120
```

```
121410089700
                                                        11-24N-10E
                                                 · 1
Ogle
                                                Elev:
Status: WATER
                                  NW SE NW
                                            comp. date: 01/01/46
                    permit date:
permit: 0
Lambert X: 3051283
                     Lambert Y: 3299106
                                               td: 143
producing formation:
                                 td formation:
latitude:
                           longitude:
121412289400
                  Bull, Jack D
                                                        11-24N-10E
Ogle
                                   SE NW SW
Status: WATER
                                                Elev:
                   permit date: 04/14/75
                                               comp. date: 05/20/75
permit: 36966
Lambert X: 3050683
                     Lambert Y: 3297112
                                                td: 120
producing formation:
                                  td formation:
latitude:
                          longitude:
Water from rock at depth 60 to 120 ft.
Screen: Diam. 0 in. Length: 0 ft.
                                       Slot: 0
Casing and Liner Pipe -
    Diam. (in.) Kind and Weight From(ft) To(ft)
                     .280
Size hole below casing: 6 in.
Static level 60 ft. below casing top which is
                                                  1 ft. above grnd level.
              85 ft. when pumping at 10 gpm for
Pumping level
                                                          4 hours.
Formations Passed Through
                                         Thickness Bottom
  top soil
                                            5
                                                     5
                                           10
                                                     15
 clay
                                          105
                                                    120
 limestone
                                                        11-24N-10E .
121410122400
                Martin, Jonas
                 2375 SL 1830 WL
Status: WATER
                                                  Elev:
                                                          860GL
permit: 0
                 permit date:
                                              comp. date: 06/01/70
Lambert X: 3051504
                  Lambert Y: 3297859
                                               td: 200
producing formation:
                                 td formation:
latitude: 🗨
                          longitude:
121412382600
                 U. S. Geological Survey
                                                       12-24N-10E
                 Byron Salvage Yard PEI - Angle Hole
Ogle
                 600 SL 150 WL SW Elev:
Status: STRAT
                                                          720GL
                  permit date:
                                               comp. date: 01/01/90
permit:
Lambert X: 3055129
                    Lambert Y: 3296188
                                                td: 106
producing formation:
                                  td formation:
latitude: 42.089282
                         longitude: 89.296075
121412289500
                 Martin, Jonas Willard
                                                         12-24N-10E
Oale
Status: WATER
                 100 NL 100 EL
                                    SE NE SE
                                                Elev:
                                                          880GL
                 permit date: 03/31/82
                                               comp. date: 04/19/82
permit: 102960
                    Lambert Y: 3297535
Lambert X: 3060059
                                               td: 320
producing formation:
                                  td formation:
                       longitude:
Water from sandstone at depth 230 to 320 ft.
Screen: Diam. 0 in. Length: 0 ft.
                                        Slot: 0
Casing and Liner Pipe -
    Diam. (in.) Kind and Weight
                                       From(ft)
                                                   To(ft)
                     STEEL 19#
                                              21
                                                        244
                     PVC
Size hole below casing: 6 in.
Static level 175 ft. below casing top which is Pumping level 180 ft. when pumping at 40
                                                  1 ft. above grnd level.
                                       40 gpm for 4 hours.
                                         Thickness Bottom
Formations Passed Through
                                                      1
 soil
                                            1
  clav
                                            7
                                           72
 yellow limestone
                                                      80
```

gray limestone

130

121410115000 Martin, Jonas 13-24N-10E Ogle 1 Status: WATER 2200 NL 400 WL Elev: 850GL

longitude:

producing formation:

latitude:

td formation:

permit: 0 permit date:
Lambert X: 3055458 Lambert Y: 3293394 comp. date: 08/01/69 td: 275 producing formation: td formation: latitude: (longitude: 121412382900 U. S. Geological Survey 13-24N-10E Ogle Byron Salvage Yard - PEI AW-1D 1550 NL 800 WL Status: STRAT Elev: 797GL permit date: permit: comp. date: 04/07/89 Lambert X: 3055838 producing formation: td formation: td formation: 42.083392 longitude: 89.293470 td: 125 121412382700 U. S. Geological Survey U. S. Geological Survey 1:
Byron Salvage Yard - PEI AW-4S 13-24N-10E Ogle Status: STRAT 1300 NL 1300 WL Elev: 781GL permit date: comp. date: 04/03/89 permit: Lambert Y: 3294311 Lambert X: 3056331 td: 50 producing formation: td formation: latitude: 42.084102 longitude: 89.291645 121412382800 U. S. Geological Survey
Ogle Byron Salvage Yard - PEI-AW 13-24N-1 AW-4D Elev: 781GL 13-24N-10E 1300 NL 1300 WL Status: STRAT permit: permit date:
Lambert X: 3056331 Lambert Y: comp. date: 04/03/89 td: 119 latitude: 42.084102 longitude: 89.291645 U. S. Geological Survey
Byron Salvage Yard PEI-MW V
2150 NL 1600 WL
permit date: 121412383000 13-24N-10E ∙ MW-2 Status: STRAT 2150 NL 1600 WL Elev: 846GL permit date: permit: comp. date: 03/07/89 Lambert X: 3056656 Lambert Y: 3293467 producing formation: td formation: latitude: 42.081775 longitude: 89.290450 td: 216 121412183400 Wehling Well Works Inc. 13-24N-10E Commonwealth Edison Ogle Status: WATER 2144 SL 1236 EL Elev: 870GL comp. date: 09/01/75 permit date: permit: 0 Lambert X: 3059109 Lambert Y: 3292434 td: 600 producing formation: td formation: latitude: 42.078913 longitude: 89.281386 producing formation: 121412504000 13-24N-10E Motosports Park Incorporated Oale Elev: 0 Status: WATER NW NW SE permit: permit date:
Lambert X: 3058037 Lambert Y: 3292617
producing formation: td formation:
latitude: 42.079424 longitude: 89.285349
Water from at depth 0 to 0 ft. comp. date: td: 0 Screen: Diam. in. Length: 0 ft. Slot: Casing and Liner Pipe -

121412245800

no record

Diam. (in.)

Size hole below casing: in.

Formations Passed Through

Martin, Jonas Willard

Kind and Weight

To(ft)

0

Thickness Bottom

Static level 0 ft. below casing top which is 0 ft. above grnd level.

Pumping level 0 ft. when pumping at 0 gpm for 0 hours.

From(ft)

n

```
Ogle
                  100 NL 100 WL
Status: WATER
                                                      Elev:
                     permit date: 05/14/85
                                                  comp. date: 05/18/85
permit: 117803
Lambert X: 3057699
                         Lambert Y: 3295537
                                                    td:
                                                        230
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth 25 to
                                          230 ft.
Screen: Diam. 0 in.
                     Length:
                                 0 ft.
                                          Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
        6
                       WT STEEL 19.45
                                                 -1
        6
                       WT STL 19.45
                                                            93
Size hole below casing: 6 in.
Static level 35 ft. below casing top which is
                                                      1 ft. above grnd level.
                102 ft. when pumping at
Pumping level
                                             80 gpm for
                                                              4 hours.
Formations Passed Through
                                            Thickness Bottom
  SS.#65988 (0'-230')
                                               n
                                                          ۵
  SS #65988 (0'-230')
                                               O
                                                          0
  clay
  clay
  yellow limestone
                                              76
  yellow limestone
                                               84
                                                         88
                                              27
  gray limestone
                                                         115
  gray limestone
                                              35
                                                        115
  shale
                                              15
                                                        130
  shale
                                              15
                                                        130
  sandstone
                                              100
                                                         230
  sandstone
                                              1.00
                                                        230
121410015900
                   Martin Laurence
                                                             13-24N-10E
                                                       1
                  300 NL 200 WL
Status: WATER
                                                      Elev:
                      permit date:
                                                   comp. date: 01/01/63
permit: 0
Lambert X: 3057807
                        Lambert Y: 3295340
                                                    td: 110
producing formation:
                                    td formation:
latitude:
                             longitude: \
121412550000
                   Joe Arwood
                                                             14-24N-10E
Oale
                                     SE SW SW
Status: WATER
                                                    Elev:
                                                               0
                      permit date: 02/02/04
                                                   comp. date: 02/11/04
permit:
Lambert X: 3050860
                        Lambert Y: 3290450
                                                    td: 215
producing formation:
                                    td formation:
latitude: 🛑
                             longitudes
Water from sandstone at depth 158 to
                                          215 ft.
Screen: Diam. in. Length:
                                  0 ft.
                                           Slot:
Casing and Liner Pipe -
                                                      To(ft)
     Diam. (in.)
                    Kind and Weight
                                          From(ft)
                       SA53B STEEL
                                                            169
Size hole below casing: in.
Static level 68 ft. below casing top which is
                                                       1 ft. above grnd level.
                  80 ft. when pumping at
Pumping level
                                               20 gpm for
                                                               4 hours.
Formations Passed Through
                                            Thickness Bottom
  clay
                                                           2
  sand/clay
                                               33
                                                          35
  limestone yellow broken clay
                                               27
                                                          62
  shale/limestone yellow
                                               58
                                                         120
  sandstone soft
                                               38
                                                         158
  sandstone white hard
                                               57
                                                         215
                   U. S. Geological Survey
121412383100
                                                             14-24N-10E
                                                       MW-20
Ogle
                  Byron Salvage Yard 225
Status: STRAT
                  560 NL 200 EL
                                                       Elev:
                                                               821GL
                      permit date:
permit:
                                                   comp. date: 09/18/85
Lambert X: 3054810
                         Lambert Y: 3295020
                                                     td:
                                                           186
producing formation:
                                    td formation:
latitude: 42.086066
                             longitude: 89.297264
```

```
121412518700
                  . Commonwealth Edsn
                                                           14-24N-10E
 Oale
                   Byron Station
                                                      G-2
                   1716 NL 132 EL
 Status: ENG
                                                     Elev:
                   permit date:
                                                "comp. date:
 Lambert X: 3054912
                      Lambert Y: 3293867
                                                   td: 190
 producing formation:
                                    td formation:
 latitude: 42.082888
                             longitude: 89.296897
                                                           14-24N-10E
 121412383300
                   U. S. Geological Survey
                                                     DF-10
 Ogle
 Status: STRAT
                   1100 NL 200 EL
                                                    Elev: 833GL
                                                  comp. date: 08/28/90
                      permit date:
 permit:
 Lambert X: 3054826
                        Lambert Y: 3294481
                                                    td: 54
 producing formation:
                                    td formation:
 latitude:
                             longitude:
                    U. S. Geological Survey
 121412383200
                                                           14-24N-10E
                                                      DF-4D
 Ogle
                   1850 NL 550 EL
 Status: STRAT
                                                             832GL
                                                     Elev:
                                                  comp. date: 08/22/90
 permit:
                      permit date:
 Lambert X: 3054498
                        Lambert Y: 3293721
                                                    td: 151
 producing formation:
                                    td formation:
 latitude:
                             longitude:
 121412425200
                   Martin, Jonas Willard
                                                           14-24N-10E
Oale
                                     SE SW NW
                                                    Elev: 760GL
Status: WATER
                                                  comp. date: 07/12/96
 permit:
                      permit date: 06/27/96
 Lambert X: 3050791
                      Lambert Y: 3293123
                                                    td: 200
 producing formation:
                                    td formation:
 latitude:
                            longitude:
 Water from sandstone at depth 137 to 4 200 ft. W
 Screen: Diam. in. Length: 0 ft.
                                         Slot:
 Casing and Liner Pipe -
      Diam. (in.) Kind and Weight
                                        From(ft)
                                                      To(ft)
        6
                     WT STEEL 19.45# -1
                                                           139
 Size hole below casing: 6 in.
 Static level 82 ft. below casing top which is 0 ft. above grnd level. Pumping level 110 ft. when pumping at 30 gpm for 4 hours.
                                          30 gpm for 4 hours.
 Formations Passed Through
                                            Thickness Bottom
   clay
                                               3
                                                         3
                                               7
                                                         10
   broken limestone
   yellow limestone
                                              20
                                                         30
   gray limestone
                                              68
                                                         98
   Glenwood
                                              17
                                                        115
                                              85
   sandstone
                                                        200
                   Martin, Jonas
 121410060000
                                                            15-24N-10E
                   1200 SL 1200 WL
 Status: WATER
                                                      Elev: 740GL
                                                  comp. date: 01/01/68
 permit: 0
                      permit date:
 Lambert X: 3045747
                        Lambert Y: 3291195
                                                    td: 195
 producing formation:
                                    td formation:
 latitude:
                             longitude:
                                                            15-24N-10E
 121412314900
                   Bull, Jack D
 Ogle
 Status: WATER
                                     SW SW NE
                                                    Elev:
                      permit date: 08/30/88
 permit: 005281
                                                  comp. date: 09/19/88
 Lambert X: 3047490
                         Lambert Y: 3293058
                                                    td: 165
 producing formation:
                                    td formation:
 latitude.
                             longitude:
```

Water from rock at depth 110 to 165 ft.

```
Screen: Diam. in. Length: 0 ft. Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From(ft) To(ft)
                         .258 BLACK
Size hole below casing: 5 in.
Static level 80 ft. below casing top which is 1 ft. above grnd Pumping level 80 ft. when pumping at 12 gpm for 6 hours.
                                                           1 ft. above grnd level.
Formations Passed Through
                                                  Thickness Bottom
                                                    6
  top soil
                                                    54
                                                                60
  yellow rock
                                                     5
                                                               65
  St. Pete
                                                   . 5
                                                               70
  gray shale
                                                    10
                                                               80
  rotten rock
  St. Pete yellow '
                                                    30
                                                              110
                                                    55
  St. Pete white
                                                                    15-24N-10E
121410090000
                    Martin, Lawrence W.
Ogle
                                                         Elev: 700GL
                                         SW SW NE
Status: WATER
permit: 0 permit date:
Lambert X: 3047490 Lambert Y: 3293058
                                                         comp. date: 01/01/43
                                                          td: 138
producing formation:
                                         td formation:
                                 longitude:
latitude:
                                                                    15-24N-10E
                      Martin, Lawrence W.
121410090100
Ogle
                                         SW SW NE
                                                         Elev: 700GL
Status: WATER
                     permit date:
                                                         comp. date: 01/01/42
permit: 0
                        Lambert Y: 3293058
Lambert X: 3047490
                                                           td:
                                                                   72
producing formation:
                                        td formation:
latitude:
                               longitude:
121412331900
                    , Martin, <u>Jonas</u> Willard
                                                                    15-24N-10E
Ogle
Status: WATER SW SE NE Elev: 780GL comp. date: 09/26/89 Lambert X: 3048813 Lambert Y: 3293082 td: 238
                         Lambert Y: 3293082
Lambert X: 3040015 _ producing formation: td for longitude:
                                        td formation:
latitude: longitude: Water from sandstone at depth 149 to
                                                238 It.
Screen: Diam. in. Length: 0 ft.
                                                Slot:
Casing and Liner Pipe -
Diam. (in.) Kind and Weight From(ft)

6 WT STEEL 19.45# -2

Size hole below casing: 6 in.
                                                             To(ft)
Static level 118 ft. below casing top which is 1 ft. above grnd level. Pumping level 143 ft. when pumping at 40 gpm for 4 hours.
Formations Passed Through
                                                   Thickness Bottom
                                                     12
                                                                12
   sand
                                                    113
                                                                125
   limestone
                                                     15
                                                                140
   Glenwood
                                                     98
                                                                238
   sandstone
                                                                     15-24N-10E
 121412439000
                      Martin, Jonas Willard
                     Commonwealth Edison Co.
 Ogle
                                                       Elev: 0
                                          NE NE NW

      Status: WATER
      NE NE NW
      Elev: 0

      permit:
      permit date: 12/24/97
      comp. date: 12/29/97

      Lambert X: 3046784
      Lambert Y: 3295061
      td: 210

 Status: WATER
producing formation: to longitude: 89.326951
 Water from sandstone at depth 0 to 0 ft.
 Screen: Diam. in. Length:
                                      0 ft.
                                                Slot:
 Casing and Liner Pipe -
                       Kind and Weight From(ft)
SA53B STEEL 19.45 -1
      Diam. (in.)
                                                                  143
          6
```

Size hole below casing: in.

```
12 ft. below casing top which is
                                                  1 ft. above grnd level.
Pumping level
               17 ft. when pumping at
                                            30 gpm for
Formations Passed Through
                                          Thickness Bottom
 earth soil
                                             2
                                                       2
                                                       q
                                             7
 large pit run limestone
                                                      90
 gravel & clay
                                            81
                                            30
  shale (Glenwood)
                                                      120
                                            90
                                                      210
 sandstone
                  Bull, Jack D.
121412439100
                                                         15-24N-10E
Oale
Status: WATER
                                   NW SE SE
                                                  Elev:
                    permit date: 02/13/97
                                                comp. date: 02/20/97
permit: 141-97-
Lambert X: 3048861
                                                  td: 165
                      Lambert Y: 3291076
producing formation:
                                   td formation:
                         . longitude:
latitude:
Water from rock at depth 85 to 165 rt.
Screen: Diam. in. Length: 0 ft.
                                         Slot:
Casing and Liner Pipe -
   Diam. (in.) Kind and Weight
                                        From(ft)
                      .258 BLACK
Size hole below casing: in.
Static level 30 ft. below casing top which is 1 ft. above grnd level.
                 34 ft. when pumping at
                                          10 gpm for
Pumping level
Formations Passed Through
                                           Thickness Bottom
                                             3
                                                        3
  topsoil
                                             32 .
                                                       35
  clay
                                            35
                                                       70
  sand gravel
                                             95
  sandstone
                                                      165
                  Schuur, Bill
                                                         15-24N-10E
121412550100
Oale
                                               Elev:
Status: WATER
                                    SE NE SE
                    permit date: 09/03/03
                                                comp. date: 09/08/03
Lambert X: 3049508 Lambert Y: 3291759
                                                  td: 185
producing formation:
                                   td formation:
latitude: 	
                           longitud
Water from St. Peter at depth 100 to
                                         185 IC
                   Length: 0 ft. Slot:
Screen: Diam. in.
Casing and Liner Pipe -
                   Kind and Weight
                                         From(ft)
                                                    To(ft)
     Diam. (in.)
                     A53B
Size hole below casing: in.
Static level 60 ft. below casing top which is Pumping level 65 ft. when pumping at 10
                                                    1 ft. above grnd level.
                                            10 gpm for
                                                             6 hours.
Formations Passed Through
                                           Thickness Bottom
                                             20
                                                       20
  sand
                                                        60
  sand & gravel
                                             40
                                             20
                                                       80
  sand & clay
                                            105
  St. Peter
                                                       185
121412257700
                  Martin, Jonas Willard
                                                           15-24N-10E
Oale
                 50 SL 50
                             EL
                                                    Elev:
                                                             695GL
                                    NE SW SW
Status: WATER
                                                 comp. date: 01/15/87
                   permit date: 01/13/87
permit: 129146
Lambert X: 3045833
                                                 td: 200
                       Lambert Y: 3290721
                                   td formation:
producing formation:
latitude:
                            longitude:
Water from sandstone at depth 100 to
                                         200 ft.
Screen: Diam. 0 in. Length:
                               0 ft.
                                         Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                    Kind and Weight
                                         From(ft)
                                                     To(ft)
                     PVC
Size hole below casing: 6 in.
Static level 13 ft. below casing top which is
                                                    4 ft. above grnd level.
                 30 ft. when pumping at
                                             40 gpm for 4 hours.
Pumping level
Formations Passed Through
                                           Thickness Bottom
```

```
20
                                               10
  gravel
                                               20
                                                         40
  limestone gray-yl
  shale-limestone
                                               42
                                                         82
  dirty sandstone (yl)
                                               18
                                                         100
                                              100
  white sandstone
                 Livingston, Lowell
121412332000
                                                             15-24N-10E
Status: WATER
                                      SW NE NE
                                                    Elev:
                    permit date: 05/19/89
permit: 011515
                                                   comp. date: 07/01/89
                     Lambert Y: 3294419
Lambert X: 3048782
                                                    td: 260
producing formation:
                                     td formation:
latitude: longitude: Water from rock at depth 128 to 260 ft.
Screen: Diam. in. Length: 0 ft. Slot:
Casing and Liner Pipe -
                     Kind and Weight From(ft) To(ft)
     Diam. (in.)
                       A-53
Size hole below casing: 6 in.
Static level 60 ft. below casing top which is 1 ft. above grnd Pumping level 75 ft. when pumping at 0 gpm for 2 hours.
                                                    1 ft. above grnd level...
Formations Passed Through
                                             Thickness Bottom
                                               2
  top soil
. sand & gravel
                                               93
                                                          95
  lime rock
                                               33
                                                         128
                                                         260
  sandstone
                                              132
121412289600
                   Martin, Jonas Willard
                                                              15-24N-10E
permit: 101225
                  200 SL 100 WL SE Elev:
permit date: 09/08/81 comp. date:
                                                 comp. date: 09/09/81
producing formation: latitude: U9/08/81
                                     td formation:
                             longitude:
latitude:
Water from sandstone at depth 123 to 180 ft.
Screen: Diam. 0 in. Length: 0 ft.
                                           Slot: 0
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From (ft)
                                                        To(ft)
                     WT ST 19.45
                                                             124
        6
Size hole below casing: 6 in.
Static level 32 ft. below casing top which is 1 ft. above grnd level.

Pumping level 45 ft. when pumping at 40 gpm for 4 hours.
                                              Thickness Bottom
Formations Passed Through
                                               18
                                                          18
  sand
  sand gravel
                                                97
                                                65
  sandstone
121412332100
                  Martin, Jonas Willard
                                                              15-24N-10E
Ogle
Status: WATER SW SE SW permit: 016939 permit date: 02/16/90
                                                     Elev: 700GL
                                                    comp. date: 03/15/90
Lambert X: 3046223
                      Lambert Y: 3290343
                                                     td: 155
producing formation:
                                     td formation:
latitude:
                             longitude:
Water from sandstone at depth 0 to
                                             O ft.
Screen: Diam. in. Length:
                                  0 ft.
                                             Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From (ft)
                                                        To(ft)
6 WT STEEL Size hole below casing: 6 in.
Static level 15 ft. below casing top which is 1 ft. above grnd Pumping level 25 ft. when pumping at 50 gpm for 4 hours.
                                                       1 ft. above grnd level.
Formations Passed Through
                                              Thickness Bottom
                                                5
                                                           5
  top soil
                                                40
                                                            45
  gravel
                                                25
                                                            70
  broken limestone, shale
```

top soil

10

```
121412332200
                 Martin, Jonas Willard
                                                          15-24N-10E
Status: WATER
                                    SW SW NW
                                                  Elev:
                     permit date: 07/06/89
permit: 012736
                                                comp. date: 08/05/89
Lambert X: 3044843
                        Lambert Y: 3293011
                                                  td:
                                                        208
                                   td formation:
producing formation:
                            longitude:
Water from sandstone at depth 97 to
                                        208 ft.
Screen: Diam. in. Length:
                                 0 ft.
                                         Slot:
Casing and Liner Pipe -
    Diam. (in.) Kind and Weight
                                         From(ft)
                      PVC
                                                          98
Size hole below casing: 6 in.
Static level 47 ft. below casing top which is
                                                    1 ft. above grnd level.
               60 ft. when pumping at
                                            40 gpm for
Pumping level
                                                            4 hours.
Formations Passed Through
                                           Thickness Bottom
 clay
                                            10
                                                       10
 yellow limestone
                                             40
                                                       50
  gray limestone
                                             35
                                                       85
  sandstone
                                            123
                                                      208
121412423700
                  McKinney, Melvin D.
                                                          15-24N-10E
0ale
                                    SE SE SE
Status: WATER
                                                  Elev:
                  permit date: 03/22/96
                                                comp. date: 06/12/94
Lambert X: 3049540
                      Lambert Y: 3290424
                                                  td: 240
producing formation:
                                   td formation:
                            longitude:
latitude:
Water from rock at depth 120 to 240 ft.
Screen: Diam. in. Length: 0 ft.
                                         Slot:
Casing and Liner Pipe -
     Diam. (in.)
                    Kind and Weight
                                         From(ft)
                                                    To(ft)
                      STEEL 15#/FT
Size hole below casing: 5 in.
Static level 50 ft. below casing top which is
                                                    2 ft. above grnd level.
                80 ft. when pumping at
Pumping level
                                              0 gpm for
Formations Passed Through
                                          Thickness Bottom
  topsoil
                                             3
                                                        3
  sand & gravel
                                             85
                                                       88
  yellow lime & sandstone
                                            152
                                                       240
121412420400
                  McKinney, Melvin D.
                                                           15-24N-10E
Oale
Status: WATER
                                    NW SE SE
                                                  Elev:
                                                 comp. date: 04/12/94
                     permit date: 04/08/94
Lambert X: 3048861
                     Lambert Y: 3291076
                                                 td: 200
producing formation:
                                   td formation:
latitude: 1
                           longitude:
Water from rock at depth 60 to 200
Screen: Diam. in. Length:
                                0 ft.
                                          Slot:
Casing and Liner Pipe -
     Diam. (in.)
                   Kind and Weight
                                         From(ft)
                      STEEL 15#
Size hole below casing: 5 in.
Static level 60 ft. below casing top which is
                                                     1 ft. above grnd level.
                85 ft. when pumping at
Pumping level
                                             0 gpm for
                                                          8 hours.
Formations Passed Through
                                           Thickness Bottom
  topsoil
                                              2
                                                         2
                                              7
  sand
                                                         9
                                             71
                                                        80
  yellow lime
  gray lime
                                             25
                                                       105
                                             95
                                                       200
  sandstone .
```

```
Petros, Todd - AAA Builders
Ogle
                                                 Elev:
permit: permit date: 07/09/01
Lambert X: 3048213 Lambert V. 2007
Status: WATER
                                   SE SW SE
                                               comp. date: 07/18/01
                                                 td: 180
producing formation:
                                  td formation:
latitude: 42.073352
                          longitude: 89.321699
Water from sandstone at depth 130 to
                                      180 ft.
Screen: Diam. in. Length: 0 ft.
                                         Slot:
Casing and Liner Pipe -
                                          -1
    Diam. (in.) Kind and Weight From(ft)
                                                   To(ft)
                    SA 53B
                                                    130
Size hole below casing: in.
Static level 40 ft. below casing top which is
                                                    1 ft. above grnd level.
                 50 ft. when pumping at
                                           20 gpm for
                                                           4 hours.
Pumping level
                                          Thickness Bottom
Formations Passed Through
                                                    7
                                            7
  sand/clay
  sand, 20 gpm @ 50', 30 gpm @ 60'
                                                      90
                                            83
                                                     115
                                            25
                                                     180
  sandstone, 75 gpm @ 180'
                                            65
121412533600
                                                          15-24N-10E
                 Schuur, Bill
Oale
                                                 Elev: 0
Status: WATER
                                   NW NE SE
                     permit date: 08/12/03
                                                comp. date: 09/06/03
permit:
Lambert X: 3048829
                                                  td: 185
                     Lambert Y: 3292413
                                   td formation:
producing formation:
                           longitude:
latitude:
Water from St. Peter sandstone at depth 110 to
Screen: Diam. in. Length: 0 ft.
                                        Slot:
Casing and Liner Pipe -
                                        From(ft)
                                                    To(ft)
     Diam. (in.)
                    Kind and Weight
                     A53B.
                                                         103
Size hole below casing: in.
Static level 60 ft. below casing top which is 1 ft. above grnd level. Pumping level 70 ft. when pumping at 10 gpm for 6 hours.
Formations Passed Through
                                           Thickness Bottom
                                            40
                                                     40
  sand
                                             48
                                                       88
  sand gravel
                                             97
                                                      185
  St. Peter sandstone
                                                          15-24N-10E
121412318700
                  Bull, Jack D
Ogle
                                    SW SW SW
                                                  Elev:
Status: WATER
permit: 008125
                    permit date: 11/30/88
                                                 comp. date: 02/28/89
                    Lambert Y: 3290311
Lambert X: 3044897
                                                  td: 185
                                   td formation:
producing formation:
                           longitude
latitude:
Water from rock at depth 130 to 185 ft.
Screen: Diam. in. Length:
                                 0 ft. Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                       From(ft)
                                                    To(ft)
                      .258 BLACK
       5
Size hole below casing: 5 in.
Static level 80 ft. below casing top which is 1 ft. above grnd level.
               85 ft. when pumping at 0 gpm for 6 hours.
Pumping level
Formations Passed Through
                                           Thickness Bottom
  top soil
  yellow rock
                                             25
                                                        30
                                             45
                                                        75
  gray rock
                                             35
                                                       110
  yellow rock
                                             20
                                                       130
  gray shale
                                             55
                                                       185
  white St. Pete
                   Jack Bull Well & Septic
                                                           15-24N-10E
121412491700
Ogle
                                    SE SE SE
Status: WATER
```

-16-

permit date: 09/13/00

permit:

comp. date: 09/26/00

```
Lambert X: 3049540
                         Lambert Y: 3290424
                                                   td:
                                                           63
producing formation:
                                    td formation:
latitude;
                             longitude:
Water from sand gravel at depth
                                  40 to
Screen: Diam. 4 in.
                    Length:
                                  3 ft.
                                           Slot: .015
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft) To(ft)
                       ASTM A53B
Size hole below casing:
                          in.
              22 ft. below casing top which is
Static level
                                                     1 ft. above grnd level.
                29 ft. when pumping at
Pumping level
                                              10 gpm for
                                                              6 hours.
Formations Passed Through
                                            Thickness Bottom
                                                         1
                                              1
  brown sand
                                              35
                                                         36
  brown clay
                                               8
                                                         44
  brown sand & gravel
                                                         63
121412439200
                   Bull, Jack D.
                                                            15-24N-10E
                   Vollmer & Jennings Const.
Ogle
Status: WATER
NW NW S
permit date: 10/07/97
Lambert X: 3047505
Lambert X: 3047505
                                     NW NW SE
                                                    Elev:
                                                  comp. date: 11/22/97
                                                    td:
                                                           86
producing formation:
                                    td formation:
latitude: 42.078852
                            longitude: 89.324304
Water from gravel at depth 60 to
                                       86'ft.
Screen: Diam. 4 in. Length:
                                 3 ft.
                                           Slot: .015
Casing and Liner Pipe -
                   Kind and Weight
     Diam. (in.)
                                       From(ft)
                                                      To(ft)
                      ..258 BLACK
Size hole below casing:
                          in.
Static level
                30 ft. below casing top which is
                                                      1 ft. above grnd level.
Pumping level
                  33 ft. when pumping at
                                              10 gpm for
                                                              6 hours.
Formations Passed Through
                                            Thickness Bottom
  topsoil
                                               3
                                                          3
  brown sand
                                              57
                                                         60
                                                         86
  brown gravel
                                              26
121412560700
                   Schuur, Bill
                                                            15-24N-10E
Ogle
                   Wenberg Homebuilders
Status: WATER
                                     SE NE SE
                                                   Elev:
permit:
                      permit date: 02/09/05
                                                  comp. date: 06/20/05
Lambert X: 3049508
                       Lambert Y: 3291759
                                                    td: 205
producing formation:
                                    td formation:
latitude: 42.077095
                             longitude: 89.316879
Water from St. Peter at depth 120 to
                                          205 ft:
               in.
Screen: Diam.
                     Length:
                                  0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                      A53B
Size hole below casing:
                          in.
Static level 30 ft. below casing top which is
                                                      1 ft. above grnd level.
Pumping level
                  35 ft. when pumping at 10 gpm for
Formations Passed Through
                                            Thickness Bottom
  topsoil
                                               2
                                                          2
  clay sand
                                                         48
  red rock
                                               2
                                                         50
  blue shale
                                              10
                                                        - 60
  St. Peter
                                             145
                                                        205
                   Allabaugh, Neil M.
121412464300
                                                             15-24N-10E
Ogle
Status: WATER
                                     SE SE NW
                                                    Elev:
                     permit date: 09/15/97
                                                  comp. date: 10/06/97
permit: 141-97-
Lambert X: 3046828
                         Lambert Y: 3293046
                                                    td:
                                                            65
producing formation:
                                    td formation:
                             longitude:
latitude:
Water from brown sand at depth
                                 62 to
```

```
Screen: Diam. 5 in. Length: 4 ft. Slot: .2
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From(ft), To(ft)
                        A53
Size hole below casing: in.
Static level 10 ft. below casing top which is 1 ft. above grnd level.

Pumping level 15 ft. when pumping at 10 gpm for 1 hours.
Formations Passed Through
                                                Thickness Bottom
                                                   6
                                                   17
  sand
                                                   19
                                                               42
  gravel
  brown sand
                                                  . 23
                    McKinney, Melvin D.
                                                                  15-24N-10E
121412420500
Ogle
                                         NW SE SE
Status: WATER
                                                      Elev:
permit: permit date: 04/08/94 comp. date: 04/17/94
Lambert X: 3048861 Lambert Y: 3291076 td: 200
producing formation:
                                        td formation:
latitude: longitude: longitude: Water from rock at depth 97 to , 200 ft.
Screen: Diam. in. Length: 0 ft. Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From(ft)
                        STEEL 15#
                                                     96
                        LINER STEEL
                                                                 136
Size hole below casing: in.
Static level 75 ft. below casing top which is 1 ft. above grnd level. Pumping level 75 ft. when pumping at 0 gpm for 12 hours.
                                                 Thickness Bottom
Formations Passed Through
                                                         . 4
                                                   4
  topsoil
                                                                45
                                                   41
  red clay
                                                   25
                                                               70
  sand
                                                   24
                                                                94
  gray clay
                                                  106
                                                             200
  sandstone
                                                                   22-24N-10E
121412507600
Ogle
                                                        Elev: 0
Status: WATER
                                        NW NW NE
permit: permit date:
Lambert X: 3047563 Lambert Y: 3289712
                                                        comp. date:
                                                         td: 0
producing formation: td form latitude: longitude: Water from at depth 0 to 0 ft.
                                        td formation:
                               longitude:
Screen: Diam. in. Length:
                                     0 ft. Slot:
Casing and Liner Pipe -
      Diam. (in.) Kind and Weight From(ft) To(ft)
Static level 0 ft. below casing top which is 0 ft. above grnd level.

Pumping level 0 ft. when pumping at 0 com for 0 bours
Size hole below casing: in.
                    Schuur, Bill
                                                                   22-24N-10E
121412545800
Ogle
                                         NE SE SE
                                                         Elev:
 Status: WATER
                     permit date: 07/15/02
                                                       comp. date: 08/03/02
Lambert X: 3049603
                        Lambert Y: 3285809
                                                         td: 185
producing formation: td formation: latitude: longitude water from St. Peter at depth 100 to 185 ft.
                                       td formation:
 Screen: Diam. in. Length: 0 ft.
                                               Slot:
      ng and Liner Pipe -
Diam. (in.) Kind and Weight From(ft) To(ft)
 Casing and Liner Pipe -
 Size hole below casing: in.
 Static level 45 ft. below casing top which is 1 ft. above grnd Pumping level 47 ft. when pumping at 10 gpm for 6 hours.
                                                           1 ft. above grnd level.
Formations Passed Through
                                                 Thickness Bottom
```

```
topsoil
  soft brown limestone
                                              86
                                                         88
                                                       100
  blue shale
                                              12
                                              85
                                                        185
  St. Peter
                                                            22-24N-10E
121412385800
                   Martin, Jonas Willard
Ogle
                                                    Elev:
                                                            700GL
Status: WATER
                                     NW NE SW
                      permit date: 12/20/93
                                                  comp. date: 12/20/93
permit:
Lambert X: 3046283
                         Lambert Y: 3287060
                                                    td: 163
producing formation:
                                    td formation:
                             longitude:
latitude:
Water from sandstone at depth 82 to
Screen: Diam. in.
                     Length:
                                  0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                   To(ft)
                       WT STEEL
Size hole below casing: 6 in.
Static level 15 ft. below casing top which is
                                                      0 ft. above grnd level.
                40 ft. when pumping at
                                            30 gpm for
                                                              4 hours.
Pumping level
Formations Passed Through
                                            Thickness Bottom
  gravel
                                              42
                                                         42
                                              13
                                                         55
  shale
                                              13
                                                        ..68
  sandstone & shale
                                               95
                                                        163
  sandstone
                                                             22-24N-10E
                   Martin, Jonas
121410147600
Oale
                   200 SL 200 EL
                                                      Elev:
                                                               700GL
Status: WATER
                                       MM ·
                                                  comp. date: 03/01/73
                      permit date:
permit: 0
Lambert X: 3047066
                         Lambert Y: 3287604
                                                          165
                                                    td:
                                    td formation:
producing formation:
latitude:
                             longitude #
                                                             22-24N-10E
                   Martin, Jonas Willard
121412251200
0gle
                  200 NL 200 EL
                                       NW SE SE
                                                     Elev:
                                                               750GL
Status: WATER
                                                   comp. date: 04/24/86
                      permit date: 04/11/86
permit: 123028
Lambert X: 3049072
                         Lambert Y: 3285929
                                                     td:
                                                           215
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth 112 to
                                           Slot: 0
Screen: Diam. 0 in. Length:
                                 0 ft.
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                           From(ft)
                                                       To(ft)
                                                  -2
                       WT STEEL
                                                            114
Size hole below casing: 6 in.
                                                       2 ft. above grnd level.
                40 ft. below casing top which is
Static level
                  68 ft. when pumping at
                                               40 gpm for
                                                               4 hours.
 Pumping level
 Formations Passed Through
                                             Thickness Bottom
                                                          18
                                               18
   clay-gravel
  broken limestone
                                               68
                                                          86
  shale-ls-sandstone
                                               19
                                                         105
  sandstone
                                              110
                                                         215
                   Martin, Jonas
 121412176000
                                                             22-24N-10E
Ogle
                       SE 300 WL
                                                       Elev:
 Status: WATER
                                                   comp. date: 01/01/75
                      permit date:
 permit: 0
 Lambert X: 3047554
                         Lambert Y: 3288314
                                                     td: 179
                                     td formation:
 producing formation:
 latitude:
                              longitude:
```

121412369800 Ogle Bull, Jack D.

22-24N-10E

```
Status: WATER
                                     NW NW
                                                   Elev:
permit:
                      permit date: 09/20/93
                                                  comp. date: 10/11/93
Lambert X: 3045248
                         Lambert Y: 3289328
                                                    td: 165
producing formation:
                                    td formation
latitude: longitude: longitude: Water from rock at depth 60 to 165 ft.
Screen: Diam. in.
                     Length: 0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                                      To(ft)
                                          From(ft)
                       .258 BLACK
                                                            49
Size hole below casing: 5 in.
Static level
               15 ft. below casing top which is 1 ft. above grnd level.
                15 ft. when pumping at
Pumping level
                                              0 gpm for
                                                              6 hours.
Formations Passed Through
                                            Thickness Bottom
  top soil
                                              10
                                                         10
 clav
                                               6
                                                         16
  clay, sand, gravel
                                               26
                                                         42
  yellow rock
                                               23
                                                         65
  St. Peter
                                             100
                                                        165
121412369900
                   Bull, Jack D.
                                                            22-24N-10E
Ogle
Status: WATER
                                     WW WM WM
                                                    Elev:
                      permit date: 09/27/93
                                                   comp. date: 10/07/93
permit:
Lambert X: 3044910
                         Lambert Y: 3289647
                                                    td:
producing formation:
                                    td formation:
latitude: longitude: Water from rock at depth 85 to 165 ft.
Screen: Diam. in. Length:
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                           From(ft)
                                                      To(ft)
        5
                       .258 BLACK
Size hole below casing: 5 in.
Static level 15 ft. below casing top which is
                                                    1 ft. above grnd level.
                                              0 gpm for
                  20 ft. when pumping at
Pumping level
                                                               6 hours.
Formations Passed Through
                                             Thickness Bottom
  top soil
                                                5
                                                           5
                                                3
                                                           8
 clay
                                               17
                                                          25
 rotten rock
  yellow rock
                                               10
                                                          35
  gray rock.
                                                          42
                                                          55
  blue rock
                                               13
  St. Peter
                                              110
                                                         165
121412560600
                   Joe Arwood
                                                             22-24N-10E
Ogle
Status: WATER
                                     SW SW NE
                                                     Elev:
permit:
                      permit date: 11/01/04
                                                   comp. date: 01/07/05
Lambert X: 3047594
                         Lambert Y: 3287744
                                                     td: 155
producing formation:
                                     td formation:
latitude:
                             longitude:
Water from sandstone at depth 67 to
                                           155 ft.
                     Length:
Screen: Diam. in.
                                  0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                           From(ft)
                       A53B STEEL
Size hole below casing:
                          in.
                 4 ft. below casing top which is
Static level
                                                       1 ft. above grnd level.
                 20 ft. when pumping at
Pumping level
                                               20 gpm for
                                                               4 hours.
Formations Passed Through
                                             Thickness Bottom
  clay, sand, gravel
                                               60
                                                          60
  Glenwood
                                                7
                                                          67
  sandstone
                                               88
                                                         155
121412420600
                   McKinney, Melvin_D.
                                                             22-24N-10E
Ogle
                                      SW SW SW
Status: WATER
                                                     Elev:
```

-20-

```
permit date: 04/28/93
                                              comp. date: 05/06/93
Lambert X: 3045001
                       Lambert Y: 3285074
                                                 td: 200
producing formation:
                                  td formation:
                           longitude:
latitude:
Water from rock at depth 70 to 200 it.
Screen: Diam. in. Length: 0 ft.
                                         Slot:
Casing and Liner Pipe -
    Diam. (in.) Kind and Weight
                                        From(ft)
     . 5
                    15# STEEL
                                                         65
Size hole below casing: 5 in.
Static level 45 ft. below casing top which is
                                                 0 ft. above grnd level.
               55 ft. when pumping at 0 gpm for 2 hours.
Pumping level
Formations Passed Through
                                          Thickness Bottom
  topsoil
                                            . 2
                                                       2
  red clay & sand
                                            43
                                                      45
  blue clay
                                            20
                                                      65
                                            65
  yellow lime
                                                     130
                                            70
                                                     200
  sandstone
121412289800
                  Martin. Jonas Willard
                                                         22-24N-10E
Ogle
                     SL 50 WL
                                                           760GL
Status: WATER
                                     NW NE SE
                                                  Elev:
                     permit date: 03/10/83
permit: 106439
                                                comp. date: 03/19/83
Lambert X: 3048649
                      Lambert Y: 3286879
                                                td: 200
producing formation:
                                  td formation:
                          longitude:
latitude:
Water from sandstone at depth 128 to 200 rt.
Screen: Diam. 0 in. Length: 0 ft. Slot: 0
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                      From(ft)
                                                    To(ft)
                      WT ST 19.45
                                                        128
Size hole below casing: 6 in.
Static level 60 ft. below casing top which is
                                                    2 ft. above grnd level.
               68 ft. when pumping at
Pumping level
                                            40 gpm for 4 hours.
Formations Passed Through
                                          Thickness Bottom
                                                      2
                                             2
  top soil
                                            87
                                                       89
  limestone
                                                      117
  Glenwood
                                            28 -
  sandstone
                                            83
                                                      200
121410000400
                                                          22-24N-10E
Ogle
Status: WATER
                                    SE SW
                                                  Elev: 845GL
                                                comp. date: 01/01/57
permit: 0
                     permit date:
Lambert X: 3046642
                      Lambert Y: 3285429
                                                  td:
                                                        250
producing formation:
                                   td formation:
                            longitude
latitude#
                  Martin, Jonas
                                                          22-24N-10E
121410057100
Ogle
Status: WATER
                 100 SL 100 WL
                                                 . Elev:
                     permit date:
permit: 0
                                                comp. date: 07/01/68
Lambert X: 3047367
                     Lambert Y: 3287510
                                                td:
producing formation:
                                   td formation:
                          longitude
latitude:
121412403200
                  Martin, Jonas Willard
                                                          22-24N-10E
Ogle
                                                 Elev: 730GL
Status: WATER
                                    SE NE NW
                     permit date: 12/19/94
                                                comp. date: 03/04/95
permit:
                      Lambert Y: 3289040
Lambert X: 3046910
                                                  td: 185
producing formation:
                                   td formation:
                            longitude:
latitude:
Water from sandstone at depth 0 to
Screen: Diam. in. Length: 0 ft.
                                         Slot:
```

Casing and Liner Pipe -

```
Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                       WT STEEL
                                                         128
Size hole below casing: 6 in.
              38 ft. below casing top which is
                                                      0 ft. above grnd level.
Static level
                  48 ft. when pumping at
                                              30 gpm for
Pumping level
Formations Passed Through
                                            Thickness Bottom
                                                          6
  sandy clay
                                               6
  broken limestone - some gray
                                              94
                                                       .100
                                              85 -
                                                        185
  sandstone
                                                            22~24N-10E
121412183700
                   Martin, Jonas
Ogle
                  600 NL 600 EL
Status: WATER
                                       SE
                                                      Elev:
                                                              800GL
                      permit date:
                                                  comp. date: 07/01/75
permit: 0
Lambert X: 3049320
                         Lambert Y: 3286850
                                                          115
                                                    td:
producing formation
                                    td formation:
                             longitude:
latitude:
                                                            22-24N-10E
121410119500
                   Olson, Robert C.
                                                       107
Ogle
                      SL 300 WL
                                                      Elev:
Status: WATER
                                                  comp. date: 04/01/70
                      permit date:
permit: 0
Lambert X: 3044975
                         Lambert Y: 3284896
                                                           47
                                                    td:
                                    td formation:
producing formation:
                             longitude:
latitude:
                                                            22-24N-10E
121410051600
                   Martin, Jonas
                                                       1
Oale
                  2400 SL 1900 EL
                                                              700GL
                                                      Elev:
Status: WATER
                                                   comp. date: 01/01/67
                      permit date:
permit: 0
Lambert X: 3048016
                        Lambert Y: 3287195
                                                     td:
                                                         147
producing formation:
                                    td formation:
latitude:
                             longitude:
                                                             22-24N-10E
121412385900
                   Stone, Herald I.
Ogle
Status: WATER
                                     SE NW SE
                                                  Elev:
permit:
                      permit date: 11/10/93
                                                   comp. date: 02/15/94
Lambert X: 3048275
                         Lambert Y: 3286443
                                                     td:
                                                           180
producing formation:
                                     td formation
                             longitude:
latitude:
Water from rock at depth
                            0 to
                                  0 ft.
Screen: Diam. in. Length:
Casing and Liner Pipe -
                                         .From(ft)
                     Kind and Weight
                                                       To(ft)
     Diam. (in.)
                       IL APPROVED STEEL
                                                            153
Size hole below casing: 5 in.
                                                       0 ft. above grnd level.
                80 ft. below casing top which is
Static level
Pumping level
                   0 ft. when pumping at
                                               30 gpm for
                                                            0 hours.
Formations Passed Through
                                             Thickness Bottom
                                                8
                                                          - 8
  clay
  yellow & brown limestone (soft 35-48')
                                               45
                                                          53
  yellow limestone
                                                          56
                                                3
                                               52
                                                         108
  gray limestone w/streaks of yellow
                                               13
                                                         121
  dark gray shale, sharp cutting
  yellow soft limestone
                                                2
                                                         123
  sandstone & yellow soft limestone
                                               17
  ss w/cracks clean to 180'
                                               40
                                                         180
                   Martin, Jonas Willard
                                                             22-24N-10E
121412360400
Ogle
                                      SW NW SE
                                                  Elev:
Status: WATER
                      permit date: 08/24/92
                                                   comp. date: 08/26/92
permit:
Lambert X: 3047615
                                                           225
                         Lambert Y: 3286430
                                                     td:
```

td formation:

producing formation:

```
latitude:
                             longitude:
Water from sandstone at depth 150 to Screen: Diam. in. Length: 0 ft.
                                            220 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From(ft)
                                                      To(ft)
                      WT STEEL 19.45#/FT 0
                                                             164
Size hole below casing: 6 in.
Static level 85 ft. below casing top which is
                                                       1 ft. above grnd level.
Pumping level 95 ft. when pumping at 25 gpm for
                                                            4 hours.
Formations Passed Through
                                              Thickness Bottom
                                                          10
  yellow & gray limestone
                                               120
                                               15
                                                          145
  yellow limestone
                                                          150
                                                75
  sandstone
                                                          225
121410113200
                   Martin, Jonas
                                                              22-24N-10E
                   1200 NL 500 WL
Status: WATER
                                                       Elev: 680GL
permit: 0
                                                    comp. date: 05/01/69
                     permit date:
Lambert X: 3047745
                       Lambert Y: 3288845
                                                     td: 172
producing formation:
                                     td formation:
                              longitude:
latitude:
                   ∜Beaman, Jessie J.
121412360500
                                                  5
                                                             22-24N-10E
                   Three Hammers Const.
Status: WATER
                                      NW SE NE
                                                     Elev:
permit: permit date: 06/24/92 comp. date: 07/14/92 Lambert X: 3048907 Lambert Y: 3288429 td: 200
producing formation:
producing formation: td formation: latitude: 42.067939 longitude: 89.319147
                                     td formation:
Water from sandstone at depth 122 to 200 ft. Screen: Diam. in. Length: 0 ft. Slot: Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                            From(ft)
                       15#/FT BLACK
                                                              122
Size hole below casing: 5 in.
Static level 50 ft. below casing top which is 1 ft. above grnd Pumping level 50 ft. when pumping at 10 gpm for 2 hours.
                                                       1 ft. above grnd level.
Formations Passed Through
                                              Thickness Bottom
                                                20
                                                           20
  sand
  brown clay
                                                30
                                                            50
                                                20 1
                                                            70
  limestone
  brown clay
                                                10
                                                           80
                                                           90
                                                10
  limestone
                                                10
                                                          100
  brown clay
                                                12
                                                           112
  shale
                                                88
                                                         · 200
  sandstone
121412187900
                   Martin, Jonas
                                                               23-24N-10E
Ogle
                   500 SL 500 EL
Status: WATER
                                         NW
                                                        Elev: 725GL
                                                    comp. date: 01/01/76
                      permit date:
permit: 0
Lambert X: 3052040
                       Lambert Y: 3287997
                                                     td: 460
producing formation:
                                   td formation:
latitude:
                          longitude:
                   Olson, Alan R.
                                                               23-24N-10E
121412360600
NW SE S

Lambert X: 3054209 Lambert V 2000
                                       NW SE SE
                                                      Elev:
                                                     comp. date: 06/18/92
                                                      td: 200
producing formation:
                                     td formation:
                             longitude:
Water from sandstone at depth 133 to
```

Slot:

0 ft.

Screen: Diam. in. Length:

```
Casing and Liner Pipe -
                                       From(ft)
     Diam. (in.) Kind and Weight
                                                    To(ft)
                      STEEL 19
                                                         120
                                               -1
Size hole below casing: 6 in.
Static level 75 ft. below casing top which is 1 ft. above grnd level.
                  0 ft. when pumping at 0 gpm for
Pumping level
                                                            0 hours.
Formations Passed Through
                                           Thickness Bottom
                                           3
  top soil
                                                        3
  soft limestone
                                              4
  soft limestone (crevis)
                                            107
                                                      114
  dolomite
                                             19
                                                      133
  sandstone
                                             67
                                                      200
                  Beaman, Jessie J.
                                                           23-24N-10E
121412429900
                  K.M. Builders
Ogle
                                                  Elev: 0
Status: WATER
                                    NE SE SE
                                                 comp. date: 10/20/96
                     permit date: 10/24/96
producing formation:

latitude: 42 060000
permit:
                                                   td: 240
                                   td formation:
                           longitude: 89.297129
Water from sandstone at depth 170 to
                                        240 ft.
Screen: Diam. in. Length: 0 ft.
                                          Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight From(ft)
                                                    To(ft)
                     ASTM A53-B
                                                    . 131
Size hole below casing: 5 in.
Static level 91 ft. below casing top which is
Pumping level 140 ft. when pumping at 20
                                                     1 ft. above grnd level.
               140 ft. when pumping at 20 gpm for 2 hours.
                                           Thickness Bottom
Formations Passed Through
  brown clay
                                             10
                                                      10
  brown limestone
                                             40
                                                        50
 brown clay
                                             10
                                                        60
                                             20
  limestone
                                             10
                                                        90
  brown clay
                                             30
                                                       120
  limestone & clay /
                                             35
                                                       155
  dolomite
                                             15
  shale
  sandstone
                                             70
                  McKinney, <u>Melvin</u> D.
                                                           23-24N-10E
121412420700
Ogle
                                   SE SE NE
Status: WATER
                                                  Elev:
                      permit date: 04/08/94
                                                 comp. date: 04/10/94
permit:
Lambert X: 3054846 Lambert Y: 3287872
                                                   td: 200
producing formation:
                                    td formation:
latitude:
                            longitude:
Water from rock at depth 70 to 200 ft.
Screen: Diam. in. Length:
                                 0 ft.
                                          Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                                     To(ft)
                                         From(ft)
                      SCH #40
Size hole below casing: 5 in.
Static level 80 ft. below casing top which is 1 ft. above grnd level.
                  95 ft. when pumping at 0 gpm for
Pumping level
                                                              4 hours.
Formations Passed Through
                                            Thickness Bottom
                                                         4.
                                              4
  topsoil
                                                        75
                                              71
  yellow lime
                                              45
                                                       120
  gray lime"
                                              80
  sandstone
                                                        200
121412190400
                   McKinsey, Melvin D.
                                                            23-24N-10E
Ogle
Status: WATER
                                     SE NE SE
                                                   Elev:
                                                  comp. date: 04/01/76
permit: 0
                      permit date:
Lambert 8054860
                         Lambert Y: 3286551
                                                   td: 150
producing rormation:
                                    td formation:
latitude:
                             longitude: (
```

-24-

```
121412304300
                   Martin, Jonas Willard
                                                            23-24N-10E
Oqle
Status: WATER
                       NL 200 EL
                                       SE SW
                                                     Elev:
                                                              702GL
permit: 134619
                      permit date: 08/18/87
                                                  comp. date: 08/21/87
Lambert X: 3052363
                        Lambert Y: 3285982
                                                    td:
                                                         220
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth 138 to
                                          220 ft.
Screen: Diam. 0 in.
                     Length:
                                0 ft.
                                           Slot: 0
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                       PVC
                                                          - 138
Size hole below casing: 6 in.
              67 ft. below casing top which is
Static level
                                                      1 ft. above grnd level.
Pumping level
                88 ft. when pumping at
                                             40 gpm for
                                                            4 hours.
Formations Passed Through
                                            Thickness Bottom
  clay
                                                          3
  yellow limestone
                                              62
                                                         65
  gray limestone
                                              15
                                                         80
                                                         85
  brown clay
                                              5
  gray limestone
                                              15
                                                        100
  Glenwood
                                              30
                                                        130
  sandstone
                                              90
                                                        220
121412332300
                   Martin, Jonas Willard
                                                            23-24N-10E
Ogle
                                                       2
Status: WATER
                                     NW SW SW-
                                                    Elev:
                                                            700GL
                      permit date: 10/15/91
                                                  comp. date: 10/19/91
Lambert X: 3050262
                         Lambert Y: 3285820
                                                    td:
                                                          185
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth 120 to
                                          185 ft.
Screen: Diam. in.
                    Length:
                                  0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                       PVC
                                                           120
Size hole below casing: 6 in.
              13 ft. below casing top which is
                                                      0 ft. above grnd level.
Static level
                  60 ft. when pumping at
Pumping level
                                          30 gpm for
                                                            4 hours.
Formations Passed Through
                                            Thickness Bottom
  clay
                                              70
  gravel
                                                        . 75
  gray limestone
                                              15
                                                         90
  shale
                                               7
                                                         97
  shale sandstone
                                               8
                                                         105
  sandstone
                                              80
                                                         185
                   Martin, Jonas
121412173300
                                                             24-24N-10E
Ogle
Status: WATER
                      SL 500 WL
                                       NW
                                                      Elev:
                                                             820GL
                      permit date:
permit: 0
                                                   comp. date: 07/01/74
Lambert X: 3055678
                         Lambert Y: 3287660
                                                    td: 225
producing formation
                                    td formation:
latitude:
                             longitude:
                   Commonwealth Edsn
121412518800
                                                             24-24N-10E
Ogle
                   Byron Station
                                                        G-6
                  660 NL 132 EL
Status: ENG
                                                      Elev:
                                                                 n
permit:
                      permit date:
                                                   comp. date:
Lambert X: 3060312
                         Lambert "Y: 3289660
                                                     td:
                                                           267
producing formation:
                                    td formation:
latitude: 42.071261
                             longitude: 89.276962
```

121412518900

Commonwealth Edsn

24-24N-10E

Status: ENG 2100 NL 265 WL permit: G-8 Elev: comp. date: permit: permit date:
Lambert X: 3055438 Lambert Y: 3288096 td: 123 producing formation: td formation: latitude: 42.066983 longitude: 89.294999 Wehling Well Works Inc. Commonwealth Edison 121412174300 24-24N-10E 1 Ogle Elev: 860GL Status: WATER 365 NL 520 WL NE permit: 0 permit date: permit: 0 permit date:
Lambert X: 3058319 Lambert Y: 3289904
producing formation: td formation:
latitude: 42.071947 longitude: 89.284330 comp. date: 10/01/74 td: 853 121412174400 Wehling Well Works Inc. 24-24N-10E Commonwealth Edison 2 Ogle Status: WATER 215 NL 1010 EL
permit: 0 permit date:
Lambert X: 3059432 Lambert Y: 3290083
producing formation: td formation:
latitude: 42.072432 longitude: 89.280212 Elev: 875GL comp. date: 12/01/74 td: 834 24-24N-10E 121412168200 Rosenquist, Gerald Ogle NW SE SW Elev: Status: WATER permit date: comp. date: 07/01/74 Lambert Y: 3285939 td: 165 permit: 0 Lambert X: 3056839 td formation: producing formation: longitude: latitude: Dresden, Edward L. 121412487700 24-24N-10E Ogle Status: WATER
permit: permit date: 04/25/00
Lambert X: 3056182 Lambert Y: 3285922
td formation Elev: 0 Status: WATER NE SW SW comp. date: 08/01/00 td: 285 producing formation: td formation: latitude: longitude: Water from white sandstone at depth 215 to 285 ft. Screen: Diam. in. Length: 0 ft. Slot: Casing and Liner Pipe -Diam.' (in.) Kind and Weight From(ft) To(ft) 6 ASTM A53B 190 Size hole below casing: in. Static level 118 ft. below casing top which is 2 ft. above grnd Pumping level 285 ft. when pumping at 75 gpm for 2 hours. 2 ft. above grnd level. Formations Passed Through Thickness Bottom clay 15 15 broken limestone 95 110 limestone with shale streaks 40 150 hard limestone 20 170 20 Glenwood 190 yellow sandstone 25 215 70 white sandstone 285 121412178400 Hinkle J 24-24N-10E Ogle Status: WATER Elev: E2 SW 0 permit: 0 permit date:
Lambert X: 3057166 Lambert Y: comp. date: 01/01/75 Lambert Y: 3286277 td: 100 · producing formation: td formation: latitude: longitude:

```
Ogle
Status: WATER
                                     E2 SW
                                                   Elev:
                                                           825GL
permit: 0
                      permit date:
                                                 comp. date: 07/01/71
Lambert X: 3057166
                        Lambert Y: 3286277
                                                   td:
                                                          65
producing formation:
                                   td formation:
latitude:
                            longitude:
121412538400
                   Schuur, Bill
                                                           24-24N-10E
Status: WATER
                                    NW SE SW
                                                   Elev:
                      permit date: 10/31/03
permit:
                                                 comp. date: 11/10/03
Lambert X: 3056839
                        Lambert Y: 3285939
                                                   td: 245
producing formation:
                                   td formation:
latitude:
                            longitude:
Water from St. Peter at depth 100 to
                                          245 ft.
Screen: Diam. in.
                    Length:
                                 0 ft.
                                          Slot:
Casing and Liner Pipe -
     Diam. (in.)
                    Kind and Weight
                                         From(ft)
                                                     To(ft)
                       A53B
Size hole below casing: in.
Static level 120 ft. below casing top which is
                                                     1 ft. above grnd level.
              130 ft. when pumping at 10 gpm for
Pumping level
                                                          6 hours.
Formations Passed Through
                                            Thickness Bottom
 fill
                                                         3
                                              7
  brown clay
                                                        10
  sand gravel
                                              10
                                                        20
                                              80
  yellow rock
                                                       100
  white rock
                                              20
                                                        120
  gray dolomite
                                              70
                                                        190
  blue shale
                                              30
                                                        220
  St. Peter
                                              25
121410125900
                                                            24-24N-10E
Ogle
Status: WATER
                                     NW NE SW
                                                    Elev:
                                                  comp. date: 09/01/70
permit: 0
                      permit date:
Lambert X: 3056829
                        Lambert Y: 3287259
                                                    td:
                                                          110
                                    td formation:
producing formation:
latitude:
                             longitude:
121410060100
                   Martin, Jonas
                                                            24-24N-10E
                                                       2
Ogle
                      NL 1200 WL
                                                      Elev: 825GL
Status: WATER
                                       SW
permit: 0
                      permit date:
                                                  comp. date: 01/01/68
Lambert X: 3056386
                       Lambert Y: 3286878
                                                    td:
                                                          283
producing formation;
                                    td formation:
                             longitude:
latitude:
121412316300
                   Bull, Jack D
                                                            24-24N-10E
Ogle
Status: WATER
                                     NW SE NW
                                                    Elev:
permit: 006312
                      permit date: 09/29/88
                                                  comp. date: 10/14/88
                         Lambert Y: 3288580
Lambert X: 3056818
                                                    td: 225
producing formation:
                                    td formation:
                             longitude:
Water from rock at depth 140 to
                                   225 IL.
                                  0 ft.
Screen: Diam. in. Length:
                                           Slot:
Casing and Liner Pipe -
                                                    To(ft)
     Diam. (in.)
                    Kind and Weight
                                          From(ft)
                       .258 BLACK
Size hole below casing: 5 in.
Static level 70 ft. below casing top which is 🐇
                                                     1 ft. above grnd level.
                 75 ft. when pumping at
                                              12 gpm for
Pumping level
                                                            6 hours.
Formations Passed Through
                                            Thickness Bottom
  top soil
```

80

yellow rock

85

```
gray rock
                                              45
                                                        130
  yellow rock
                                              10
                                                        140
  brown rock
                                               5
                                                        145
  St. Pete
                                              80
                                                        225
121412485600
                   Dresden Edward L.
                                                            24-24N-10E
Ogle
                                                       1
Status: WATER
                                     SE SW SW
                                                    Elev:
                                                  comp. date: 04/01/00
permit:
                      permit date: 10/15/99
Lambert X: 3056188
                         Lambert Y: 3285261
                                                    td:
producing formation:
                                    td formation:
latitude:
                             longitude:
Water from sandstone at depth
                                          290 ft.
                                220 to
Screen: Diam. in. Length:
                                  0 ft.
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                       ASTM A53B
                                                  0
                                                            68
                       ASTM A53B
                                                 10
                                                           220
Size hole below casing: in.
Static level 122 ft. below casing top which is
                                                      5 ft. above grnd level.
              290 ft. when pumping at
Pumping level
                                              50 gpm for
                                                              2 hours.
Formations Passed Through
                                            Thickness Bottom
  clay & sandy rich mix
                                              42
                                                        42
  gray limestone
                                              38
                                                         80
  rock & shale mix
                                              45
                                                        125
  soft shale
                                              20
                                                        145
  hard shale
                                              35
                                                        180
  yellow limestone
                                               5
                                                        185
  sandstone
                                             105
                                                        290
121412158600
                   Martin, Jonas
                                                             24-24N-10E
Ogle
Status: WATER
                  150 NL 1200 EL
                                       SE.
                                                      Elev:
                                                               880GL
permit: 0
                                                  comp. date: 09/01/73
                      permit date:
Lambert X: 3059250 -
                         Lambert Y: 3287502
                                                    td: 335
producing formation:
                                    td formation:
latitude: •
                             longitude:
121412255200
                  Martin, Jonas Willard
                                                             25-24N-10E
Ogle
                                      NE NE
                       SL 100 EL
Status: WATER
                                                      Elev:
                                                               860GL
                      permit date: 08/18/86
permit: 126036
                                                  comp. date: 08/20/86
Lambert X: 3060381 4
                       Lambert Y: 3283833
                                                    td:
                                                          335
producing formation:
                                    td formation:
latitude:
                             longitude(
Water from sandstone at depth
                                267 to
Screen: Diam. 0 in. Length: 0 ft.
                                           Slot: 0
Casing and Liner Pipe -
                                               1. 6
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                       PVC
                                                 -- 1
                                                            269
Size hole below casing: 6 in.
Static level 160 ft. below casing top which is
                                                      1 ft. above grnd level.
                200 ft. when pumping at
Pumping level
                                             40 gpm for
                                                             1 hours.
Formations Passed Through
                                             Thickness Bottom
  black soil & clay
                                              13
                                                          13
  sand
                                               8
                                                          21
                                              159 🚣
  limestone
                                                         180
  soft clav
                                               8
                                                         188
  limestone
                                               47
                                                         235
  shale
                                               20
                                                         255
  sandstone
                                               80
                                                         335
121412414900
                   Martin, Jonas Willard
                                                             25-24N-10E
Ogle
Status: WATER
                                     SW SW NE
                                                    Elev:
                                                             860GT
```

-28-

comp. date: 12/18/95

permit date: 12/05/95

permit:

```
Lambert X: 3058217
                       Lambert Y: 3282705
                                                          305
                                                    td:
producing formation:
                       longitude:
                                    td formation:
latitude:
Water from sandstone at depth 0 to
Screen: Diam. in. Length:
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                          From(ft)
                                                      To(ft)
                      WT STEEL 19.45
Size hole below casing: 6 in.
Static level 153 ft. below casing top which is Pumping level 180 ft. when pumping at 20
                                                      0 ft. above grnd level.
                                             20 gpm for
                                                           4 hours.
Formations Passed Through
                                            Thickness Bottom
                                               9 🔻
  clay
                                                        9
  yellow limestone
                                             141
                                                        150
  yellow and gray limestone
                                              15
                                                        165
  gray limestone
                                              35
                                                        200
  shale
                                              25
                                                        225
  brown sandstone
                                              20
                                                        245
  white sandstone
                                              60
                                                        305
121412162900
                   Martin, Jonas
                                                            25-24N-10E
Ogle
                  2500 NL 1500 WL
Status: WATER
                                                      Elev: 840GL
permit: 0 ·
                      permit date:
                                                  comp. date: 03/01/74
Lambert X: 3056785
                        Lambert Y: 3282447
                                                    td: 172
producing formation:
                                    td formation:
latitude: (
                             longitude:
121412425300
                   Dresden, Edward L.
                                                            25-24N-10E
Ogle
Status: WATER
                                     SE NE NW
                                                   Elev:
permit:
Lamber X: 3057530
                     permit date: 07/22/96
                                                  comp. date: 07/23/96
                     Lambert Y: 3283990
                                                    td: 240
producing formation:
                                    td formation:
latitude:
                            longitude
Water from sandstone at depth 190 to 240 ft. Screen: Diam. in. Length: 0 ft. Slot:
Casing and Liner Pipe -
                                                   .. To(ft)
     Diam. (in.) Kind and Weight
                                          From(ft)
                      STEEL 19.45
Size hole below casing: 6 in.
Static level 83 ft. below casing top which is
                                                      1 ft. above grnd level.
Pumping level
                240 ft. when pumping at 75 gpm for 1 hours.
Formations Passed Through
                                            Thickness Bottom
                                              6
                                                          6
  sand & coarse gravel
                                              29 ∴
                                                          35
  limestone
                                             145
                                                         180
  shale
                                              10
                                                         190
  sandstone
                                              50
121410090900.
                                                             25-24N-10E
Ogle
Status: WATER
                                     NW NE SE
                                                     Elev:
                                                             880GL
permit: 0
                      permit date:
                                                   comp. date: 01/01/46
Lambert X: 3059538
                         Lambert Y: 3282081
                                                     td:
                                                           115
producing formation:
                                    td formation:
latitude:
                             longitude:
                   C. Martin & Sons Well Co.
121412531300
                                                             25-24N-10E
                   Snodgrass, R./Ebenezer Church
Ogle
Status: WATER
                                     NE NE NE
                                                     Elev:
                     permit date: 04/03/03
                                                   comp. date: 05/12/03
permit:
Lambert X: 3060136
                        Lambert Y: 3284707
                                                    td: 365
producing formation:
                                    td formation:
latitude: 42.057614
                             longitude: 89.277658
```

365 ft.

Water from sandstone at depth 290 to

```
Screen: Diam. in. Length:
                                0 ft.
                                          Slot:
Casing and Liner Pipe -
    Diam. (in.) Kind and Weight
                                         From(ft)
                                                     To(ft)
                     STEEL ASTM A53
                                                -1
                                                          290
Size hole below casing: in.
Static level 185 ft. below casing top which is
                                                     1 ft. above grnd level.
Pumping level 200 ft. when pumping at
                                            15 gpm for
                                                             4 hours.
Formations Passed Through
                                            Thickness Bottom
                                              2
                                                        2
  topsoil
                                               8
  clay
                                                        10
  soft limestone
                                              35
                                                        45
 ·limestone
                                             115
                                                       160
                                             105
  dolomite
                                                       265
  soft sandstone
                                              20
                                                       285
  sandstone
                                              80
                                                       365
121412370000
                   Martin, Jonas Willard
                                                           25-24N-10E
Ogle
                                     SW NW NW
                                                   Elev: 825GL
Status: WATER
                      permit date: 08/12/93
permit:
                                                  comp. date: 09/27/93
Lambert X: 3055565
                      Lambert Y: 3283943
                                                    td: 260
producing formation:
                                    td formation:
latitude: ¶
                             longitude:
Water from sandstone at depth 135 to
                                          260 ft.
                                0 ft.
Screen: Diam. in. Length:
                                          Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                          From(ft)
                                                      To(ft)
                     WT STEEL
Size hole below casing: 6 in.
Static level 135 ft. below casing top which is
                                                      0 ft. above grnd level.
                                             30 gpm for
                                                              4 hours.
Pumping level 180 ft. when pumping at
Formations Passed Through
                                            Thickness Bottom
  clay
                                              14.
                                                        14
  yellow limestone
                                             121
                                                        135
  gray limestone
                                                        215
                                              .80
  yellow limestone
                                              20
                                                        235
  sandstone 👵
                                              25
                                                        260
                                                   \chi_{i,j}^{(\frac{1}{2})}
121410048600
                   Martin, Jonas
                                                            26-24N-10E
                  500 NL 1100 EL
Status: WATER
                                                      Elev:
                                                              760GL
                      permit date:
permit: 0
                                                  comp. date: 04/01/67
Lambert X: 3054123
                       Lambert Y: 3284389
                                                    td:
                                                        220
producing formation:
                                    td formation:
latitude:
                             longitude
121410054400
                   Martin, Jonas
                                                            26-24N-10E
Ogle
                  150 NL 700 EL
Status: WATER
                                                      Elev:
                                                              775GL
                      permit date:
                                                  comp. date: 09/01/66
permit: 0
Lambert X: 3054595
                       Lambert Y: 3282152
                                                    td: 205
producing formation:
                                    td formation:
                             longitude:
latitude:
121412430000
                   Martin, Jonas Willard
                                                            26-24N-10E
Ogle -
Status: WATER
                                    NW NE NE
                                                    Elev:
                                                          810GL
                      permit date: 12/16/96
                                                  comp. date: 01/23/97
permit:
Lambert X: 3054230
                      Lambert Y: 3284566
                                                    td: 260
                                    td formation:
producing formation:
                             longitude:
latitude:
Water from sandstone at depth 0 to
                                            0 ft.
Screen: Diam. in.
                                           Slot:
                     Length:
                                0 ft.
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                                      To(ft)
                                          From(ft)
        6
                       WT ST 19.45
                                                 -1
                                                           173
```

```
Size hole below casing: in.
Static level 83 ft. below casing top which is 1 ft. above grnd level.
Pumping level
                105 ft. when pumping at
                                              37 gpm for
                                                              4 hours.
Formations Passed Through
                                           Thickness Bottom
  clay - gravel
                                              12
                                                       . 12
  yellow limestone
                                              30
                                                         42
  gray limestone
                                              25
                                                         67
  yellow limestone - little clay
                                              28
                                                         95
  gray limestone
                                              35
  shale
                                              24
  sandstone
                                             106
121412523900
                   Joe Arwood
                                                            27-24N-10E
Ogle
Status: WATER
                                     NE NE NW
                                                    Elev:
                    permit date: 04/11/02
permit:
                                                  comp. date: 05/01/02
Lambert X: 3046991
                        Lambert Y: 3284451
                                                    td: 260
producing formation:
                                   td formation:
latitude:
                             longitude:
Water from sandstone at depth 200 to
                                          260 ft.
Screen: Diam. in. Length:
                                0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.)
                     Kind and Weight
                                       From (ft)
                                                      To(ft)
        6
                       SA 53B :
Size hole below casing: in.
Static level 128 ft. below casing top which is Pumping level 140 ft. when pumping at 20
                                                      1 ft. above grnd level.
                                           20 gpm for
                                                              4 hours.
Formations Passed Through
                                            Thickness Bottom
  clay
                                              11
                                                        11
  limestone, yellow
                                             119
                                                        130
  limestone, gray
                                              55
                                                        185
  Glenwood sandstone
                                               5
                                                        190
  Gl enwood
                                              10
                                                        200
  sandstone
                                              60
                                                        260
121412370100
                   Martin, Jonas Willard
                                                            27-24N-10E
Ogle-
Status: WATER
                                     NW SW SE
                                                    Elev:
                                                            850GL
permit:
                      permit date: 04/30/93
                                                  comp. date: 05/25/93
Lambert X: 3047745
                      Lambert Y: 3280533
                                                    td:
                                                          313
producing formation:
                                    td formation:
latitude: •
                             longitude:
Water from sandst. & limest. at depth
                                        134 to
                                                  313 ft.
Screen: Diam. in. Length: 0 ft.
                                           Slot:
Casing and Liner Pipe -
     Diam. (in.) Kind and Weight
                                          From(ft)
                                                      To(ft)
        6
                       19.45# WT STEEL
                                                           125
Size hole below casing: 6 in.
Static level 135 ft. below casing top which is
                                                      1 ft. above grnd level.
Pumping level
                185 ft. when pumping at
                                              45 gpm for
                                                               4 hours.
Formations Passed Through
                                            Thickness Bottom
  clay
                                              17
                                                         17
  yellow limestone
                                              81
                                                         98
  gray limestone
                                              45
                                                        143
  vellow limestone
                                              42
                                                        185
  gray limestone
                                              25
                                                        210
  limestone & shale
                                              30
                                                        240
  sandstone
                                              73
121410051700
                   Martin, Jonas
                                                            27-24N-10E
Ogle
Status: WATER
                  200 NL 1350 WL
                                                      Elev:
                                                               800GL
permit: 0
                     permit date:
                                                  comp. date: 07/01/66
Lambert X: 3046033
                        Lambert Y: 3284563
                                                    td:
                                                          330
producing formation:
                                    td formation:
latitude
                             longitude:
```

```
121410003300
                                                          18-24N-11E
Oale
                   O NL 400 WL
                                                    Elev: 865GL
Status: WATER
permit: 0
                   permit date:
                                                comp. date: 01/01/55
Lambert X: 3060613
                     Lambert Y: 3295338
                                                  td:
                                                      300
producing formation:
                                   td formation:
latitude: (
                            longitude:
121410094500
                  Martin, Lawrence W.
                                                          19-24N-11E
Ogle
                                                     1
Status: WATER
                  TOO ME SOO ME
                                                             0
                                                    Elev:
                     permit date:
                                                 comp. date: 01/01/64
permit: 0
                      Lambert Y: 3287535
Lambert X: 3060650
                                                  td: 192
producing formation: latitude:
                                   td formation:
                            longitude:
                  Beaman, Jessie J.
                                                          19-24N-11E
121412440600
Oale
Status: WATER
                                  SW SW SW
                                                  Elev:
permit: 141-97-
                                                 comp. date: 07/25/97
                     permit date: 07/19/97
                     Lambert Y: 3285376
Lambert X: 3060790
                                                  td:
                                                        200
producing formation:
                                   td formation:
latitude:
                            longitude:
Water from limescone at depth 180 to
Screen: Diam. in. Length: 0 ft.
                                          Slot:
Casing and Liner Pipe -
     Diam. (in.)
                    Kind and Weight
                                         From(ft)
                                                    To(ft)
                      ASTM A53B
                                                -1
Size hole below casing: in.
Static level 80 ft. below casing top which is
                                                    1 ft. above grnd level.
                80 ft. when pumping at 10 gpm for 2 hours.
Pumping level
Formations Passed Through
                                           Thickness Bottom
  brown clay
                                                     18
                                             18
                                                       50
  limestone
                                             32
                                            130
  dolomite
                                                       180
                                             20
                                                      200
  limestone
                  Dresden, Edward
121410054600
                                                           30-24N-11E
                  Ebenezer Church
                                                     4872
Ogle
                 200 NL 165 WL
Status: WATER
                                                             880GL
                                                    Elev:
                  permit date:
                                                 comp. date: 05/01/68
permit: 0
Lambert X: 3060626
                     Lambert Y: 3284844
                                                   td: 165
producing formation:
                                   td formation:
latitude: 42.057989
                           longitude: 89.275845
121410095000
                  Martin, Lawrence W.
                                                           30-24N-11E
Oale
                                                      1
                  2230 SL 73
Status: WATER
                             WL
                                                     Elev: 862GL
                                                 comp. date: 01/01/41
                     permit date:
permit: 0
Lambert X: 3060591
                      Lambert Y: 3282063
                                                   td: 117
producing formation:
                                   td formation:
latitude:
                            longitude
121412440800
                 Martin, Jonas Willard
                                                           30-24N-11E
                                                     2
Ogle
NW NW SW permit: 141-97- permit date: 09/05/97 Lambert V: 3060849 Lambert V: 3293107
                                    NW NW SW
                                                   Elev:
                                                            0
                                                 comp. date: 09/18/97
                                                   td: 360
producing formation:
                                  td formation:
                            longitude:
latitude:
Water from sandstone at depth 267 to
                                         360 ft.
Screen: Diam. in. Length:
                               0 ft.
                                         Slot:
Casing and Liner Pipe -
```

From(ft) To(ft)

Kind and Weight

Diam. (in.)

6 Size hole below	casing: in.	TEEL 19.45	-1	268		
Static level 1	180 ft. below c	asing top whi	ch is	1 ft. ab	ove grnd	level.
Pumping level	203 ft. when		20 gpm		4 hours.	
Formations Passe	ed Through			s Bottom		
clay			12	12		
grave1			18	30		
yellow limesto	one.		130 🐰	160		
yellow & gray	limestone		40	200		
dark brown lim	mestone		20	220		
sticky shale		•	10	230		
Glenwood			20	250		
sandstone			110	360		

ζ,

Revision 0

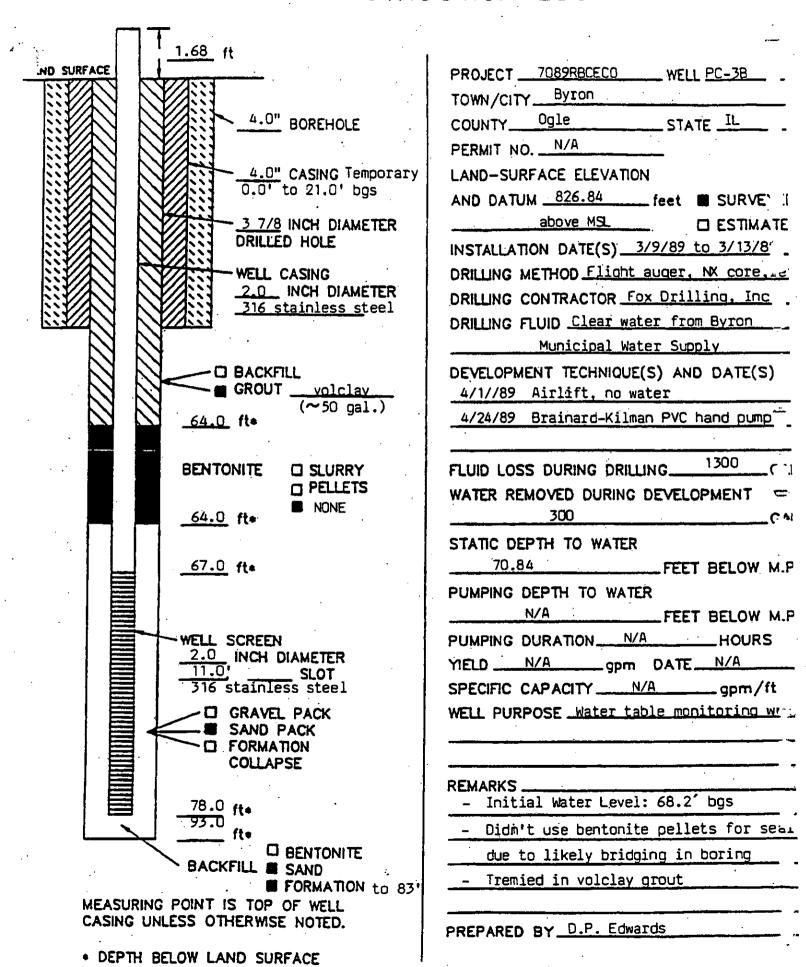
APPENDIX B

MONITORING WELL STRATIGRAPHIC AND INSTRUMENTATION LOGS

Site: OTFAO5FA92 Site Name: Byron Salvage			County	v. Oale		Well No.:	MW-1	
No. Marine Duran Calvago					inates:Northing			
				oria Coord	mates.Northing			
Orilling Contractor: Wehling				0		Date Drilling	_	
Oriller: Wehling well Work	s	Geo	logist:	Scott Spe	sshardt	_ Date Drilling	Ended: _	03/08/89
Orilling Method: Air Mist F	Rotary and C	Coring		Drilling Flu	uid (type): Water			
ANNULAR SPACE DE	ETAILS:					000 15 M	ISI Too of	Protective Ca
Type of Surface Seal: N/								Surface Cas
Type of Annular Sealant: _C		lant Grout						ive Casing St
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								e Casing Sti
Amount of cement: # of I	bags <u>4</u>	_ lbs. pe	r bag <u>94</u>	<u>. </u>				_
Amount of bentonite: # 0	f bags N/A	bs. pe	r bag <u>N//</u>	4		L		
Type of bentonite seal (gra	nular, pelle	ts): <u>N/A</u>					80.15 MS	L Ground Sur
					_	,		÷
Amount of bentonite: # of b	ags_N/A	_ lbs. pe	r bag <u>N//</u>	<u>4</u> .				
Type of Sand Pack: N/	Α							
Source of Sand: N/	Α						75 in Pass	holo
						7.8	175 in. Bore	i iOIE
Amount of Sand: # of bags	N/A	_ lbs. pe	r bag <u>N/</u>	<u>A</u>				
						Po	rtiand Cem	ent Grout
WELL CONSTRUCTION	TAM NC	ERIALS						
	Stainless							
Date of	Steel	Teflon	PVC	Other Specify				
Construction: 3/8/89	Specify Type	Specify Type	Specify Type	Type				
Riser Coupling Joint	N/A							
Riser pipe above W.T.	N/A					:		
Riser pipe below W.T.	N/A							
Screen	N/A					13	Ft Botto	m of Surface
Coupling joint screen to riser	N/A					<u> </u>	Casing	
Protective Casing				6 in Steel				
Surface Casing	4 in s.s.							
	٠					- 3.8	375 in. Bore	ehole
	-	4- 0.01	ft (whore	englischie)				
MEASUREMENTS	r	10 0.0	II. (Wileie	applicable)				
Riser pipe length	N/A							¥.
Protective casing length	N/A							
Screen length	N/A							
Bottom of screen to end cap	N/A							
Top of screen to first joint	N/A	12 ft in de-	yth)	,				
Length of surface casing		13 ft in dep	(U1)					
Screen slot size	N/A							
No. of opening in screen	N/A							
I D of Riser Pipe	N/A							
Diameter of bore hole	7 7/8 in							
					1	,		
· ·	•				1			
Veil Constructed By: Weh	iling Well Wo	orks				70.83	E. D	tom of Boreho

Site: OTFAO5FA92		County: O	gie	Well No.	MW-2
Site Name: Byron Salv					
Drilling Contractor: We					
					Started: 02/27/89
Driller: Wehling Well W					Ended: <u>03/22/89</u>
Drilling Method: Air Mi	st Rotary and Coring	Drilling	Fluid (type): Wate	r	
ANNULAR SPACE	DETAILS:				
Type of Surface Seal:	N/A				ASL Top of Looking Surface Casir
Type of Annular Sealan	t: Cement Portlant Grout				ISL Top of Riser Pipe
					Lof Looking Surface Casing Stick
	of bags 29 lbs. pe			1.18	t. of Riser Stickup
Amount of bentonite:	# of bags lbs. pe	er bag		L .	
Type of bentonite seal (g					0.20 MSL Ground Surfac
Volclay Pellet		•		13	
Amount of bentonite: # o		r bag 50 lbs/bucket			
Type of Sand Pack: Source of Sand:				N	
Source of Sand.	IV/A			\mathbb{N}	
Amount of Sand: # of bag	ns 11/2 lbs ne	r haq 100		Θ	-
	,u iod. per	1 bag _100_		\mathbf{R}	
WELL CONSTRUCT	TON MATERIALS.			\mathbf{R}	
	Stainless		¬ ()	7.875	in. Borehole
Date of	Steel Teflon	PVC Other			
Construction: 3/22/89	Specify Specify	Specify Specify		2 in. S	tainless Steel Casing
Riser Coupling Joint	Type Type	Type Type	10		•
Riser pipe above W.T.	Flush Threaded 2 in s.s		-	Flush	Threaded Joints
Riser pipe below W.T.	2 in s.s		$+$ \mathbf{N} $+$ $+$ $+$ $+$	X	
Screen	2 in s.s		A		
Coupling joint screen to rise				13	Ft. Bottom of Surface
Protective Casing	4 in s.s.		101 1		Casing
Surface Casing		5"Black Stee	10 1		
		- B GENOR		3	
			, (<u>)</u> 1	7	
IEASUREMENTS	to 0.01 f	t. (where applicable)		,)	
liser pipe length	226.0			210.48	. Ft. Top of Seal
rotective casing length	N/A .			8.95	Ft. Total Seal Interval
					Jour mile val
creen length	5 ft				Fa T / 0
ottom of screen to end cap	231.0				Ft. Top of SandPack
ottom of screen to end cap op of screen to first joint	231.0 N/A			219.43	•
ottom of screen to end cap op of screen to first joint ength of surface casing	231.0 N/A 14.18 ft (13 ft in depth)			219.43	Ft. Top of SandPack Ft. Total Sand Interval
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size	231.0 N/A 14.18 ft (13 ft in depth) .010			219.43 11.67	Ft. Total Sand Interval
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A			219.43 11.67	•
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen O of Riser Pipe	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A 2 in			219.43 11.67 224.83	Ft. Total Sand Interval Ft. Top of Screen
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A			219.43 11.67 224.83	Ft. Total Sand Interval
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen O of Riser Pipe	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A 2 in			219.43 11.67 224.83	Ft. Total Sand Interval Ft. Top of Screen
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen O of Riser Pipe	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A 2 in			219.43 11.67 224.83 4.75 in.	Ft. Total Sand Interval Ft. Top of Screen
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen O of Riser Pipe	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A 2 in			219.43 11.67 224.83 4.75 in.	Ft. Total Sand Interval Ft. Top of Screen Borehole
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size of opening in screen of Riser Pipe ameter of bore hole	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A 2 in 7 7/8 in			219.43 11.67 224.83 4.75 in.	Ft. Total Sand Interval Ft. Top of Screen Borehole Ft. Total Screen
ottom of screen to end cap op of screen to first joint ength of surface casing creen slot size o. of opening in screen O of Riser Pipe	231.0 N/A 14.18 ft (13 ft in depth) .010 N/A 2 in 7 7/8 in			219.43 11.67 224.83 4.75 in. 5	Ft. Total Sand Interval Ft. Top of Screen Borehole Ft. Total Screen Interval

· · ·		WE	LL CO	MPLET	ION RECOR	D .	USGS Rev 1
Site: OTFAO5FA92			Coun	ity: Ogi	le	Well No.:	: MW-3
Site Name: Byron Salvag	e Yard						Easting736944.336
Drilling Contractor: Weh		rks		-			Started: 03/28/89
Driller: Wehling Well Wo			ologist:	Scott Sp	esshardt		
			ologist				Ended03/28/89
Drilling Method: Air-mis				Drilling	Fluid (type): N/		
ANNULAR SPACE		:				858.82 M	SL Top of Protective Casing
Type of Surface Seal:							
Type of Annular Sealant:	Portiano C	ement Gro	ut				of Locking Surface Casing
Amount of cement: # o	fbaos 4	lbs o	erban 94			Sti	ckup
Amount of bentonite: #		•	_			·	
Type of bentonite seal (gr			_			856	6.06 MSL Ground Surface
Amount of bentonite: # of	bags N/A	lbs. pe	er bag N/A	<u> </u>			
Type of Sand Pack:	N/A						•
Source of Sand:	N/A						
A	- 11/4	41		****		7.875	in. Borehole
Amount of Sand: # of bags	SN/A	ios. pe	r bag <u>N/A</u>	<u> </u>			
WELL CONSTRUCTI	ON MAT	EDIALC	- u				
WELL CONSTRUCTI	Stainless	ENIALS	I	T	7 🕅		Stainless Steel Surface
Date of	Stainless	Teflon	PVC	Other		Casir	ng ·
Construction: 3/28/89	Specify	Specify	Specify	Specify			
Picor Coupling Joint	Type	Туре	Туре	Туре	-		
Riser Coupling Joint Riser pipe above W.T.	N/A N/A				-		
Riser pipe below W.T.	N/A				 		
Screen	N/A						
Coupling joint screen to riser	N/A						Ft. Bottom of Surface Casing
Protective Casing	N/A				1 1 1		Casing
Surface Casing	4 in s.s.						
]		
MEASUREMENTS		to 0.01	ft. (where a	applicable)		3.875	in. Borehole
Riser pipe length	N/A]		
Protective casing length	N/A] .		
Screen length	N/A]		e e
Bottom of screen to end cap	N/A]		
Top of screen to first joint	N/A			•			
Length of surface casing		3.8 ft in dep	th)				
Screen slot size	N/A						
No. of opening in screen I D of Riser Pipe	N/A						
Diameter of bore hole	N/A	1204 27	0: 75 7				
200000000000000000000000000000000000000	1 1/6 111 10	13.6 IL, 3 //	8 in to 75.7	вπ			
<u> </u>							
Vell Constructed By: Weh			****		.	75 70	Ft. Bottom of Borehole
surveyed By: U.S. Army Cor						75.78	rt. BULUITI DI BOFENDIO
orm Completed By: Scott	Prinos USG	S					


Site Name:	Byron Salva	ge Yard		Grid Co	Ordinata			DL-32
Drilling Contractor:		U.S.	.G.S. Coal I	_ond oc	Ordinates:Nonn	ing <u>197336</u>	67.106 ft. Easting	736098.
Driller: U.S.G.S Drilling Method: Pne	ri Cone Rolle	r 0 -13 ft.	aeologist: _		Bob Kav	D-4-	D 300 =	8-23
	MURIUS FIRMINI	EL 13 - 65	ft	Drilling	Fluid (type):		Water	
AMMULAR SPACE	DETAILS	:					ELEVATION -	0.01 ft
Type of Surface Seal:	Quick Cr	ete - Bar	ker Lumber	-		84	4.91 MSL Top of F	rotective C
Type of Annular Sealan						1.	33 Ft. of Protecti	ve Casina i
Amount of cement: #	Of bags	arker Lur	mber		L	84	4.29 MSL Top of S	Surface Ca
Amount of bentonite:	# of hace	O ibs.	per bag	14		13		
Type of bentonite seal (g	ranular nel	o los.	per bag5	0			71 Ft. of Surface	Casing Sti
							843.58 MSL	Ground St
Amount of bentonite: # o	f bags 0	ibs. r	perhan N	'Δ		_	2.00 Ft. Botton	of Surfac
ype of Sano Pack:	0.35 - 0	45 mm S	ilica Cand	<u> </u>				
Source of Sand:	Americ	an Mater	rials				•	٠
Amount of Sand: # of bag	js0	lbs. p	erbag 10	0				
								
WELL CONSTRUCT	ION MATE	ERIALS):					
	Stainless				7 🖺			
Date of	Steel	Teflon	PVC	Other				
onstruction: 8/23/90	Specify Type	Specify Type		Specify				
Riser Coupling Joint		туро	Туре	Туре				
Riser pipe above W.T.								
Riser pipe below W.T.								
creen								
oupling joint screen to riser						13	3.0 Ft. Bottom of	Surface
rotective Casing			E	Black Pipe		-	Casing	Soriace
urface Casing			Sch 80					
EASUREMENTS					1 1			
		to 0.01	ft. (where ap	plicable)				
ser pipe length		N/A						
otective casing length		10 in. x 4	.00 ft			•		
ttom of screen to end cap		N/A						
of screen to first joint		N/A				•		
al length of casing	-	N/A					•	
een slot size	8	.00 in x 1:	3.0 ft.					
of opening in screen		N/A						
of Riser Pipe		N/A	`				•	
neter of bore hole	0 97 <i>F</i> :	N/A	40.57					
		n.) 0.00 ft						
	6.0 in	.}13.0 ft -	65.0 ft.					
Constructed By: USGS	- Wisconsin	District						
eyed By: <u>Army Corp.</u> of	Engineers /	USEPA				65.0	Ft. Bottom of B	orobal
Completed By: Bart J. M					, ,	0.0	. r. porroui of B	orenole

	, w	ELL CO	MPLET	TON REC	ORD			USGS Rev 1
Site: OTI	FA 5AFL 92	Coun	nty:	Ogle		Well No.:	[DF-6
Site Name: By								
Drilling Contractor:								
Driller: U.S.G.S. Co								
Drilling Method: Tri Co								
ANNULAR SPACE I			Jg	(.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Type of Surface Seal:		kar Lumbar				828.23 MSI	_ Top of Pro	tective Casing
Type of Annular Sealant:					-	828.11 MSI	L Top of Ris	er Pipe
** Borehole plug: Volclay Gro						1.82 Ft. o	f Protective	Casing Sticku
Amount of cement: # of						1.38 Ft. d	of Riser Stic	kup
Amount of bentonite: #	of bags 4.0 lbs.	per bag 5	0					
Type of bentonite seal (gr	anular, pellets):	Pellets				826.7	70 MSL G	round Surface
2.0Buckets (50 lbs. bucket						1.5 F	t. Bottom of	Surface plug
Amount of bentonite: # of			0					
Type of Sand Pack:						•		
Source of Sand:	American Mat	terial						
A	10 "	. 100	_				t. Total Port	land Cement
Amount of Sand: # of bags	3I.UIbs. p	per bag 100						
WELL CONSTRUCTI	ON MATERIALS	S: "						
	Stainless					19.1 F	t Ton Dont	naita Canad
Date of	Steel Teflon Specify Specify		Other Specify				t. Top Bento	onite Grout
Construction: 5/16/91	Type Type	Type	Type					
Riser Coupling Joint	T304					_		
Riser pipe above W.T.	T304		·			25.0C	t. Bottom of asing	Surface
Riser pipe below W.T.	T304							
Screen	T304							
Coupling joint screen to riser	T304					89.5 Et Total	Bentonite G	ra, et
Protective Casing		ļ	Black Pipe			FL TOTAL	Del IIOI III G	rout
Surface Casing		Sch 80				108.6 Ft. Top o	f Seal	
				」 💹	₩ _	4.0 Ft. Total	Seal Interva	
MEASUREMENTS	to 0 ()1 ft. (where a	nanlicabla	· 💥	₩ –		f SandPack	
			аррисарів	΄ 🕮 I	<u> </u>		Sand Interva	
Riser pipe length).0 ft				117.6 Ft. Top o	f Pea Grave f Screen	1
Protective casing length		. x 4.0 ft						
Screen length Bottom of screen to end cap		00 ft.				8.0 Ft Total	Dog Crount	lete
Top of screen to first joint		0 in. 0 in.					Pea Gravel	
Total length of casing		x 25.0 ft.		十二	-	Ft. 10tal	Screen Inte	ervai
Screen slot size		1 in.						
No. of opening in screen		57			_1		n of Screen	
I D of Riser Pipe		67 in.					of Silica San of Bentonite	
Diameter of bore hole		00 ft -25.0 ft	•	1 🚃	₩ _	·	Duringing	. unuts
	5.875 in.}25.0 ft			1 ⋘	\boxtimes			
·				1 🚃	※ –	127.7 Ft. Top o	of Bentonite	Chips
				1 ‱	\otimes			
				- ₩ ₩	፠] .	129.5 Ft. Top	of Voiclay G	rout
Well Constructed By: USG		ct		-	-		,, -	
Surveyed By: Army Corp.	of Engineers							

150.8 Ft. Bottom of Borehole

Form Completed By: Bart J. Manion USGS - WRD

WELL CONSTRUCTION LOG

	GE(OLO	GIC	: DF	RILL	LO	G	PROJE	CT		i Resources Manage)	PROJECT NUMBER		•	HOLE NO.
SITE							COORDINA	ITES				<u>'</u>	7089RBCECO		OF 4	PC 79
						,				Ė			, And	Vert		BEARI.
EGUN		ONPLE	TED	DRILLE	R		DRILLI	NG EQ	UIPNE	ENT	•	_	'			TOTAL DEPTH
3-9-	-89	3-13	-89	For	c Dri	lling					// 4" Flight Aug	er å	NY Core	, DOK	4.0"	93.0
CORE R	ECOVE	RY (FI	./%)				ESEL. TO	P CAS	ING	GR				DEPTH	/EL. TOP	
	70.6	/94			3	3		28.52			994 9 1 ₹ 68.	8/75	GROUND WATER B.O ATD B.O 24-HOUR	[21.0/	=
SAMPLE	DEAL	Œ	•				C	ASING	LEFT	1	N HOLE: DIA./LENG	6/ /30 	DGGED BY:		-11.0/(
				0 <u>11</u>			re				NONE		D.I	. Ed	wards	
Samp	les/		ore	Con'	tami: caen	nent ina				П						
Sample No.	Rec. (ft)	-ength(ft)	Blow Count RGD(X)	Amb. Airs VOC(ppm)	Sample ** VOC(ppm)	-	LAYER ELEV. DEPTH 826.8	DEPTH	GRAPHICS	MARINE	DESCRIPTION	AN	D CLASSIFICAT	'ION	WATER CHARA	ON: LEVELS, RETURN, CTER OF ING, ETC.
7"	+	 =	1	- a	91 -	 	040.8		777	${\sf H}$	Reddish brown, me	edium	a dense, moderately	,		
•											sorted, CLAYE SAND w/ trace	Y PI	NE TO MEDIUM			
	İ							•	W	П		•				
										П	•		• •			•
SS-1	1.3	2.0	4	0.0	0.0	0.0						٠.			 	
•	i .	1	5								•	•	•			
			9			İ									ł	
		<u> </u>						5-				•				• •
:							į									
	i						i				·			-		
				- 1	į		820.3 6.5			4	Light brown, dense	. DOC	orly sorted, CLAYE	.Y	4	
	.							•			FINE TO COA	RSE	SAND w/ trace fin	· &		
		.									coarse gravel, n	20UT.				
SS-2	2:0	2.0	12	0.0	0.0	0.0		•	Mi.					•	1	
			13	1	·	• [
			17	ĺ	i	ŀ		•	W,						1	
								10-	M.				•		1	
]				\mathscr{M}	1					1	
			·	ł		1	- [-			•					
]	i												}	
- {		[J	Í	·	j	. 1	-								
- 1		· •	- [- 1	ļ		- 1				•		•			
SS-3	2.0	2.0	18	0.0	0.0	0.0	1	1			•	٠			•	;
J		ĺĺ	27 20	ŀ	1	}						••				
ĺ			26	- 1	ļ		- 1	• 1		Ī						
							· . J	15								
l	j				1	- [1								,	
	l	- [- 1			l		ļ								
	· ·	- 1		1				,		1						
- 1	-			J	- 1	-		4							A = 0 = 0 =	nafara l
UN 1	1.8	5.5	0.0	0.0	0.0	0.0	809.3 17.5			-	DUNLETTH FORM	<u> </u>	ON deb CATEN	<u> </u>	-Auger	refusal
								₹			GROUP: Light	yello	wish brown, sandy	to		th coring; 100 eturn; drill
								1			finely crystalling DOLOMITIC C FeOX stained fi	thir ALC.	n to medium bedde ARENITE, vuggy rbonate sand	d.		eturn; aru 56 ft/min
1	.		.]		1		1	<u> </u>		1			, occasional green ential dissolution o		1	

							An.	Enviro	nment	al Resources Management	
(GE()LO	GIC	DR	RILL	LO	G	PROJEC	CT .	PROJECT NUMBER SP	EET NO. HOLE NO.
Samo	irs/	R. C	ore		temi	nent		 	F 1	7089RBCECO	2 or 4 PC-3B
Semple # Time	Rec. (ft)	Length	Blow Cot RQD(X)	Amb Airs	Sample************************************	Semple HCN(ppm)	LAYER ELEU. DEPTH	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.
										skeletal fragments, fractured (2 horizontal & 1 vertical) w/ heavy mineral infillings.	
RUN 2	4.4	5.0	0.0	0.0	0.0	0.0		25-		-Same as above w/ numerous fractures and bedding planes (22 horizontal, 1 vertical & a fracture sone from 23.5' to 24.2').	-Smooth coring; 10 water return; drill rate: 0.50 ft/min
RUN 3	4.5	5.0	8.0	0.0	0.0	0.0	794.4	30		-Same as above w/ fractures (33 horisontal & 4 vertical).	-Smooth coring; 10 water return; drill rate: 0.50 ft/min
RUN 4	10.0	10.0	11.0	0.0	0.0	0.0	789.1	35-		GUTTENBURG FORMATION of the GALENA GROUP: Buff, sandy to finely crystalline, thin to medium bedded, DOLOMITE, vuggy w/ FeOX stained fine carbonate sand infillings, fossiliferous, abundant reddish-brown shale partings, preferential dissolution of skeletal fragments, extensively fractured (20 horisontal & 1 vertical) w/ heavy mineral infillings.	-Smooth coring; 90% water return; drill rate: 0.40 ft/min
							37.7	40-		QUIMBYS MILL PORMATION of the PLATTEVILLE GROUP: Buff and light gray, finely crystalline, argillaceous, thin to medium bedded, slightly fossiliferous, DOLOMITE w/ occasional vugs, chert nodules, shale beds, heavy mineral accumulations, peloids, phosphate nodules and FeOX stained bedding planes, some fractures (27 horisontal & 3-70 to 80 degree).	
RUN 5	10.0	10.0	42.0	0.0	0.0	0.0		-		-Same as above w/ abundant fractures and bedding planes (40 horizontal & 10-70 to 8 degree).	-Smooth coring; 100 water return; drill rate: 0.35 ft/min

							JY.	Enviro	nment	Nesources Management					
	GE(OLO	GIC	DF	RILL	LO	G	PROJEC	1		PROJECT NUMBER 7089RBCECO		T NO.	HOLE N	0.
Samo		R. S	OC.	Con	tami C ee n	nent					LOURDCECO	 	J. 4	L	.—
Semple #	Rec. (ft)	Length (rt)	Blow Cnt Rap(x)	Amb Air*	* ~	Semple HCN (ppm)	LAYER ELEV. DEPTH	DEPTH	GRAPHICS SAMPLE	DESCRIPTION AND) CLASSIFICATI		NOTES WATER WATER CHARAC DRILL	LEVEL RETUR	₹N, OF
ļ								-							
								50-				•	-Lost ci complet		n
							774.5 52.3	30-			•.		-Core b	locked (out
LUN 6	10.0	10.0	61.0	0.0	0.0	0.0				NACHUSA FORMATIC PLATTEVILLE GRA and gray, finely cryst thin bedded to massi	OUP: Yellowish brov talline, argillaceous, ive, DOLOMITE w/	, 71	-Smoot water re	eturn; d	rill
								55-		some peloids and gra occasional FeOX stat fossils; minor fractur vertical & 5-70 degra mineral infillings and cement.	ining, vugs and sone ing (36 horisontal, 1 pe) w/ black heavy	s of			
	,														
	- 1							60-							
UN 7	10.0	10.0	83.0	0.0	0.0	0.0				-Same as above w/ few horisontal, 1 vertical fractures).	fractures (50 & 2-70 degree		-Smoot water r rate: 0.5	etura; d	Irill
								65							
							*	<u>1</u> 1		-Same as above, but app	Dears more vukry an	ıd ·			

				· · · · · · · · · · · · · · · · · · ·		٠	<u>U P</u>	Enviro	nmen	tal Resources Management
(GE(DLO	GIC	: DF	RILL	LO	G.	PROJEC	T	PROJECT NUMBER SHEET NO. HOLE NO.
Samo			ore	Con	teni	nant	<u>-</u>	 		7089RBCECO 4 of 4 PC-3L
Sample #	Rec. (ft)	Length	ابد	Amb Airs	FR80	ina	LAYER ELEV. DEPTH	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION WATER RETURN, CHARACTER OF DRILLING, ETC
LUN 8	10.0	10.0	66.0	0.0	0.0	0.0				-Same as above w/ some bedding planes (11 -Smooth coring; no
							751.9 74.9	75-		horisontal). GRAND DETOUR FORMATION of the PLATTEVILLE GROUP: Light and dark greenish gray, argillaceous, massive, interformational conglomerate composed of clasts up to 0.1', in diameter in a argillaceous DOLOMITIC LIMESTONE matrix w/ occasional black and dark gray shale partings, few phosphatic nodules, moderately fractured (22 horisontal) w/
פ אנ	10.0	10.0	80.0	0.0	0.0	0.0		80-		-Same as above but mottled light green and white clasts of coarse sand to cobble size interformational conglomerate in a dark green to black argillaceous matrix. -Same as above w/ few fractures and bedding planes (22 horisontal, 1 vertical & 3 20 to 30 degree), occasional phosphatic infilling.
								90		
-							733.8 93.0	1		END OF BORING, 93.0'. Drilling fluid consisted of clear water from the Byron Municipal water supply.

312294446 ; '# 3

FEB-11-1991 14:27 FROM ERM-NORTH CENTRAL

TO 13122944466---00

708 940 9280 →

WELL CONSTRUCTION LOG

•		3.01	•
ND SUR	FACE	2.01 ft	PROJECT 7089RBOECO WELL PC-68
			TOWN/CITY SYTOD
		4.0" BOREHOLE	COUNTY Dale STATE IL
			PERMIT NO. N/A
		4.0" CASING Temporary	
		0.0'-15.5' BCS.	AND DATUM 829-29 feet SURVE
		3.7/8 INCH DIAMETER	above MSL DESTIM
		DRILLED HOLE	INSTALLATION DATE(S) 2/27/89 to 3/2/8
		WELL CASING	DRILLING METHOD Flight auger, NX core,
		2.0 INCH DIAMETER	DRILLING CONTRACTOR FOX Drilling, In
		316 stainless steel	DRILLING FLUID Clear water from Byron
(7717)		776.4	Municipal Water Supply
	\square		<u> </u>
		GROUT	DEVELOPMENT TECHNIQUE(S) AND DATE(S 4/27/89 hand bailed
	$M \mid$		Typing . Hard dditte
		82.0 ft•	
_		BENTONITE CI SLURRY	FLUID LOSS DURING DRILLING ~650L
		☐ PELLETS ■ NONE	WATER REMOVED DURING DEVELOPMENT
		82.0 ft+	88
	1 1		STATIC DEPTH TO WATER
		86.0 ft*	88.27 FEET BELOW
			PUMPING DEPTH TO WATER
			N/AFEET BELOW
		WELL SCREEN ·	PUMPING DURATION N/A HOUF
•		2.0 INCH DIAMETER	YIELD N/A gpm DATE N/A
		10.0' 10 SLOT 316 stainless steel	SPECIFIC CAPACITY N/A gpm
		GRAVEL PACK	WEIL PURPOSE Water table monitoring
		SAND PACK	well
•		FORMATION COLLAPSE	
		CULLAPSE	REMARKS
		96.0 fta	- Initial Water Level: 87.15' BGS
		103.0 ft	- Didn't use bentonite pellets for se
		□ BENTONITE	due to likely bridging in small bor
4		BACKFILL SAND/GRAVEL	- Tremied in volclay gront
_	MEASU	FORMATION FING POINT IS TOP OF WELL	
•		UNLESS OTHERWISE NOTED.	PREPARED BY D.P. Edwards
			THE AREA OF
•	* DEPT	H BELOW LAND SURFACE	•

	· .						UL	Enviro	nme	ental Resource	Managem	ent		•	
	GE	OL	OGI	C D	RILL	. LO	G	PROJE	CT		manageme	PROJECT NUMBE		HEET NO.	HOLE NO.
SITE							COORDIN	ATEC				7089RBCE		1 OF 5	PC-6B
<u> </u>							COUKD ! N	MIES						FROM HORIZ	BEARING
BEGUN		COMPL	ETED	DRIL	LER		DRILL	ING EQ	III PM	ENT				rtical	
2-27	-89	3-2	2-89		ox Dr	illing					ht Ange	r & NX Core	BC	ORING DIA.	TOTAL DEP
CORE F	ECOVE	RY (FT./X				ESEL. TO	OP CAS	ING	GROUND EL.		. GROUND WATER	DED.	4.0" TH/EL. TOP	103.0
		7/95			9	3		31.30		829.3	₹ 86.2/	743.1 ATD		13.5/	
SAMPLE		_		•			C	ASING	LEF'	T IN HOLE: D	A./LENGTH	LOGGED BY:		13.3/	015./
2'	"x 2'	Spl	it Sp	oon :	and N	X Co	re		_	NONE			D.P. E	dwards	
٠ الد	1	^	1 44		ntam. Green	nant Ling	1				···		•		
Sample No.	Rac. (ft)	Length(ft	Blew Count	Amb. Airs	Card A Card	T	LAYER ELEV. DEPTH 829.3	[GRAPHICS	DESCR	PTION A	and Classific	ATION	UATER CHARA	ON: LEVELS, RETURN, CTER OF ING, ETC
										Dark brow	rn, CLAYE	Y PINE SAND w/		- -	
	1								2	i rootlet	sad other	organics, moist.			•
٠		}						[]			4				
			-	1	-						•	* • • • • • • • • • • • • • • • • • • •			*
							j								
SS-1	1.7	2.0	3	0.0	0.0	0.0	826.3_ 3.0								
_			1] "."	J.U			Reddish b	rown, loose	, well sorted, FINE	;	-	
		ſ.	3	1 .	1			-		SAND	w/ trace cl	ay, moist.		,	
			-	1			·			•		•		1	•
			1	7				5-	:::1					1	
	i	İ		1 .					. : }					j	•
	Į		1				822.8	· †	::			·		1	`
							6.5	İ	Ш	Mottled li	tht and day	k brown, firm,			-
			1.				.]	. 1		modera w/ trac	tely well so a fipe sand	rted, CLAYEY SI , rootlets, wood, st	LT	-	
				<u> </u>	<u> </u>		}			and oth	er organica	, FeOX stained, m	oist		
S-2	1.6	2.0	1 4	0.0	0.0	0.0	ĺ	1		(loess).			,		
		}	2	j			Í				•			}	
	'		7			- 1	1]							
			├	 -			- 1	10-		•					,
ļ			1	ŀ]		1								
ł				1		- 1		4						1	
ł			[- 1	817.8 11.5	Ų	Щ	Light brow	n. medium	dense, moderately	· well	_	
	- 1							∦		sorted,	CLAYEY I	PINE SAND, dry.	EII	.]	
-	. [i		- 1]			ŀ					
-3	1.2	2.0		0.0	0.0	0.0	815.8	1		ď					
			100/5				13.5		1	Buff finely	crystalline	, massive, LDERS			
ĺ	ł		•					‡		BIO5P/	LRITE, fair	at horizontal beddi	ing,		
							}	E	- 1	fracture	d (14 horis t 1-35 dom	ontal, 5 vertical, 1 ree) w/ heavy mine	-65 1		
							-	15-[I	==	clay and	l carbonate	sand infillings, vu	SEY,		refusal at
N 1	3.8	7.5	10.0	0.0	0.0	0.0	- 1	Ħ	_ i	slightly preferen	lossiliferou tial dissolu	s w/ minor tion of the skeleta	1	15.5'	s coring; 90%
	-			Í				E		fragmen	ts, thin cla	y partings, extens	vely		s conng; 90% sturn; drill
	1		· [1		-		F		weather clay at t	ed to carbo	nate sand, gravel	and		5 ft/min
			. 1	Í	Ì	- 1	.	工	╬	Casy at 1	us vop.				
	}	Ì					ľ	Ī				•		Ì	
			•	-		·	ŀ								
		İ	- 1	1	j	1	1	μ.	⇉▓						
	İ	- 1]					 	₩	-					
	1	- 1	- 1	- 1	1	1	1		7.78					1	

_								A D	Enviro	nment	Al Resources Management
		GE	OLC	GIC	DF	RILL	LO	G	PROJEC	T	PROJECT NUMBER SHEET NO. HOLE NO. 7089RBCECO 2 OF 5 PC 3
1 .	•		∠ R. 1	Core		tami					V 7007RDCECO 2 UF 5 PC 4
	Semple #	Rec. (ft)	Length	Blaw Cnt	Amb Airx VOC(ppm)	1e * *	Sample HCN(ppm)	LAYER ELEV. DEPTH	DEPTH	GRAPHICS SAMPLE	DESCRIPTION AND CLASSIFICATION WATER RETURN, CHARACTER OF DRILLING, ETC.
R	UN	2 8.9	10.0	22.0	0.0	0.0	0.0		25-		-Same as above w/ few white and light brown chert nodules and some fractures. -Smooth coring; no water return below 26'; drill rate: 0.2 ft/min
								803.7 25.6			Yellowish brown and buff, horizontally bedded, LIMESTONE/DOLOMITE, possibly colitic, considerable white and light brown chert nodules and chert beds, few vugs, extensively fractured (39 horizontal & 8 vertical) w/ heavy mineral and calcite
							-		30-		infillings. -Core blocked out at 28.5' BGS
P	IIN 4	10.0	10.0	75.0	0.0	0.0	0.0				-Same as above w/ increased fossil and peloid
	-41 J				5.0		0.0		35-		content, clay partings, wavy bedding (alternating sones of horisontally bedded sandy hiosparite and wavy bedded pelbiomicrite), some fractures (28 horisontal and 5-15 degree).
	-										
			.Tu						40		
		·						786.6 42.7			
RU	IN 4	10.0	10.0	55.0	0.0	0.0	0.0		- 		Yellowish brown and buff, finely crystalline, massive, fossiliferous, LIMESTONE/DOLOMITE w/ extensive vugs and yellow porous zones, fractured (SS

							W	Enviro	nment	l Resources Management				
	GE	OLO)GI	ם ב	RII I	. LO	G	PROJEC	ROJECT PROJECT HUMBER SHEET NO.					
Samo			Core			nant		ļ		7089RBCECO 3 of 5 PC-6E				
Semple #	Rec. (ft)	ath	1.1		*	mp le	1	ОЕРТН	GRAPHICS SABPLE	DESCRIPTION AND CLASSIFICATION WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.				
							781.3_ 48.0	50-		Buff, finely crystalline, massive LIMESTONE/DOLOMITE w/ sandy sones, wavy clay partings, skeletal fragments, and minor vugginess, few fractures w/ minor-heavy mineral and calcite infillings. -Lost 1200 gallons c water to formation between 15.5' and \$3.0'				
UN 5	10.0	10.0	70.0	0.0	0.0	0.0		55-		-Same as above w/ some fractures (24 horisontal, 4 vertical & 1-30 degree). -Smooth, slow corin no water return; dri rate: 0.11 ft/min				
		·						8 1 H H H H H H H H H H						
IN 6	10.0	10.0	83.0	0.0	0.0	0.0	767.8 61.5	98 118 118 118 118 118 118 118 118 118 11		Gray, linely crystalline, medium bedded, LIMESTONE/DOLOMITE w/ horisontal and wavy black clay partings, large fossil fragments, few peloids and intraclasts, few vugs and fractures (15 horisontal, 1 vertical, 1-60 degree and 3-10 degree), occasional highly porous beds of sandy or micritic carbonate. -Smooth, slow corin no water return; dri rate: 0.13 ft/min				
		,						3 HHHHHHHHH						

	<u> </u>		 .				1	Enviro	nment	al Resources Management
	GE	OLC	GIO	: DI	RILL	LO	G 🖠	PROJEC	T ()	PROJECT NUMBER SHEET NO. HOLE NO. 7089RBCECO 4 OF 5 PC
	les	R.	Core	Cor	temi	nent	<u>]</u>			7005RBCECO 4 07 5 PC
Semple #	Rec. (ft)	Length	Blow Cut		D.Lewa	mp1e (ppm)	LAYER ELEU. DEPTH	DEPTH	GRAPHICS	DESCRIPTION AND CLASSIFICATION CHARACTER OF DRILLING, ETC.
RUN	7 10.0	10.0	93.0	0.0	0.0	0.0		75-		-Same as above w/ fractures (14 horizontal, 4-45 degree, 2-70 degree & 1-80 degree)Smooth, slow coring no water return; drill rate: 0.14 ft/min
							751.3_ 78:0	80-		Mottled brown, reddish brown and gray, finely crystalline, massive LIMESTONE/DOLOMITE w/ few horizontal and wavy laminae, fractures, vugs and highly porous beds, minor fossil content and some FeOX accumulations along fractures and vugs.
RUN E	10.0	10.0	77.0	0.0	0.0	0.0		85-		-Same as above w/ fractures (21 horizontal & -Smooth coring; no water return; drill rate: 0.17 ft/min
٠							***************************************			
							738.8 90.5	% % **********************************		Gray, finely crystalline, massive LIMESTONE/DOLOMITE w/ some horisontal and wavy laminae, fossiliferous, some clay partings, preferential dissolution of skeletal fragments, some fractures (15 horisontal) and heavy mineral
LUN 9	10.0	10.0	93.0	0.0	0.0	0.0				(pyrite) accumulations along fractures. -Smooth coring; no water return; drill rate: 0.17 ft/min

							لكا	UN	Envir	nmen	tal Resources Management PROJECT NUMBER SHEET NO. HOLE NO.
Samples/R. Core Contaminant											
Samples/R. Core Conteminent											7089RBCECO 5 OF 5 PC-6
Semple:	Rec. (ft)	- 4	Blaw Cat		Amb Airs	Semple** VOC(ppm)	e G	LAYER ELEV. DEPTH	DEPTH	GRAPHICS CAMELE	DESCRIPTION AND CLASSIFICATION WATER LEVELS WATER RETURN CHARACTER OF DRILLING, ET
						;			•		
									100-		
								726.3	-		: : <u>:</u>
						 		103.0	,		END OF BORING, 103.0'. Drilling fluid consisted of clear water from the Byron Municipal water supply.
									105-		
į											
	· -								110-		
		}. 									
			·					1	115-		
				-					4		
									1		

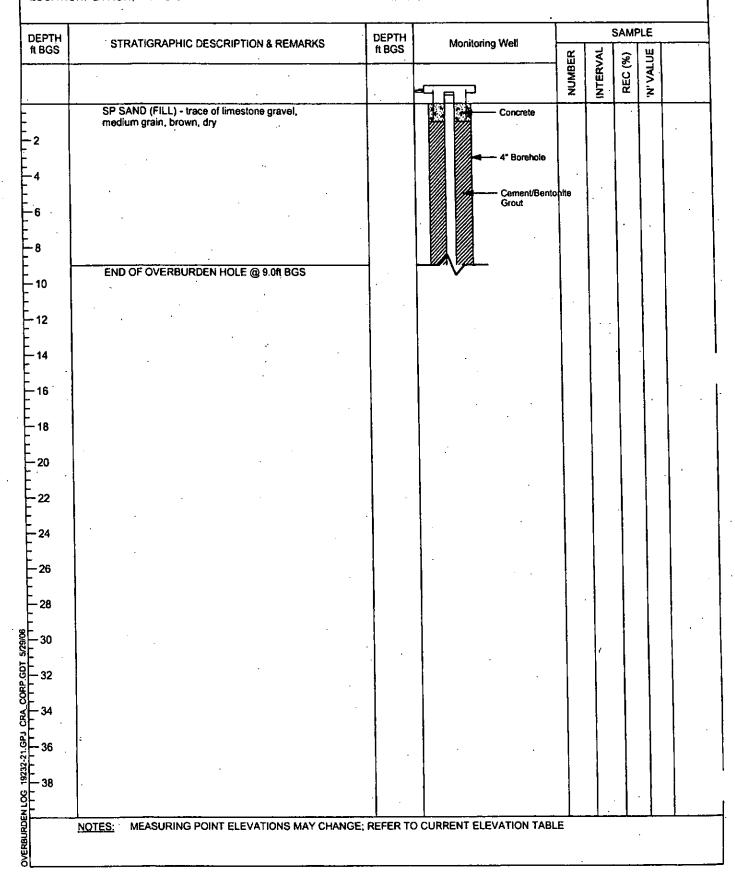
STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC


LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-1

DATE COMPLETED: March 23, 2006

DRILLING METHOD: SONIC

FIELD PERSONNEL: S. POOLER

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-1

DATE COMPLETED: March 23, 2006

DRILLING METHOD: SONIC

FIELD PERSONNEL: S. POOLER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
10	WEATHERED DOLOMITE - fissured, fractured, light brown, wet	9.00	2" PVC Well Casing Cement/Bente Grout		CO RECOV	RQ	
46							

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-1

DATE COMPLETED: March 23, 2006

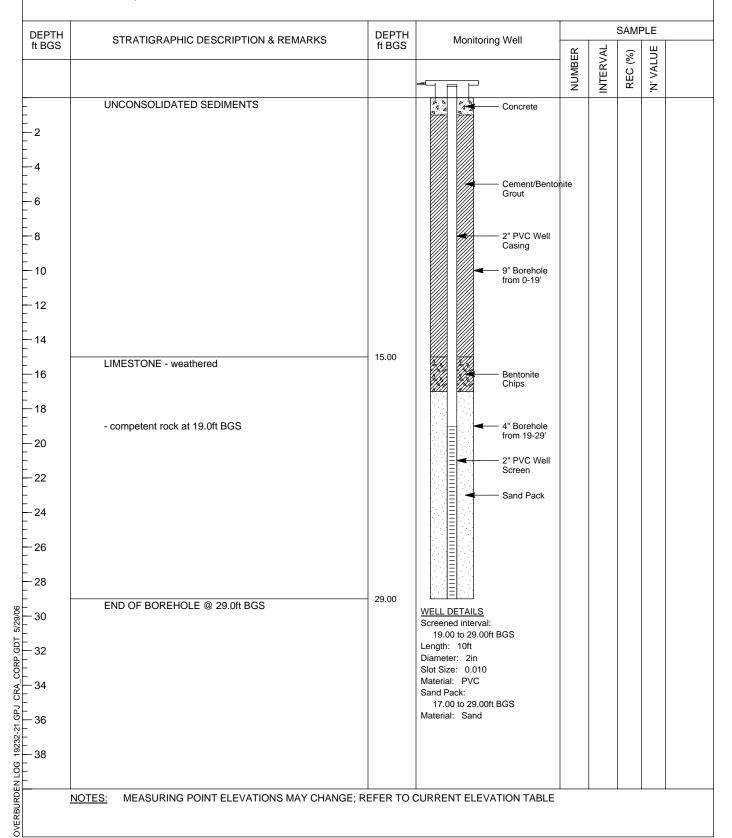
DRILLING METHOD: SONIC

FIELD PERSONNEL: S. POOLER

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-50 -52							
- 54			2" PVC Well				
-56			- - - - - - - - - - - -				
-58 -60			Sand Pack				
-62			Sand Pack				
-64							
-66							
-68 -70		70.00					
-72	END OF BOREHOLE @ 70.0ft BGS		WELL DETAILS Screened interval: 50.00 to 70.00ft BGS				
-74			Length: 20ft Diameter: 2in Slot Size: 0.010 Material: PVC				
-76			Sand Pack: 47.00 to 70.00ft BGS Material: #2 Sand				
-78 -80							
- 80 - 82 - 84 - 86							
- 84							
-86							

Page 1 of 1

PROJECT NAME: EXELON-BYRON

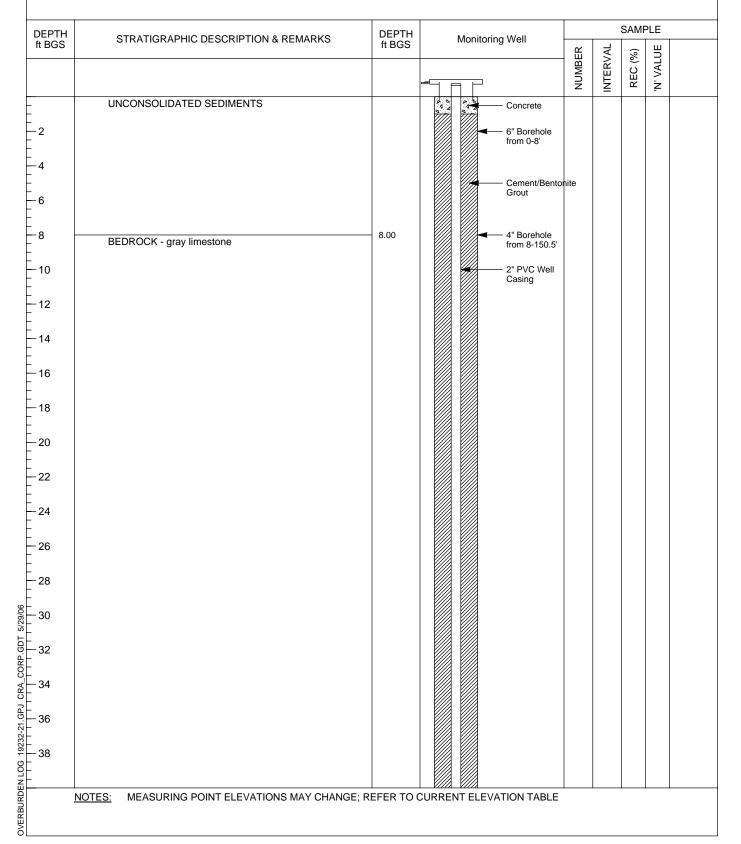

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

PROJECT NUMBER: 19232-21

HOLE DESIGNATION: AR-10
DATE COMPLETED: April 5, 2006

DRILLING METHOD: 4-1/4" HSA/AIR ROTARY


Page 1 of 4

PROJECT NAME: EXELON-BYRON
PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-11
DATE COMPLETED: April 11, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: E. VARNAS

Page 2 of 4

PROJECT NAME: EXELON-BYRON
PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-11

DATE COMPLETED: April 11, 2006

DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: E. VARNAS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAM		
II BOO		II BOO		NUMBER	INTERVAL	REC (%)	'N' VALUE	
- 42								
-44								
46								
48								
50								
52			4" Borehole from 8-150.5'					
-54								
-56								
-58								
-60								
62								
- 64								
-66								
- 68								
-70	- some red color at 70.0ft BGS							
-72								
-74	- gray color at 74.0ft BGS							
-76								
-78	- red color at 78.0ft BGS							

Page 3 of 4

PROJECT NAME: EXELON-BYRON
PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-11
DATE COMPLETED: April 11, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: E. VARNAS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well		1	SAM		
IBGS		πBGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	
82								
84								
86								
88								
90			4" Borehole from 8-150.) 5'				
92			110111 6-150.					
94								
96								
98								
100								
-102								
104								
106	- 1' of gray color at 106.0ft BGS							
108								
110								
-112								
114								
116								
-110 -112 -114 -116 -118								

Page 4 of 4

PROJECT NAME: EXELON-BYRON PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-11
DATE COMPLETED: April 11, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: E. VARNAS

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAME	PLE	
ft BGS		πBGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	
-122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158	SHALE END OF BOREHOLE @ 150.5ft BGS	- 150.00 - 150.50	Bentonite Chips 4" Borehole from 8-150.5' 2" PVC Well Screen Sand Pack 139.50 to 149.50ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 136.00 to 150.50ft BGS Material: Sand	NI NI NI NI NI NI NI NI NI NI NI NI NI N	<u>ENI</u>		· <u>Z</u>	
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EEED TO	CURRENT EL EVATION TARLE					

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21 DATE COMPLETED: March 21, 2006

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

DRILLING METHOD: SONIC FIELD PERSONNEL: S. POOLER

HOLE DESIGNATION: AR-2

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAMI		
t BGS		πBGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	
2	SM SILTY SAND - with fine gravel, compact, fine grained, poorly graded, brown, moist		Concrete					
4								
6			Cement/Bento Grout	nite				
8			6" Borehole from 0-10'					
10	DOLOSTONE - fissured, fractured, light brown	10.00	2" PVC Well Casing					
12	. 5							
14								
16			4" Barehole					
18			4" Borehole from 10-81'					
20	END OF OVERBURDEN HOLE @ 20.0ft BGS							
22								
-24								
- 26								
-28								
30								
30 32 34 36 38								
34								
30								
38								

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-2

DATE COMPLETED: March 21, 2006

DRILLING METHOD: SONIC

DEPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
			8227 8227		RECC	Ř	
20							
22							
24							
26							
28							
30							
32							
34							
36							
38			4" Borehole from 10-81'				
10							
12							
14							
16							
48 50							
50							
54							
56							

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-2

DATE COMPLETED: March 21, 2006

DRILLING METHOD: SONIC

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	RUN NUMBER	CORE RECOVERY %	RQD %	
-60 -62 -64 -66 -68 -70 -72 -74 -76 -80 -82 -84	- wet at 65.0ft BGS - wet at 75.0ft BGS END OF BOREHOLE @ 81.0ft BGS	81.00	WELL DETAILS Screened interval: 71.00 to 81.00ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC		~		
- 88			Sand Pack: 68.00 to 81.00ft BGS Material: #2 Sand				
90							
92							
- 94 - 96							

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-3

DATE COMPLETED: March 22, 2006

DRILLING METHOD: SONIC

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well SAMPLE
ft BGS		ft BGS	L'INE (%)
			NUMBER INTERVAL REC (%)
-	SM SILTY SAND - with fine gravel, compact, fine grained, poorly graded, brown, moist		Concrete
_ 2 			
_ 4			4" Borehole
-			Cement/Bentonite Grout
 6 			
- 8			2" PVC Well Casing
10			
_ 12	END OF OVERBURDEN HOLE @ 11.0ft BGS		
_ _ 14			
- - -			
— 16 - -			
_ 18			
_ 20			
_ _ 22			
- - -			
 24 - -			
- 26			
28			
_ 30			
_			
32 			
34			
36			
- - 38			
<u> </u>	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-3

DATE COMPLETED: March 22, 2006

DRILLING METHOD: SONIC

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	RUN	CORE	RQD %	
DEPTH ft BGS	DOLOSTONE - fissured, fractured, light brown	DEPTH ft BGS	Monitoring Well Wall	RUN NUMBER	CORE RECOVERY %	RQD %	
-32							
-36							
- 40 - 42							
-44							
- 48							

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-3

DATE COMPLETED: March 22, 2006

DRILLING METHOD: SONIC

	STRATIGRAPHIC DESCRIPTION & REMARKS	ft BGS	Monitoring Well	RUN	CORE RECOVERY %	RQD %	
-52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88	- wet at 65.0ft BGS END OF BOREHOLE @ 71.0ft BGS	71.00	WELL DETAILS Screened interval: 60.00 to 70.00ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 57.00 to 71.00ft BGS Material: #2 Sand	pnite			

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-4
DATE COMPLETED: March 24, 2006

DRILLING METHOD: AIR ROTARY

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAMI	
ВСО		II BGS	- 	NUMBER	INTERVAL	REC (%)	'N' VALUE
2	UNCONSOLIDATED SEDIMENTS (see logs for TW-7 and TW-8)		Concrete Bentonite		_		-
6			Grout 2" PVC Well Casing				
3	BEDROCK	8.00	6" Borehole from 0-12'				
10							
12	- competent rock at 12.0ft BGS						
16							
18			4" Borehole from 12-121.5				
20							
22							
26							
28							
30							
32 34							
36							
38							
40							
12							
14	OTES: MEASURING POINT ELEVATIONS MAY CHANGE						

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-4
DATE COMPLETED: March 24, 2006
DRILLING METHOD: AIR ROTARY

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAM		
II BGS		πΒGS	J	NUMBER	INTERVAL	REC (%)	'N' VALUE	
-46								
-48								
-50			Cement/Bento Grout	nite				
-52			4" Borehole					
-54			4" Borehole from 12-121.5					
-56								
-58								
-60								
-62								
-64								
-66								
-68								
-70								
-72								
-74								
-76								
-78								
- 78 - 80 - 82 - 84 - 86 - 88								
-82								
-84								
-86								
-88								
	TES: MEASURING POINT ELEVATIONS MAY CHANGE;		V//A V//A		L	1		

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-4
DATE COMPLETED: March 24, 2006

DRILLING METHOD: AIR ROTARY

EPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	~	_	SAMI		
				NUMBER	INTERVAL	REC (%)	'N' VALUE	
92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132	END OF BOREHOLE @ 121.5ft BGS	121.50	WELL DETAILS Screened interval: 99.50 to 119.50ft BGS Length: 20ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 95.50 to 121.50ft BGS Material: Sand	ON THE STATE OF TH	LVI	REAL PROPERTY OF THE PROPERTY	i.N.	
132 134								

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-5

DATE COMPLETED: March 23, 2006

DRILLING METHOD: AIR ROTARY

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well		1	SAM		
				NUMBER	INTERVAL	REC (%)	'N' VALUE	
	UNCONSOLIDATED SEDIMENTS (see logs for TW-9 and TW-10)		Concrete					
2	,							
	BEDROCK - weathered, gray limestone	3.50	Cement/Bento	nite				
;			Grout					
3			6" Borehole from 0-12'					
10			2" PVC Well Casing					
12	- competent rock at 12.0ft BGS		Casing					
14								
16								
18								
20			4" Borehole from 12-122'					
22								
24								
26								
28								
30								
32								
34								
36								
38								
40								
42								
44	OTES: MEASURING POINT ELEVATIONS MAY CHANGE							

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-5

DATE COMPLETED: March 23, 2006

DRILLING METHOD: AIR ROTARY FIELD PERSONNEL: N. KUHL

SAMPLE DEPTH ft BGS DEPTH ft BGS STRATIGRAPHIC DESCRIPTION & REMARKS Monitoring Well 'N' VALUE INTERVAL NUMBER % REC - 46 -48 -50 -52 -54 - 56 -58 4" Borehole from 12-122' -60 -62 - gray-brown at 62.0ft BGS -64 -66 -68 -70 -72 -- 74 - 76 OVERBURDEN LOG 19232-21.GPJ CRA_ MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-5

DATE COMPLETED: March 23, 2006 DRILLING METHOD: AIR ROTARY

92 94 96 98 98 98 98 98 99 98 99 99 99 99 99 99	DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAM		
96 98 100 102 104 106 108 110 112 114 116 118 120 122 END OF BOREHOLE @ 122.0ft BGS Bentonite Chips A* Borehole from 12-122 Screen Screen 122.00 WELL DETAILS	II BGS		πΒGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE	94 96 98 100 102 104 106 110 1112 1114 1116 1120 1122 1124 1126 1128 1130 1132	END OF BOREHOLE @ 122.0ft BGS	- 122.00	WELL DETAILS Screened interval: 102.00 to 122.00ft BGS Length: 20ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 98.00 to 122.00ft BGS		2			

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-6

DATE COMPLETED: March 21, 2006

DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: E. VARNAS

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAME		
BGS		II BGS	<u>-</u>	NUMBER	INTERVAL	REC (%)	'N' VALUE	
2	UNCONSOLIDATED SEDIMENTS (see logs for TW-11 and TW-12)		Concrete Cement/Bento Grout	nite				
0 2	BEDROCK - competent rock at 12.0ft BGS	8.00	6" Borehole from 0-12' 2" PVC Well Casing					
4 6	Compositives at 12:01:300							
8								
0			4" Borehole from 12-122'					
2								
4								
6								
0								
2								
4								
6								
8								
0								
2								
4								

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-6

DATE COMPLETED: March 21, 2006

DRILLING METHOD: AIR ROTARY

FIELD PERSONNEL: E. VARNAS

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAMI		
BGS		пвс		NUMBER	INTERVAL	REC (%)	'N' VALUE	
6								
8								
•								
0								
2								
4								
56								
58			4" Borehole from 12-122'					
50								
62								
64								
66								
68								
70								
72								
74			Cement/Bent Grout	onite				
76								
78								
20								
50								
78 80 82 84 86 88			Bentonite Chips					
34			Chips					
36								
50								

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-6

DATE COMPLETED: March 21, 2006

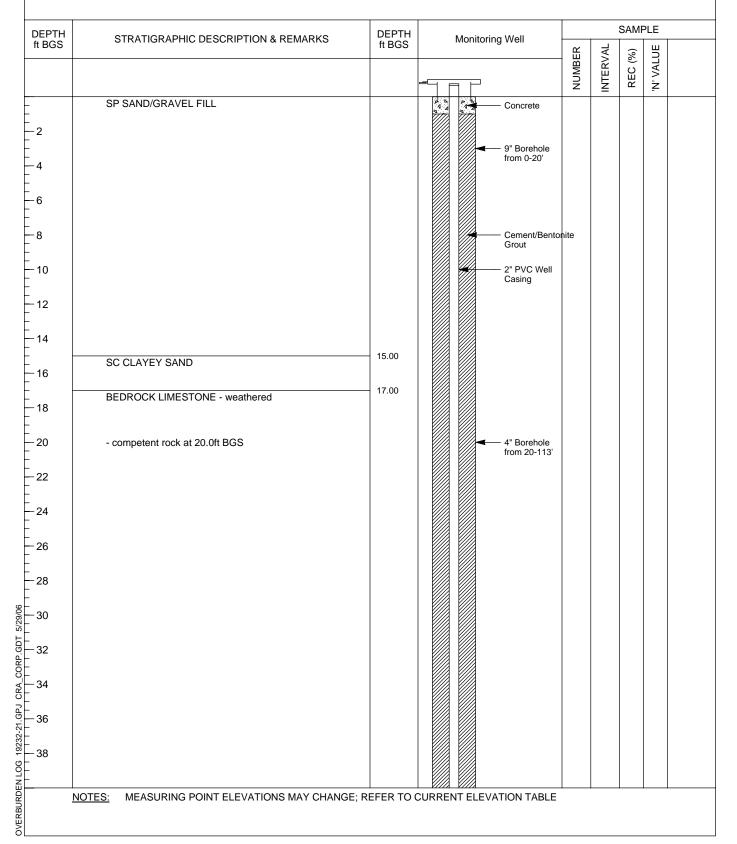
DRILLING METHOD: AIR ROTARY FIELD PERSONNEL: E. VARNAS

SAMPLE DEPTH ft BGS DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS Monitoring Well ft BGS VALUE NTERVAL NUMBER % REC ž - 92 4" Borehole from 12-122' - 94 - 96 2" PVC Well Screen - 98 Sand Pack --- 100 -- 102 -104 -106 --- 108 -- 110 - 112 -- 114 -- 116 - 120 - 122 122.00 END OF BOREHOLE @ 122.0ft BGS WELL DETAILS 124 CORP. GDT 5/29/06 Screened interval: 95.00 to 115.00ft BGS Length: 20ft Diameter: 2in Slot Size: 0.010 CRA_CL Material: PVC -128 Sand Pack: 85.00 to 122.00ft BGS 130 Material: #6 Sand 97-7-132 OVERBURDEN LOG 1 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

Page 1 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-7

DATE COMPLETED: March 28, 2006

DRILLING METHOD: AIR ROTARY

Page 2 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-7

DATE COMPLETED: March 28, 2006 DRILLING METHOD: AIR ROTARY

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Monitoring Well			SAMI	PLE	
t BGS		# BGS	nomenty to	NUMBER	INTERVAL	REC (%)	'N' VALUE	
DEPTH ft BGS - 42 - 44 - 46 - 48 - 50 - 52 - 54 - 56 - 58 - 60 - 62 - 64 - 66 - 68	- occasional sand pockets from 60-79' at 60.0ft BGS	DEPTH ft BGS	Monitoring Well	NUMBER				
-70 -72								
-70 -72 -74 -76 -78 - <u>NO</u>								

Page 3 of 3

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-7

DATE COMPLETED: March 28, 2006

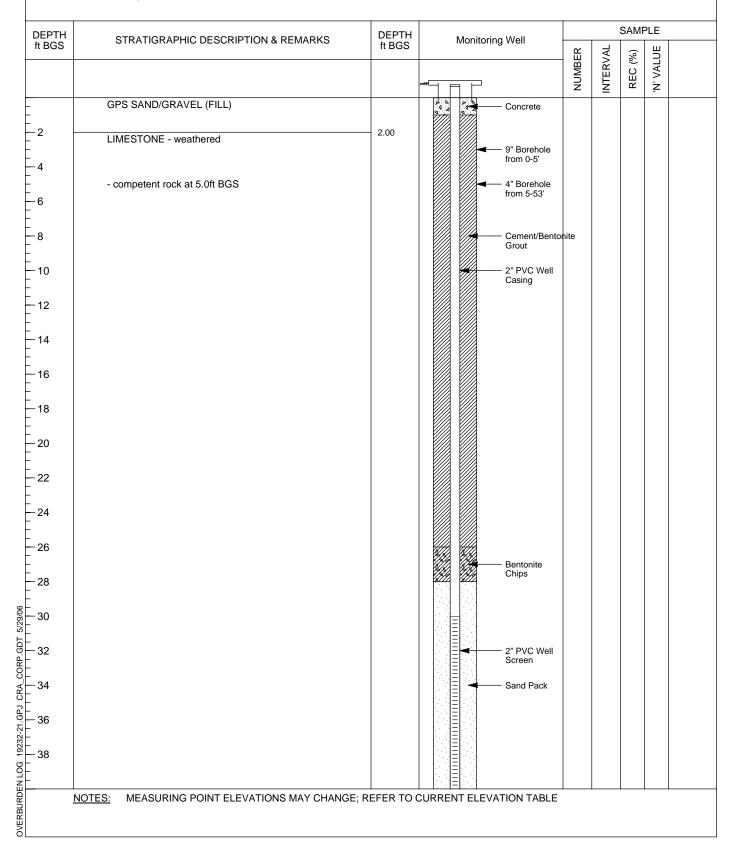
DRILLING METHOD: AIR ROTARY

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAMI		
πBGS		πBGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	
-82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118	END OF BOREHOLE @ 113.0ft BGS	113.00	WELL DETAILS Creen 2" PVC Well Screen Sand Pack Well Details Screened interval: 102.00 to 113.00ft BGS Length: 11ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 100.00 to 113.00ft BGS					

Page 1 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-8

DATE COMPLETED: March 31, 2006

DRILLING METHOD: 4-1/4" HSA/AIR ROTARY

Page 2 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-8

DATE COMPLETED: March 31, 2006

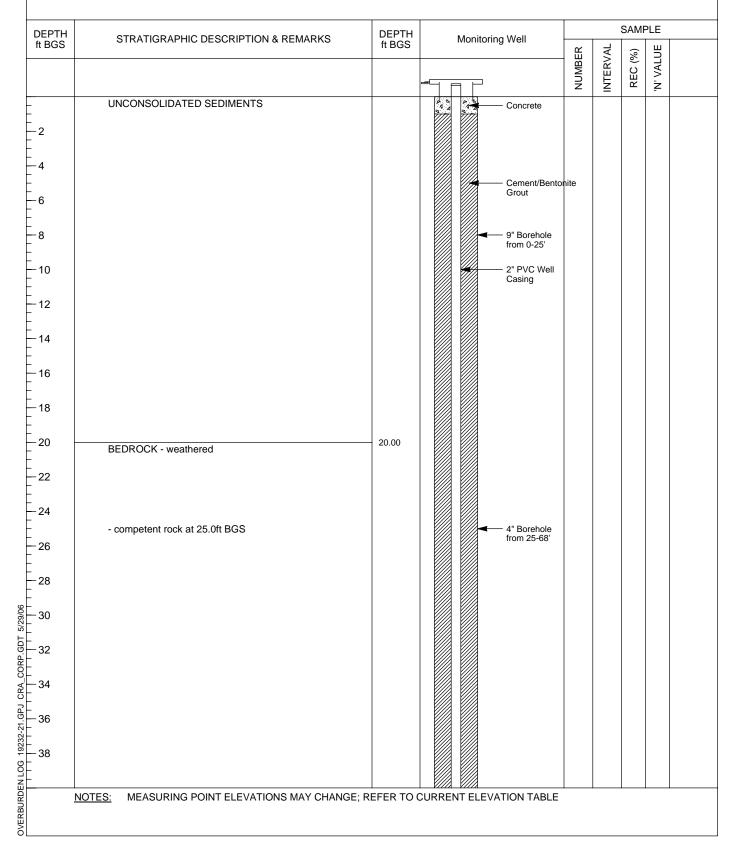
DRILLING METHOD: 4-1/4" HSA/AIR ROTARY

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAMI		
1 603		11 11 11 11 11 11 11 11 11 11 11 11 11		NUMBER	INTERVAL	REC (%)	'N' VALUE	
42 44			4" Borehole from 5-53'					
46 48								
50								
52								
54	END OF BOREHOLE @ 53.0ft BGS	53.00	WELL DETAILS Screened interval: 30.00 to 50.00ft BGS					
56			Length: 20ft Diameter: 2in Slot Size: 0.010					
58			Material: PVC Sand Pack: 28.00 to 53.00ft BGS					
60			Material: Sand					
62								
64								
66								
68								
70								
72								
74								
70 72 74 76								
78								

Page 1 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21


CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-9

DATE COMPLETED: April 4, 2006

DRILLING METHOD: 4-1/4" HSA/AIR ROTARY

Page 2 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: AR-9

DATE COMPLETED: April 4, 2006

DRILLING METHOD: 4-1/4" HSA/AIR ROTARY

EPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	~		SAME		
				NUMBER	INTERVAL	REC (%)	'N' VALUE	
42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78	END OF BOREHOLE @ 68.0ft BGS	68.00	WELL DETAILS Screened interval: 55.50 to 65.50ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 54.00 to 68.00ft BGS Material: #6 Sand					

Page 1 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21 CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: CAR-1

DATE COMPLETED: March 21, 2006

DRILLING METHOD: 4-1/4" HSA

EPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	<u>~</u>		SAMI		
				NUMBER	INTERVAL	REC (%)	'N' VALUE	
2	SP SAND - fine grained, trace medium sand, poorly graded, medium brown, moist		Concrete					
0	- some coarse sand, dark brown at 11.2ft BGS		8" Borehole					
4								
6	- trace fine gravel at 15.0ft BGS							
8								
20	- some fine gravel at 20.0ft BGS		Cement/Bento	nite				
24								
26	- wet at 27.0ft BGS							
28								
30								
34								
86								
38			2" PVC Well Casing					

Page 2 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21 CLIENT: EXELON GENERATION COMPANY LLC

HOLE DESIGNATION: CAR-1 DATE COMPLETED: March 21, 2006

DRILLING METHOD: 4-1/4" HSA

LOCATION: BYRON, ILLINOIS FIELD PERSONNEL: B. WILLIAMS

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well			SAM		
1 500		11 863		NUMBER	INTERVAL	REC (%)	'N' VALUE	
42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78	- dense at 50.0ft BGS END OF BOREHOLE @ 55.0ft BGS OTES: MEASURING POINT ELEVATIONS MAY CHANGE	55.00	WELL DETAILS Screened interval: 45.00 to 55.00ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 43.00 to 55.00ft BGS Material: Sand	Z	<u>z</u>	Δ.	Z.	

Page 1 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: CAR-2

DATE COMPLETED: March 22, 2006

DRILLING METHOD: 4-1/4" HSA/4" ROTARY

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS SP SAND	DEPTH ft BGS	Monitoring Well	Ä.	/AL	<u>@</u>	빌
	CD CAND			NUMBER	INTERVAL	REC (%)	'N' VALUE
	SP SAND		Concrete	Z	_		
-6			9" Borehole				
12			2" PVC Well Casing Cement/Bent Grout	onite			
-16							
18							
20	END OF OVERBURDEN HOLE @ 20.0ft BGS						
22							
24							
26							
28							
30							
32							
34							
36							
-38							

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

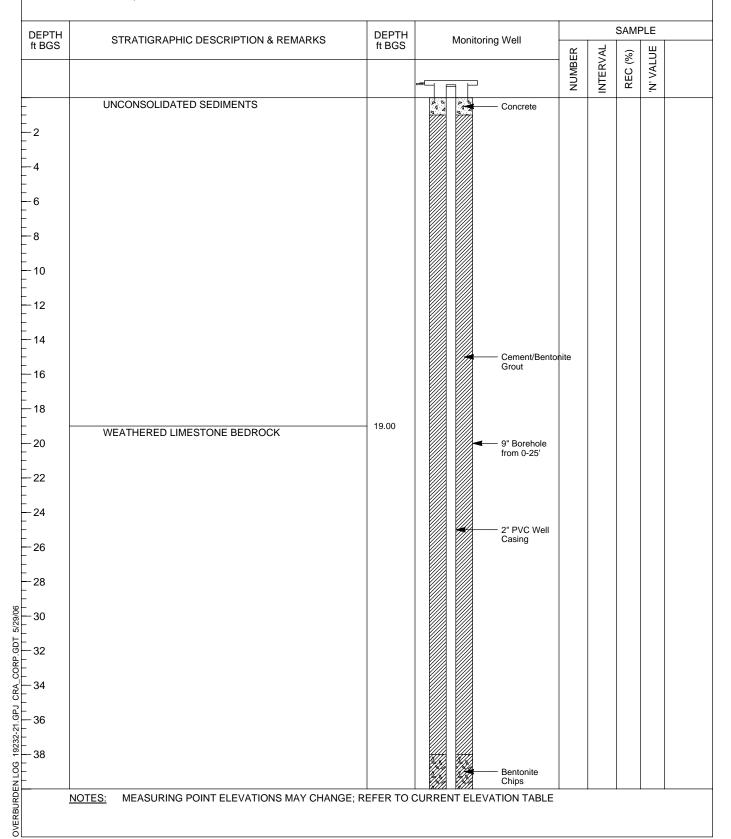
LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: CAR-2

DATE COMPLETED: March 22, 2006

DRILLING METHOD: 4-1/4" HSA/4" ROTARY

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Monitoring Well	RUN	CORE RECOVERY %	RQD %
- 20 —	LIMESTONE/DOLOMITE (highly weathered) - thinly	20.00	8" Borehole			
-22	bedded, trace fine sand pockets, white/beige, dry, calcareous nodules		from 0-20' Bentonite Chips	1	4.6	
-24						
- 28			2" PVC Well Screen 4" Borehole from 20-36.5'			
-30			2" PVC Well Screen 4" Borehole from 20-36.5' Sand Pack	2	100	
-32						
-36		00.50		3	100	
- 38	END OF BOREHOLE @ 36.5ft BGS	36.50	WELL DETAILS Screened interval: 25.00 to 35.00ft BGS			
-40			Length: 10ft Diameter: 2in Slot Size: 0.010 Material: PVC			
- 42			Sand Pack: 23.00 to 36.50ft BGS Material: Sand			
-44						
· 46 · 48						
-50						
-52						
- 54						
- 56						
NC	OTES: MEASURING POINT ELEVATIONS MAY CHANGE;	REFER TO	 CURRENT ELEVATION TABLE			


Page 1 of 2

PROJECT NAME: EXELON-BYRON
PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: CAR-3
DATE COMPLETED: March 29, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: B. WILLIAMS

Page 2 of 2

PROJECT NAME: EXELON-BYRON PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: CAR-3
DATE COMPLETED: March 29, 2006
DRILLING METHOD: AIR ROTARY
FIELD PERSONNEL: B. WILLIAMS

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Monitoring Well		1	SAMI	PLE	
t BGS		ft BGS	morney res	NUMBER	INTERVAL	REC (%)	'N' VALUE	
442 444 446 448 50 52 54 56 58 60 62		πBGS	4" Borehole from 25-63' 2" PVC Well Screen Sand Pack	NUMBER	INTERVAL	REC (%)	.N. VALUE	
64 66 68 70 72 74 76 78	END OF BOREHOLE @ 63.0ft BGS	63.00	WELL DETAILS Screened interval: 43.00 to 63.00ft BGS Length: 20ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 40.00 to 63.00ft BGS Material: #5 Sand					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-1

DATE COMPLETED: February 27, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

FIELD PERSONNEL: R. AAMOT

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well	SAMPLE					
ft BGS		ft BGS		NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)	
-2 -4	TOPSOIL SP SAND (FILL) - trace limestone gravel, medium grain, brown, dry	1.00	Bentonite Chips 2" PVC Well Casing 8" Borehole	1GP				0.0	
	LIMESTONE - sandy and silty, weathered, brown, dry - AUGER REFUSAL at 8.5ft BGS - GEOPROBE REFUSAL at 9.0ft BGS END OF BOREHOLE @ 9.0ft BGS	9.00	Screen Screen Sand Pack WELL DETAILS Screened interval: 3.50 to 8.50ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 2.50 to 8.50ft BGS	2GP				0.0	
-16 -18			Material: Sand						
-20 -22									
-24									
- 26 - 28									
-30									
-32									
-34									
-36 -38									

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-10

DATE COMPLETED: March 1, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

FIELD PERSONNEL: R. AAMOT

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI	PLE	
ft BGS		ft BGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
-2 -4	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist SP SAND - medium grain, brown, dry	3.00	Bentonite Chips 2" PVC Well Casing 8" Borehole 2" PVC Well Screen	1GP				0.0
-6 -8 -10 -12 -14 -16	WEATHERED LIMESTONE - sandy, silty, brown, dry - AUGER REFUSAL at 7.5ft BGS - GEOPROBE REFUSAL at 8.0ft BGS END OF BOREHOLE @ 8.0ft BGS	7.00	WELL DETAILS Screened interval: 2.50 to 7.50ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 1.50 to 7.50ft BGS Material: Sand	2GP				0.0
- 20								
24								
-26								
28								
30								
32								
34								
36 38								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-11

DATE COMPLETED: March 1, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

FIELD PERSONNEL: R. AAMOT

EPTH BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Temporary Well			SAMI		
BGS		II BGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
	TOPSOIL	1.00	Bentonite Chins					
!	CL CLAY (FILL) - sandy, low plasticity, brown, moist	1.00	2" PVC Well	1GP				0.0
	SP SAND - medium grained, brown, dry	4.50	Casing					
			2" PVC Well Screen	2GP				0.0
+	WEATHERED LIMESTONE - sandy, silty, brown,	9.00	Sand Pack					
2	dry - GEOPROBE REFUSAL at 9.0ft BGS - AUGER REFUSAL at 10.0ft BGS	10.00	WELL DETAILS Screened interval: 5.00 to 10.00ft BGS					
4	END OF BOREHOLE @ 10.0ft BGS		Length: 5ft Diameter: 2in Slot Size: 0.010					
6			Material: PVC Sand Pack: 4.00 to 10.00ft BGS					
8			Material: Sand					
0								
2								
4								
:6								
8								
0								
2								
4								
66								
8								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R							

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-12

DATE COMPLETED: March 1, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Temporary Well		1	JAIVII	'N' VALUE	
				NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
	TOPSOIL	4.00						
, [CL CLAY (FILL) - sandy, low plasticity, moist	1.00	Bentonite Chips					
2			2" PVC Well	1GP				0.0
4			Casing					
·	SP SAND - medium grained, brown, dry	4.50						
6			8" Borehole					
				2GP				0.0
8								
	WEATHERED LIMESTONE - sandy, silty, brown,	9.00	2" PVC Well Screen					
10	dry - GEOPROBE REFUSAL at 9.0ft BGS							
12	- AUGER REFUSAL at 12.0ft BGS	12.00	Sand Pack					
12	END OF BOREHOLE @ 12.0ft BGS	12.00	WELL DETAILS					
14			Screened interval: 7.00 to 12.00ft BGS					
			Length: 5ft Diameter: 2in					
16			Slot Size: 0.010					
			Material: PVC Sand Pack:					
18			5.50 to 12.00ft BGS Material: Sand					
20			Waterial. Caria					
20								
-22								
-24								
26								
-28								
30								
32								
-34								
34								
36								
38								
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE				L			

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-13

DATE COMPLETED: March 1, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAME	PLE	
ft BGS	STRATIGNAPHIC DESCRIPTION & NEWARKS	ft BGS	remporary well	NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
-	TOPSOIL			Z	볼	8	Ž	II
_2	CL CLAY - sandy, low plasticity, brown, moist	1.00						
			Bentonite	1GP				0.0
-4	SP SAND - medium grain, brown, dry	4.00	Chips 2" PVC Well					
6			Casing					
-8		8.00		2GP				0.0
	GC CLAYEY GRAVEL (limestone) - sandy, orange/brown, dry	6.00						
10	SP SAND - medium grain, brown, dry	10.00		3GP				0.0
12	- GEOPROBE REFUSAL at 12.0ft BGS		8" Borehole					0.0
14			2" PVC Well					
	- saturated at 15.0ft BGS		Screen					
16 			Sand Pack					
18	- AUGER REFUSAL at 18.0ft BGS END OF BOREHOLE @ 18.0ft BGS	18.00	WELL DETAILS					
20			Screened interval: 13.00 to 18.00ft BGS					
22			Length: 5ft Diameter: 2in Slot Size: 0.010					
_			Material: PVC Sand Pack:					
24			11.00 to 18.00ft BGS Material: Sand					
26								
-28								
30 - 30								
당 - 왕								
- 32 - 32 - 32 - 34								
□								
232-21								
38								
36 38 38 1.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; I	REFER TO	CURRENT ELEVATION TABLE					
VERBU	WATER FOUND ¥							

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-14
DATE COMPLETED: April 5, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

EPTH t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Temporary Well			SAMI		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11 503		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
	TOPSOIL	1.00	Concrete					
2	CL CLAY - sandy, low plasticity, brown, moist	1.00		1GP				0.0
<u> </u>	SP SAND - medium grained, brown, dry	4.00						
3	- moist at 8.5ft BGS		Cement/Bento	2GP				0.0
12		13.00	Grout	3GP				0.0
14	GC CLAYEY GRAVEL (limestone) - sandy, orange/brown, moist	13.00	2" PVC Well Casing			<u> </u> 		
8				4GP				0.0
20	- interbedded layers of sand at 21.0ft BGS		Bentonite					
22			Chips 9" Borehole	5GP				0.0
24	 weathered sandstone pieces mixed in medium grained, green/gray at 24.0ft BGS GEOPROBE REFUSAL at 25.0ft BGS 		2" PVC Well					
28			Screen Sand Pack					
30								
32								
34	END OF BOREHOLE @ 34.0ft BGS	34.00	WELL DETAILS Screened interval:					
38			24.00 to 34.00ft BGS Length: 10ft Diameter: 2in Slot Size: 0.010					
38 40			Slot Size: 0.010 Material: PVC Sand Pack: 22.00 to 34.00ft BGS					
12			Material: Sand					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-15

DATE COMPLETED: March 1, 2006

DRILLING METHOD: GEOPROBE/4-1/" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REWARKS	ft BGS	remporary well	ER	/AL	(%	UE	(mc
				NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
	TOPSOIL	1.00						
2 	SP SAND - medium grained, brown, moist	1.00	Bentonite	1GP				0.0
- - - - - - 8			Chips	2GP				0.0
- 10 - 12 - 12 - 14	- increasing clay with depth at 14.0ft BGS		2" PVC Well Casing	3GP		-		0.0
- -16 -	CI CLAY - silty, medium plasticity, brown, moist	16.00		4GP		-		0.0
- 18 - - - 20	SP SAND - medium grained, brown, moist	18.00				_		
22 			■ 8" Borehole	5GP				0.0
- 26	GC CLAYEY GRAVEL - sandy, light brown, saturated	25.00	2" PVC Well Screen Sand Pack	6GP		_		0.0
-28	- GEOPROBE REFUSAL at 29.0ft BGS		Sand Fack			-		0.0
30	- AUGER REFUSAL at 30.0ft BGS END OF BOREHOLE @ 30.0ft BGS	30.00	WELL DETAILS Screened interval: 24.00 to 29.00ft BGS					ı
2 - 32 - 32 - 34			Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC					ı
			Sand Pack: 22.00 to 29.00ft BGS Material: Sand					
38								
5	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F	REFER TO	CURRENT ELEVATION TABLE					
į								

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-2

DATE COMPLETED: February 27, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI	IN' VALUE	
ft BGS		ft BGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
- 2 - 4	TOPSOIL SP SAND (FILL) - trace of limestone gravel, medium grain, brown, dry	1.00	Bentonite Chips 2" PVC Well Casing 8" Borehole 2" PVC Well Screen Sand Pack	1GP				0.0
8 10 12	- AUGER REFUSAL at 7.0ft BGS WEATHERED LIMESTONE - sandy, silty, brown, dry - GEOPROBE REFUSAL at 9.0ft BGS END OF BOREHOLE @ 9.0ft BGS	9.00	WELL DETAILS Screened interval: 2.00 to 7.00ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 1.50 to 7.00ft BGS Material: Sand	2GP				0.0
16 18								
20								
22								
24								
26								
28								
30								
32								
34								
36 38								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI	LEFER TO (LURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-3

DATE COMPLETED: February 28, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAME	PLE	
ft BGS	STRATIONAL THE BESON HONG REMARKS	ft BGS	Temporary Well	NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist SP SAND - medium grain, brown, dry	- 1.00	Bentonite Chips 2" PVC Well Casing 8" Borehole	1GP				0.0
	- moist at 8.5ft BGS WEATHERED LIMESTONE - sandy, silty, brown, dry - GEOPROBE REFUSAL at 9.0ft BGS - AUGER REFUSAL at 10.5ft BGS END OF BOREHOLE @ 10.5ft BGS	- 9.00 - 10.50	WELL DETAILS Screened interval: 5.50 to 10.50ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 4.50 to 10.50ft BGS Material: Sand	2GP				0.0
- -36 - - -38								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO (CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-4

DATE COMPLETED: February 28, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI		
ft BGS		ft BGS		NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist SP SAND - medium grain, brown, dry	4.00	Bentonite Chips 2" PVC Well Casing 8" Borehole 2" PVC Well	1GP		_		0.0
	WEATHERED LIMESTONE - sandy, silty, brown, dry - GEOPROBE REFUSAL at 9.0ft BGS - AUGER REFUSAL at 10.5ft BGS END OF BOREHOLE @ 10.5ft BGS	9.00	Screen Screen Sand Pack WELL DETAILS Screened interval: 5.50 to 10.50ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 4.50 to 10.50ft BGS Material: Sand	201				0.0
26 28 								
- - - - - -								
-32								
-34								
-36								
-38								

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-5

DATE COMPLETED: February 28, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI	PLE	
ft BGS		ft BGS	=4 = P	NUMBER	INTERVAL	REC (%)	N' VALUE	PID (ppm)
	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist SP SAND - medium grain, brown, dry - GEOPROBE REFUSAL at 8.0ft BGS - AUGER REFUSAL at 8.0ft BGS END OF BOREHOLE @ 8.0ft BGS	4.00	WELL DETAILS Screened interval: 3.00 to 8.00ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 2.00 to 8.00ft BGS Material: Sand	1GP 2GP	INTERVA	REC (%)	'N' VALUI	0.0 0.0
22 24 24 26								
- - 28								
- - 30 								
- - 32 -								
- 34 								
- 36 - - - 38								
• • •	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-6

DATE COMPLETED: February 28, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI	PLE	
ft BGS		ft BGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
-2 -2	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist	1.00	Bentonite Chips 2" PVC Well Casing 8" Borehole	1GP				0.0
-4 -6 -8	SP SAND - medium grain, brown, dry	4.00	2" PVC Well Screen	2GP				0.0
-10 -12 -14	- GEOPROBE REFUSAL at 8.5ft BGS - AUGER REFUSAL at 8.5ft BGS END OF BOREHOLE @ 8.5ft BGS	8.50	WELL DETAILS Screened interval: 3.50 to 8.50ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 2.50 to 8.50ft BGS					
-16 -18			Material: Sand					
- 20								
-22								
- 24								
-26								
-28								
-30								
-32								
-34								
-36								
-38								
_	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TARI F					

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-7

DATE COMPLETED: February 28, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Temporary Well			SAM		
11 1000		11 11 11 11 11 11 11 11 11 11 11 11 11		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
-2	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist	1.00	Bentonite Chips 2" PVC Well	1GP				0.0
6	SP SAND, medium grain, brown, dry	3.50	Casing 8" Borehole 2" PVC Well Screen	2GP		-		0.0
10	CL CLAY - sandy, low plasticity, brown, moist - GEOPROBE REFUSAL at 9.5ft BGS - AUGER REFUSAL at 11.0ft BGS END OF BOREHOLE @ 11.0ft BGS	9.50	Sand Pack WELL DETAILS Screened interval:			_		
14 16			6.00 to 11.00ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC					
18			Sand Pack: 5.00 to 11.00ft BGS Material: Sand					
20								
-22								
· 24								
-26								
-28								
- 30								
-32								
-34								
·36 ·38								

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-8

DATE COMPLETED: February 28, 2006

DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH ft BGS	Temporary Well			SAMI		
11 1000		11 000		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
	TOPSOIL	1.00						
	CL CLAY (FILL) - sandy, low plasticity, brown,	1.00	Bentonite Chips					
-2	moist		2" PVC Well	1GP				0.0
-4	SP SAND - medium grain, brown, dry	3.50	Casing					
-4	C. O. W. Modalin grain, Drown, dry							
-6								
			8" Borehole	000				0.0
-8			2" PVC Well	2GP				0.0
			Screen					
-10	CL CLAY - sandy, low plasticity, brown, moist	9.50	Sand Pack					
	- GEOPROBE REFUSAL at 9.5ft BGS							
-12	- AUGER REFUSAL at 12.0ft BGS	12.00						
	END OF BOREHOLE @ 12.0ft BGS		WELL DETAILS Screened interval:					
-14			7.00 to 12.00ft BGS Length: 5ft					
			Diameter: 2in					
-16			Slot Size: 0.010 Material: PVC					
40			Sand Pack:					
-18			6.00 to 12.00ft BGS Material: Sand					
-20								
20								
- 22								
-24								
-26								
-28								
-30								
-32								
-24								
-34								
-36								
50								
-38								
		1						

Page 1 of 1

PROJECT NAME: EXELON-BYRON

PROJECT NUMBER: 19232-21

CLIENT: EXELON GENERATION COMPANY LLC

LOCATION: BYRON, ILLINOIS

HOLE DESIGNATION: TW-9

DATE COMPLETED: February 28, 2006

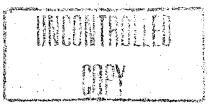
DRILLING METHOD: GEOPROBE/4-1/4" HSA

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH	Temporary Well			SAMI	REC (%)	
ft BGS		ft BGS		NUMBER	INTERVAL	REC (%)	'N' VALUE	PID (ppm)
-2	TOPSOIL CL CLAY (FILL) - sandy, low plasticity, brown, moist SP SAND - medium grain, brown, dry	3.00	Bentonite Chips 2" PVC Well Casing 8" Borehole 2" PVC Well	1GP				0.0
- 6 - 8 - 10	WEATHERED LIMESTONE - sandy, silty, brown, dry - GEOPROBE REFUSAL at 8.0ft BGS - AUGER REFUSAL at 8.0ft BGS	7.00 8.00	Screen Sand Pack WELL DETAILS Screened interval:	2GP				0.0
-12	END OF BOREHOLE @ 8.0ft BGS		3.00 to 8.00ft BGS Length: 5ft Diameter: 2in Slot Size: 0.010 Material: PVC Sand Pack: 2.00 to 8.00ft BGS Material: Sand					
16								
18								
22								
24								
26								
28								
30								
32								
34								
36 38								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; R	EFER TO	CURRENT ELEVATION TABLE					

Revision 0

APPENDIX C

QUALITY ASSURANCE PROGRAM


- C.1 ENVIRONMENTAL, INC.
- C.2 TELEDYNE BROWN ENGINEERING, INC.

Revision 0

C.1 ENVIRONMENTAL, INC.

700 Landwehr Road • Northbrook, TL 60062-2310 ph. (847) 564-0700 • fax (847) 564-4517

QUALITY ASSURANCE PROGRAM

QAP-1

Copy No.	
Issued To:.	
Issue Date:.	

QUALITY POLICY

It is the policy of the Environmental, Inc., Midwest Laboratory to perform all technical work in accordance with specific written requirements. The requirements are contained in the quality assurance program manual, technical procedures and study plans. This policy applies to all employees of Environmental, Inc. and will be enforced in all areas of the laboratory. If it is determined that the needs of the laboratory or our clients are not adequately met, the requirements may be revised.

AUTHORIZATION AND APPROVAL

The Quality Assurance Program defined herein has been approved by the management of Environmental, Inc., Midwest Laboratory. The Quality Assurance Manager is authorized to develop and implement the procedures required to attain these goals. This program defines the quality related operations of the Environmental, Inc., Midwest Laboratory.

Quality Assurance Manager

Laboratory Manager

S. A. Coorlim

Bronia Grob

DOCUMENT ISSUE AND REVISION CONTROL FORM

DOCUMENT:

Quality Assurance Program Manual (QAP-1)
Environmental, Inc. - Midwest Laboratory

Issue and Revisions	Pages	Prepared by:	Date	Effective Date Approved by	<u>:</u>
Re-issue	1-2, 8-1, 18-1,2,3,4,5,6	S. A. Coorlim	10/1/2000 10/1/2003	10/11/2000 B. Grob 10/15/2003 p. Grob	
			• •		
	,				

TABLE OF CONTENTS

SECTION 1.0	ORGANIZATION1	-1
	1.1 PURPOSE	-1 -2
SECTION 2.0	QUALITY ASSURANCE PROGRAM	2-1
	2.1 PURPOSE	2-1 2-2
	DESIGN CONTROL	
SECTION 4.0	PROCUREMENT DOCUMENT CONTROL	4-1
	4.1 PURPOSE	4-1
SECTION 5.0	INSTRUCTIONS, PROCEDURES, AND DRAWINGS	5-1
	5.1 PURPOSE	5-1
SECTION 6.0	DOCUMENT CONTROL	.6-1
	6.1 PURPOSE	.6-1
SECTION 7.0	CONTROL OF PURCHASED MATERIAL, EQUIPMENT AND SERVICES	.7-1
	7.1 PURPOSE	.7-2
SECTION 8.0	IDENTIFICATION AND CONTROL OF MATERIALS, PARTS, COMPONENTS	.8-1
	CONTROL OF SPECIAL PROCESSES	
SECTION 10.	0 INSPECTION	10-
	10.1 PURPOSE	10- 10-

SECTION 11.0 TEST CONTROL
11.1 PURPOSE
SECTION 12.0 CONTROL OF MEASURING AND TEST EQUIPMENT
12.1 PURPOSE
SECTION 13.0 HANDLING, STORAGE AND SHIPPING13-1
13-1 PURPOSE
SECTION 14.0 INSPECTION, TEST, AND OPERATING STATUS14-1
14.1 PURPOSE
SECTION 15.0 NONCONFORMING ITEMS15-
15.1 PURPOSE
SECTION 16.0 CORRECTIVE ACTION16-
16.1 PURPOSE

OFOTION 17	7.0 QUALITY ASSURANCE RECORDS		17-1
SECTION 17	,0 QUALITY NOOOT IN TO		474
,	17.1 PURPOSE	,	17-1
	17.2 QUALITY ASSURANCE RECORDS	5	17-1
	17.3 PROJECT RECURDS		17-1
	17.4 RECORDS STORAGE	•••	
	3.0 AUDITS		18-1
SECTION 18	3.0 AUDITS	***************************************	,
			18-1
	18.2 AUDITOR TRAINING	***********************	18-1
	18.2 AUDITOR TRAINING 18.3 RESPONSIBILITIES	********************************	18-1
	18.7 AUDIT FINDING REPORTS	***************************************	18-5
	18.7 AUDIT FINDING REPORTS 18.8 AUDIT REPORTS		18-6
	18 9 AUDIT FOLLOW-UP	***************************************	

SECTION 1.0 ORGANIZATION CRITERIA I IN NRC 10 CFR 50, APPENDIX B

1.1 PURPOSE

To describe the Environmental, Inc., Midwest Laboratory (EIML) Quality Assurance and technical organization and the principal duties of the Quality Assurance Manager, Laboratory Manager, supervisors and technicians.

1.2 QUALITY ASSURANCE ORGANIZATION

The Quality Assurance Manager, under the guidance of the Quality Assurance Program (QAP), has the authority and responsibility to monitor conformance of technical disciplines to QAP requirements. Any condition so adverse to quality as to affect the validity of the results of analyses shall be reported immediately to the president of the company for executive action or work stoppage of the laboratory, if necessary. The principal duties and responsibilities of the Quality Assurance Manager are as follows:

- 1.2.1 Prepare, distribute, and maintain the Quality Assurance Program.
- 1.2.2 Perform internal audits of the EIML facility at least every eighteen months to ensure compliance to QAP requirements.
- 1.2.3 The Quality Assurance Manager has the organizational freedom to identify quality problems and initiate, recommend or provide solutions.
- 1.2.4 Issue audit reports and status reports to management on a regular basis concerning audit findings.
- 1.2.5 Verify implementation of corrective action.
- 1.2.6 Select and train individuals to perform the audit function.
- 1.2.7 Provide for the maintenance of a permanent record of all audits, including discrepancies and their resolutions.

1.3 TECHNICAL ORGANIZATION

The Laboratory Manager is responsible for the overall supervision of the technical work performed at the facility. The Laboratory Manager reports to the president of Environmental, Incorporated and is responsible for quality assurance to the Quality Assurance manager. Responsibilities of the Laboratory Manager include:

- 1.3.1 Sufficient training to ensure technical competence of personnel performing the work, and provide for the continued training of the technical staff.
- 1.3.2 Review and approve study plans to ensure that project objectives will be satisfied.
- 1.3.4 Review and approve project reports, verifying their conformance to project requirements and the QAP.
- 1.3.5 Act as Project Manager for all projects (this responsibility may be delegated to other members of EIML).

1

1.4 DUTIES

The duties of various levels of responsibility are listed below: Duties may be delegated to qualified personnel.

1.4.1 <u>Laboratory Manager</u>

- 1.4.1.1 Provide quality control of all analytical results.
- 1.4.1.2 Establish, maintain and review analytical procedures.
- 1.4.1.3 Write and / or approve programming for data reduction.
- 1.4.1.4 Hire personnel sufficient to handle sample work load.
- 1.4.1.5 Review contract specifications and monitor laboratory compliance to the specifications.
- 1.4.1.6 Assist in training personnel.
- 1.4.1.7 Provide general supervision to assure good laboratory practice is followed.
- 1.4.1.8 Effect and monitor required corrective actions subsequent to external and internal audits.

1.4.2 Quality Assurance Manager

- 1.4.2.1 Maintain and/or review control charts for instrument performance and backgrounds. Investigate any out-of control conditions and issue corrective action requests when necessary.
- 1.4.2.2 Maintain up to date postings and provide proper notification and training in accordance with applicable regulations and contract commitments.
- 1.4.2.3 Perform and maintain QA / QC scheduled checks.
- 1.4.2.4 Investigate and initiate non-conformances or out-of control conditions and issue corrective action requests when necessary.
- 1.4.2.5 Maintain a schedule for in-house quality control samples. Review spike, blank and cross-check results. Initiate corrective action for non-conformances and out of limit results.
- 1.4.2.6 Participate in all client and agency audits.
- 1.4.2.7 Effect and monitor required corrective actions subsequent to external and internal audits.

1.4.3 Project Coordinator

- 1.4.3.1 Compile and review reports of analyses to clients.
- 1.4.3.2 Review data for accuracy and reasonableness.
- 1.4.3.3 Assist in quality control of analytical results.
- 1.4.3.4 Review contract specifications and monitor laboratory compliance to specifications.
- 1.4.3.5 Assist in audits by contractors.

1.4.4 Laboratory Supervisor

- 1.4.4.1 Ensure that analytical procedures are followed.
- 1.4.4.2 Assist the Laboratory Manager in maintaining quality control.
- 1.4.4.3 Inspect laboratory notebooks.
- 1.4.4.4 Train personnel.
- 1.4.4.5 Schedule work of laboratory including quality control samples.
- 1.4.4.6 Prepare standard reference material and check sources for calibration of equipment. Establish counter efficiencies as required.
- 1.4.4.7 See that good laboratory and housekeeping practices are followed.
- 1.4.4.8 Inform management of problems or the need for equipment maintenance or personnel. Order necessary supplies.
- 1.4.4.10 Inspect the work of technicians at hold points, if necessary, to assure accuracy of analyses.

1.4.5 Laboratory Technician

- 1.4.5.1 Perform analyses in accordance with analytical procedures.
- 1.4.5.2 Follow good laboratory practices and maintain clean, organized work area.
- 1.4.5.3 Enter all data on a work sheet according to an identifying number specifying the analysis, dates of analysis and data necessary to trace accuracy of measurement.
- 1.4.5.4 Schedule sample counting so that delivery dates may be met.
- 1.4.5.5 Inform supervisor of supplies required and any problems with equipment used.
- 1.4.5.6 Perform required calibration or performance tests on instrumentation which could affect accuracy of measurement.
- 1.4.5.7 Perform quality control samples, as required, for recertification.
- 1.4.5.8 Follow safe laboratory practice, including knowledge of fire regulations and actions required in case of a chemical or radioactive material spill.

1.4.6 Counting Room

- 1.4.6.1 Schedule sample counting and data reduction. Perform special requests for data reduction and sample counting as needed.
- 1.4.6.2 Run performance checks and background measurements as required.
- 1.4.6.3 Maintain adequate supplies for functioning of counting room instrumentation. Order liquid nitrogen and other counting room gases, as required.
- 1.4.6.4 Maintenance and repair of counting room equipment.
- 1.4.6.5 Perform energy and efficiency calibrations, as required. Establish counter efficiencies, as required. Inform management if these are not within prescribed limits.
- 1.4.6.6 Review data for accuracy and reasonableness. Check for compliance to contract specifications.
- 1.4.6.7 Maintain instrumentation files.

SECTION 2.0 QUALITY ASSURANCE PROGRAM CRITERIA II IN NRC 10 CFR 50, APPENDIX B

2.1 PURPOSE

To describe the specific objectives of the Environmental, Inc. Midwest Laboratory Quality Assurance Program (QAP-1).

2.2 PROGRAM OBJECTIVES

The QAP is designed to provide the necessary procedures and actions taken by management to ensure that results of studies and analyses are acceptable to both clients and regulatory agencies. The specific objectives are as follows:

- 2.2.! To ensure that technical personnel who collect and analyze samples and generate data are adequately trained.
- 2.2.2 To provide confidence in the methods, techniques, and procedures used to collect and analyze samples and generate data.
- 2.2.3 To provide assurance that methods, techniques, and procedures are documented and approved.
- 2.2.4 To ensure that groups and individuals who collect and analyze samples and generate data comply with contractual specifications and quality assurance/control requirements in performance of their work.
- 2.2.5 To ensure that the required QA/QC documentation is generated and that such records are adequate and complete.
- 2.2.6 To ensure that prompt corrective action measures are implemented by management to correct conditions of unacceptable quality.
- 2.2.7 To provide a quality assurance documentation file which is identifiable and traceable to each item.

2.3 PROGRAM REQUIREMENTS

Individual and General Subcontractor agreements must identify any applicable quality assurance requirements to be incorporated in the supplier's quality assurance program. Procurement documents must require the supplier to incorporate appropriate quality assurance program requirements into their subtier procurement documents. All procurement documents and any changes to these documents are reviewed and approved prior to release by the Project Manager or his/her designee.

Technical procedures are prepared for all activities involving the following:

- 2.3.1 Performance, calibration, and maintenance of field and laboratory equipment.
- 2.3.2 Sample collection, analyses, storage, and disposition.
- 2.3.3 Data collection, reduction, processing, storage and disposition.

2.4 PERSONNEL QUALIFICATIONS and TRAINING

Laboratory procedures are performed by qualified personnel. The qualifications and training necessary to become a staff member at EIML are as follows:

2.4.1 Qualifications

The qualifications necessary to become a staff member of Environmental, Inc. are listed in the Quality Control Program (QCP-1).

2.4.2 Training

Personnel shall be trained in the principles of the quality assurance program or other quality programs as they apply to their duties. The Quality Assurance Manager or a qualified designee shall perform quality assurance program training.

Personnel shall be trained in quality control and analytical procedures before analyzing samples submitted by clients. Training shall be performed by the laboratory supervisor or a qualified designee and documented on Orientation and Training Form, GOF:A-8, and shall consist of the following steps:

- 2.4.2.1 Employees shall familiarize themselves with the written procedures.
- 2.4.2.2 Observe the procedures as performed by a qualified analyst.
- 2.4.2.3 Performance of the procedure under the instructions of a qualified analyst.
- 2.4.2.4 Demonstration of competence in the procedure by analysis of quality control samples, with the attainment of specified precision and accuracy.

2.4.3 Certification

Personnel shall be considered certified to a procedure upon completion of training. The laboratory supervisor or qualified designee will review the data and the analyst's technical understanding of the procedures. If employee performance during training is acceptable, the certification form (GOF:A-8) shall be completed, including a description and the number of the procedure for which the person is being certified, signed, and dated by the laboratory supervisor or qualified designee. Each procedure for which a technician is certified shall be listed separately. A copy of the certification form for each technician shall be kept on file and available for inspection.

2.4.4 Performance Review

Annual performance reviews shall be conducted to ensure that laboratory performance is in accordance with quality assurance requirements, written procedures and accepted laboratory practice. Performance reviews shall be documented on Form GOF/A-29.

SECTION 3.0 DESIGN CONTROL CRITERIA III IN NRC 10 CFR 50, APPENDIX B

Design control is not applicable.

SECTION 4.0 PROCUREMENT DOCUMENT CONTROL CRITERIA IV IN NRC 10 CFR 50, APPENDIX B

4.1. PURPOSE

To describe the quality provisions to be incorporated into procurement documents for the purchase of materials, equipment and services.

4.2 RESPONSIBILITY

The department responsible for purchase of materials, equipment and/or services shall identify and document quality provisions as required on procurement documents (e.g., agreements, purchase requisitions/orders). This is the responsibility of the Laboratory Manager.

4.3 QUALITY PROVISIONS

Provisions to be included in the various types of procurement documents are described as follows:

4.3.1 Work Scope

A statement of the scope of the work to be performed by the supplier shall be included in procurement documents for calibration services, instrument repair services and all agreements.

4.3.2 Technical Requirements

Procurement documents shall contain or reference applicable technical requirements that describe the material, equipment or service to be furnished. These requirements may include equipment specifications, drawings, codes, regulations, procedures, instructions and required quality assurance documentation.

4.3.3 Documentation Required

Procurement documents must reference those documents and records to be submitted by the supplier to EIML for information, review or approval.

4.3.4 Quality Assurance Requirements

All procurement documents and any changes to these documents are reviewed and approved by the Quality Assurance Manager or designee prior to release. All purchase orders for quality related items must include a reference to the reporting requirements of 10 CFR 21 and, when applicable, traceability to known standards.

Subcontractor agreements may identify additional quality assurance program requirements to be incorporated into sub-tier procurement documents (e.g. 10CFR50, App. B).

SECTION 5.0 INSTRUCTIONS, PROCEDURES, AND DRAWINGS CRITERIA V IN NRC 10 CFR 50, APPENDIX B

5.1 PURPOSE

To describe responsibilities and requirements for the preparation of manuals and study plans.

5.2 RESPONSIBILITY

The Laboratory Manager or designee is responsible for the preparation of procedures manuals and study plans.

5.3 REQUIREMENTS

Technical procedures may be presented in either quality control manuals, procedures manuals, sampling manuals, study plans, or other document type.

5.3.1 Title Page

Each manual or study plan shall contain a title page with the following information, as appropriate:

- 5.3.1.1 Document type and Document title.
- 5.3.1.2 Approver's signature.
- 5.3.1.3 Revision number and date.
- 5.3.1.4 A statement of proprietary nature, if applicable.

5.3.2 Study Plans

A Study plan, prepared for a client, shall describe the activities or tasks to be accomplished, and contain the following information:

- 5.3.2.1 Client name.
- 5.3.2.2 Project title and Project number.
- 5.3.2.3 Contractual background and/or commitments.
- 5.3.2.4 Statement of work to be accomplished.
- 5.3.2.5 Federal, State, or local regulations or regulatory guides to be satisfied, as applicable.

The Proposal, accepted by the client, satisfies most requirements for a study plan.

5.4 QUALITY ASSURANCE

All quality related documents undergo a periodic review. The time between successive reviews shall not exceed 36 months. The reviewer documents the review of the quality related document by completing the information on the Document Review Log. The review is performed to ensure that:

- 5.4.1 The latest edition for all technical procedures are included.
- 5.4.2 Technical procedures support the requirement of the EIML Quality Assurance Manual.
- 5.4.3 Technical procedures are updated to reflect changes in methods or operations of the laboratory.

SECTION 6.0 DOCUMENT CONTROL CRITERIA VI IN NRC 10 CFR 50, APPENDIX B

6.1 PURPOSE

To describe the controlled and non-controlled copies of the quality-related documents and procedures and the individuals responsible for their preparation, review, approval, issuance, revision, and distribution. These documents may include procedure manuals, quality control/assurance manuals, document change notices, study plans, etc.

6.2 LIST OF DOCUMENTS

The documents and the individuals responsible for preparation, review and approval are identified in the Quality Assurance Program Manual sections as listed below:

Procurement Documents	QAP 4.0
Study Plans	QAP 5.0
Technical Procedures	QAP 5.0
Supplier Documents	QAP 7.0
Quality Inspections	QAP 10.0
Project Reports	QAP 10.0
Calculation Control Procedures	QAP 10.0
	QAP 11.0
Test Programs Calibration Records	QAP 12.0
	QAP 13.0
Sample Control Procedures	OAP 13.0
Data Control Procedures	QAP 13.0
Record Storage	QAP 15.0
Nonconformance Reports	OAP 17.0
Quality Assurance Records	QAP 17.0

6.3 <u>DOCUMENT DISTRIBUTION PROCEDURES</u>

- 6.3.1 Documents and procedures distributed internally to EIML personnel shall be issued as CONTROLLED documents. Recipients of documents shall acknowledge receipt by initialing the Document Control Log. Individuals distributing revised documents shall physically remove older versions of the document at the time of distribution to ensure that only the latest revisions remain in the laboratory.
- 6.3.2 Procedures distributed externally shall be marked NON-CONTROLLED and shall be issued for information only. The distribution list shall be kept on file. Acknowledgment by the recipient is not required.
- 6.3.3 Record the individual to whom the document is distributed and their affiliation, the identification number and title of the document, the revision or issue date, and the date of distribution in the Document Control Log.
- 6.3.4 Send the document or revised and updated materials to the individuals listed. Include any special information as to handling.

6.3.5 Maintain a file for each document. The file shall include a record of each revision, the original document and the Document Control Log listing the person to whom the document was issued, date of distribution and affiliation.

6.4 <u>DOCUMENT REVISION PROCEDURES</u>

- 6.4.1 If a portion of a document page is revised, the revised portion will be indicated with a vertical line on the right hand side of the page, followed by the latest revision number.
- 6.4.2 If the entire page is revised, the latest revision number and revision date need only be indicated on the revised page.
- 6.4.3 Revision numbers and dates are presented on the title page and on each page of all controlled documents. If a different method of revision is used, it will be noted in the respective controlled document.
- Revisions to each controlled document are reviewed and approved by the Laboratory or Quality Assurance manager. Revised documents to individuals then replace the original documents.
- 6.4.5 Handwritten changes to documents will be permitted if the revision is documented and approved on an "EIML Bulletin", form QA-07. The form is distributed to clients requiring approval of procedures prior to implementation. The "Bulletin Records Log", form QA-08, will document distribution of the bulletin. A procedural revision must be completed by the time of the next scheduled document review.

SECTION 7.0 CONTROL OF PURCHASED MATERIAL, EQUIPMENT AND SERVICES CRITERIA VII IN NRC 10 CFR 50, APPENDIX B

7.1 PURPOSE

To describe several methods which may be utilized, if necessary, to evaluate the capability of suppliers to meet procurement document requirements, to accept purchased items or services, including receipt inspection and certificate review and to identify and control nonconforming items and services. Technical personnel and the purchasing department are responsible for choosing and implementing the appropriate supplier evaluation methods.

7.2 SUPPLIER EVALUATION METHODS

7.2.1 <u>Initial Performance</u>

A product of chemical, reagent, standard or other laboratory equipment should demonstrate satisfactory performance upon analysis of quality control samples.

7.2.2 Past Experience

Evaluate past ability of the supplier to provide a satsfactory product. The information to be evaluated can include, but not be limited to the following:

- 7.2.2.1 Experience of known user of supplier's product.
- 7.2.2.2 In-house records of previous procurement actions, product operating experience, and analytical results.

7.2.3 Supplier Product Information

7.2.4 Supplier's Quality Documents

Review and evaluate a supplier's quality-related documents and records (such as Quality Assurance Manuals, procedure manuals, etc.)

7.2.5 Surveillance Audits of Subcontractors and/or Suppliers

Acceptance of procured items shall be based on conformance to recognized quality, previous performance and grade as specified in purchase requisition and shall show no adverse reactions when used for analysis of blanks and spiked samples. Purchased items shall be reagent grade chemicals (where applicable) of recognized formulation. Audits of suppliers shall be conducted only if warranted by conditions.

7.2.6 Supplier Quality Survey

Estimate the supplier's capabilities by direct evaluation of supplier's facility, personnel and quality assurance programs, if applicable.

7.3 RECEIPT INSPECTION

The receipt inspection procedure described below shall be followed by EIML personnel.

- 7.3.1 Check the procurement document against the item or service received.
- 7.3.2 Document the disposition (accepted, rejected) etc.) of item or service by issuing a Receiving Report describing item briefly and initialing.
- 7.3.3 If item or service is rejected, state the reason on the procurement document. Notify the Purchasing Department and Laboratory manager to contact the supplier for their recommended disposition and technical justification.

7.4 NONCONFORMING ITEMS

The procedures specified below shall be followed in the identification and control of nonconforming items or services.

- 7.4.1 Inform the Laboratory Manager of any suspected nonconforming item or service.
- 7.4.2 Segregate and label the nonconforming purchased items or services to preclude their use.
- 7.4.3 Document nonconformance on the appropriate form, such as copy of procurement document and file a copy with supplier evaluation records. Indicate the requirements violated.
- 7.4.4 Notify the Purchasing Department to initiate appropriate action.

SECTION 8.0 IDENTIFICATION AND CONTROL OF MATERIALS, PARTS, COMPONENTS CRITERIA VIII IN NRC 10 CFR 50, APPENDIX B

8.1 PURPOSE

To describe the requirements for the identification and control of samples, data, reports, calculations, and purchased items or services.

8.2 PROCEDURES

Procedures for the identification and control of materials, parts and components shall be approved by the Laboratory Manager or his/her designee.

8.3 SAMPLES AND DATA

Samples and I or data collected shall be controlled and identified as to type, client, project number, unique number, date, and location according to the EIML Quality Control and Technical Procedures Manuals.

8.4 REPORTS

All reports are submitted for review to the Laboratory or Quality Assurance manager. Signature by the reviewer is required.

Reports referred to in the sections below are compilations of data, usually in a monthy, quarterly or annual format.

- 8.4.1 Draft reports submitted for review shall be identified and paginated. The author shall provide the client, project number, date and project name on the first page.
- A draft report, final report or report section are accompanied through the review process by a Report Review Record form, 800-1. The form is initiated by the author, completed by the reviewer, and retained as a quality assurance record.
- 8.4.3 Commentary on reports are recorded by the reviewer on the Editorial Comment and Revision form, 800-2. These records shall be retained as quality assurance records.

8.5 PURCHASED ITEMS

- 8.5.1 Purchased items shall have their identity established either on the item or on a record traceable to the item. Identification of purchased items shall be unique.
- For items which do not fall into off-shelf items and standard chemicals and reagents, the status of any inspection and tests performed on the item shall be noted. Off-shelf items shall be checked against the purchase order and the receiving date will be marked on the container. Other purchased items which are inspected or tested by or for EIML shall be identified as either accepted, reworked to specifications, or rejected.
- 8.5.3. Certificates shall be traceable to the item, or to test results and analyses.

SECTION 9.0 CONTROL OF SPECIAL PROCESSES CRITERIA IX IN NRC 10 CFR 50, APPENDIX B

This section is not applicable.

SECTION 10.0 INSPECTION CRITERIA X IN NRC 10 CFR 50, APPENDIX B

10.1 PURPOSE

To describe the requirements for the inspection and verification of the quality of work.

10.2 REQUIREMENTS

- 10.2.1 Inspection is the responsibility of the Laboratory Manager or designee. Data is reviewed for validity, compliance with the study plan and for quality assurance/control requirements. Quality related documents applicable to the work will be identified in the quality inspection.
- 10.2.2 Inspections are performed by individuals outside of the activity process being inspected. The reviewer should possess adequate knowledge and experience in the procedures, processes and activities of the technical area under review. The reviewer should verify that:
 - 10.2.2.1 Analyses were completed.
 - 10.2.2.2 The technical approach was proper.
 - 10.2.2.3 Quality assurance/control tasks were performed.
 - 10.2.2.4 Calculations were verified.
 - 10.2.2.5 Review forms were signed and dated.
- 10.2.3 Questions concerning draft reports are recorded by the reviewer on an Editorial Comment and Revision form, 800-2. The comments are then returned to the author for resolution of comments or correction.
- 10.2.4 Documents returned to the author for review and resolution are resubmitted for the same level of review and approval as the original document. The author indicates his / her review and resolution by signing and dating the Report Review Record form, 800-1.
- 10.2.5 Final review and approval is made by the Laboratory Manager, who indicates approval of the report by signing the title page. Final reports are dated as to month, day and year.
- 10.2.6 If draft reports are submitted to the client for review and comments, the reports will be unsigned and have the words, "DRAFT SUBJECT TO CHANGE", or words to that effect printed on the title page.

SECTION 11.0 TEST CONTROL CRITERIA XI IN NRC 10 CFR 50, APPENDIX B

11.1 PURPOSE

To describe the requirements for the control of Test Programs.

11.2 REQUIREMENTS

- 11.2.1 All testing is performed in accordance with approved method procedures. The written test procedures include or reference the requirements or acceptance limits contained in applicable design, procurement, or regulatory comment. The Laboratory Manager or qualified designee is responsible for the implementation of test control programs. The test procedure shall include:
 - 11.2.1.1 A description of the testing method, and instructions for using test equipment and instrumentation.
 - 11.2.1.2 Instrumentation, maintenance and calibration.
 - 11.2.1.3 Equipment required.
 - 11.2.1.4 Environmental conditions (where required).
 - 11.2.1.5 Acceptance and rejection criteria.
 - 11.2.1.6 Procedures for data collection and storage.
 - 11.2.1.7 Methods for documenting or recording test data and results, and review of test results.
- 11.2.2 Environmental, Inc. participates in Interlaboratory Comparison (crosscheck) studies administered by Environmental Resources Associates, and others, and based on previous programs conducted by the USEPA. Any results which are outside the two sigma level from the known shall be reviewed to find the cause of the deviation. Results outside the 3 sigma level shall be investigated and the reason for deviation and any corrective action shall be documented.
- 11.2.3 Internal spike and blank samples shall be analyzed in accordance with the schedule specified on form, 1100-1. This schedule may be revised depending on the availability of standards.
- 11.2.4 Evaluation of duplicate and split sample analyses are used to assure reproducibility of measurements within established limits of precision and variation. Between five and ten percent of all samples received by the laboratory are analyzed in duplicate.

SECTION 12.0 CONTROL OF MEASURING AND TEST EQUIPMENT CRITERIA XII IN NRC 10 CFR 50, APPENDIX B

12.1 PURPOSE

To describe the requirements for the control of measuring, test inspection, and other data-gathering equipment. Equipment maintenance and calibration shall be the responsibility of the Laboratory Manager and subject to requirements of the Quality Control Procedures Manual.

12.2 EQUIPMENT PROCUREMENT

Equipment used for analyses, studies, and reports and testing shall be procured and controlled by the Laboratory Manager or designee.

12.3 EQUIPMENT IDENTIFICATION

A unique identification number shall be assigned to each piece of equipment. The identification number of equipment used for data or sample collection shall be recorded by the user on appropriate laboratory data sheets. This will serve as a basis for determining the past performance of an instrument if it is found to be "out of calibration".

12.4 CALIBRATION PROCEDURES

Written procedures, either furnished by the manufacturer, or approved by the Laboratory Manager, shall be used for the calibration of equipment.

12.5 CALIBRATION

Equipment shall be initially calibrated and shall be recalibrated at regularly scheduled intervals against certified measurement standards that have known and valid traceability to recognize national standards.

12.6 <u>EFFICIENCY CALIBRATION STANDARDS</u>

Efficiency calibration standards shall be used that are traceable to the National Institute of Standards and Technology (NIST). Should no national standard exist, the basis (standard used) for the calibration shall be documented.

12.7 <u>EFFICIENCY CALIBRATION FREQUENCY</u>

Efficiency calibration frequency for equipment shall be based upon the type of equipment, its accuracy, use and stability characteristics, and on other conditions affecting measurement control. Calibration frequency can be adjusted on the basis of historical calibration requirements. Frequency can either be shortened or lengthened only when the results of previous calibration data provide definite indications that each action will not adversely affect the accuracy of the equipment as used. Counting equipment shall be calibrated at least annually or before each use, if applicable, or after repair, if such repair could influence the calibration.

12.8 PERFORMANCE STANDARDS

Performance standards need not have an accurately known disintegration rate, e.g., need not be a standard source traceable to NIST. Performance standards should be of relatively long half-life, such as strontium-90 or cesium-137, should be of sufficient radiochemical purity to allow correction for decay. Standards should be prepared in such a way as to prevent physical damage or loss of activity from handling.

12.9 PERFORMANCE CHECK FREQUENCY

Instrument performance is checked according to the schedule in the Quality Control Procedures Manual (QCPM), Section 4.0

12.10 CALIBRATION STATUS

Equipment requiring periodic calibration shall be identified with a calibration label, showing the equipment's calibration status, date calibrated, due date and initials of the technician. Equipment requiring calibration, without the calibration status indicated, or whose calibration due date has passed, is considered "out-of-calibration".

12.11 CALIBRATION / MAINTENANCE RECORD

Calibration and Maintenance Records shall be maintained for each piece of equipment subject to calibration and for each associated calibration standard. Active records will be maintained and accessible for review as needed. Inactive records are filed separately.

12.12 FILES

Files shall be maintained by the Quality Assurance Manager, or designee, for each piece of equipment and for each standard. Files shall include, where applicable, the following records or information.

- 12.12.1 procurement documents
- 12.12.2 company assigned identification number
- 12.12.3 description of item,
- 12.12.4 manufacturer's serial number, if applicable
- 12.12.5 acceptance and / or test data

12.13 CALIBRATION SERVICE

Outside calibration sources may be used if they can demonstrate their ability to perform the work satisfactorily and can demonstrate their capability of tracing their calibration standards to a recognized national or known source. EIML shall require outside calibration sources (suppliers) to furnish objective evidence that calibration standards are traceable to national or known source prior to use.

12.14 OUT-OF-CALIBRATION EQUIPMENT

If at the end of a calibration frequency period, equipment is found to be "out-of-calibration", an investigation shall be conducted to determine the application of the equipment since the last calibration. The investigation shall also determine if corrective action is necessary to provide assurances that the quality of data generated by the use of the equipment has not been compromised.

12.15 <u>USER TRAINING</u>

Users shall be trained in the proper use and application of the equipment.

12.16 USER RESPONSIBILITY

Users of equipment are responsible for proper use and care. Any equipment whose calibration is suspect because of failure, damage, or mishandling or whose calibration due date has passed shall not be used. The equipment shall be marked "out-of-service".

SECTION 13.0 HANDLING, STORAGE AND SHIPPING CRITERIA XIII IN NRC 10 CFR 50, APPENDIX B

13.1 PURPOSE

To describe the requirements for the handling, shipping and preservation of samples, data, and records.

13.2 SAMPLE AND DATA CONTROL

- 13.2.1 Handling, storage, shipping, prevention from contamination, and preservation of samples, and original field data shall be accomplished by qualified individuals according to written technical procedures approved by the Laboratory Manager of EIML or his/her designee.
- 13.2.2 Procedures for sample and / or data control shall includefrom collection through analysis to storage and final disposition. All samples will be disposed in accordance with procedures given in EIML Quality Control Program.

13.3 SAMPLE STORAGE

Samples will be retained as follows:

- 13.3.1 For analysis of short-lived isotopes only, samples will be held two months after collection or until any detected activity has decayed to below the required minimum sensitivity.
- 13.3.2 Samples requiring storage in a cooler or freezer will be held three months after collection.
- 13.3.3 No sample will be disposed of until at least 30 days after analyses have been completed, reviewed and reported to the client.
- 13.3.3 Other processed and unprocessed samples will be held for a minimum six months from the date of collection. These samples will be discarded unless alternative instruction are received from the client.

13.4 RECORD STORAGE

Original data records shall be stored in such a manner as to minimize the risk of loss by fire, flood, etc., and from possible deterioration by extreme conditions of temperature and humidity. The identification, storage, and retrieval of quality records shall be performed according to Section 17.0 of this manual.

13.5 QUALITY ASSURANCE

The identification, storage, and retrieval of quality records shall be performed according to Section 17.0 of this manual.

SECTION 14.0 INSPECTION, TEST, AND OPERATING STATUS CRITERIA XIV IN NRC 10 CFR 50, APPENDIX B

14.1 PURPOSE

To describe the requirements for reporting the status of programs with respect to equipment operating condition and maintenance requirements.

14.2 EQUIPMENT STATUS

Copies of equipment status records shall be maintained by EIML personnel. Equipment which is non-conforming, inoperative, malfunctioning, or out-of-service for repair, maintenance, or calibration shall be so identified by tagging to prevent its inadvertent use.

SECTION 15.0 NONCONFORMING ITEMS CRITERIA XV IN NRC 10 CFR 50, APPENDIX B

15.1 PURPOSE

To describe the procedure for reporting project nonconformance identified through means other than audit.

15.2 PROCEDURES

Approved methods of reporting non-conformance as described in the Quality Control Procedures Manual (QCPM), Section 12.0, may be used in lieu of a Nonconformance Report. Nonconformance records shall be maintained by the Quality Assurance Manager.

15.2.1 Originator

- 15.2.1.1 Inform the Laboratory Manager of the non-conformance. Initiate a Nonconformance Report Form.
- 15.2.1.2 Describe the nonconformance and reference the document which specifies the requirement. Sign and date the Nonconformance Report.
- 15.2.1.3 Send report to the Quality Assurance Manager for review and completion.

15.2.2 Quality Assurance

- 15.2.2.1 Segregate the nonconforming item or service to prevent its inadvertent use.
- 15.2.2.2 Complete the remainder of the Nonconformance Report form. Record the nonconformance in the appropriate log.
- 15.2.2.3 State the corrective action to be taken and include the date on which corrective action was or will be completed.
- 15.2.2.4 Describe the objective evidence reviewed to verify implementation of corrective action. Sign and date the Nonconformance Report Form.
- 15.2.2.5 Send the non-conformance report to the Laboratory Manager for final processing.

15.2.3 Laboratory Manager

- 15.2.3.1 Notify the client, if necessary, on the nonconformity and any corrective action to be taken. Record clients comments and suggestions or any agreements made with the client.
 - NOTE: The client shall be notified only after suitable in-house action is taken to correct the nonconformity.
- 15.2.3.2 Sign and date the Nonconformance Report Form.
- 15.2.3.3 Return original to the Quality Assurance Manager.
- 15.2.4 In such instances where departmental approval control forms for reporting problems (e.g., "Malfunction Report Form for Instrumentation") are utilized, the same basic procedure is followed, with copies of the pertinent documents sent to the appropriate individuals.

SECTION 16.0 CORRECTIVE ACTION CRITERIA XVI IN NRC 10 CFR 50, APPENDIX B

16.1 PURPOSE

To describe corrective action measures for non-conformances to work.

16.2 REPORTING NON-CONFORMANCES

Non-conformances are reported to the Laboratory Manager. A nonconformance to a study plan and/or quality assurance/control requirement shall be reported on the appropriate forms, including Nonconformance Report, Audit Finding Report, or EIML-specific problem report form. The report shall contain a concise statement of the requirement and the nonconformance.

16.3 CORRECTIVE ACTION STATEMENT

Within five days of notification of a nonconformance, the Quality Assurance Manager in concurrence with the laboratory manager will complete a corrective action statement. The statement shall contain the following:

- 16.3.1 The apparent cause of the condition.
- 16.3.2 The action taken to prevent recurrence of the condition.
- 16.3.3 The scheduled date for completion of corrective action.

16.4 <u>SIGNIFICANT NON-CONFORMANCES</u>

16.4.1 Description

- 16.4.1.1 Deviation from prescribed requirements contained in study plans or technical manuals.
- 16.4.1.2 Data, or the lack of data, which does not meet predetermined technical limits and could jeopardize project goals.
- 16.4.1.3 Use of obsolete materials and/or data.
- 16.4.1.4 Non-conformances of a repetitive nature.

16.4.2 Response

Significant non-conformances shall be reported immediately to the Laboratory Manager. The Laboratory Manager or designee shall investigate the nonconformity, and respond promptly with a corrective action statement.

16.5 DRAFT REPORTS

16.5.1 Corrections and Commentary

Drafts of reports for which corrections or comment resolutions are required shall be returned to the author for corrective action.

16.5.2 <u>Review</u>

Documents which are corrected or modified shall be reviewed by the individual or department that reviewed the original draft report. Any comments or corrections, not incorporated into the document, shall be addressed on the Report Review Record form, 800-1.

SECTION 17.0 QUALITY ASSURANCE RECORDS CRITERIA XVII IN NRC 10 CFR 50, APPENDIX B

17.1 PURPOSE

To define and describe the quality assurance records and general requirements for their custody and disposition, the procedure for processing project records into a quality assurance records file, and the requirements for their storage, preservation, and safekeeping.

17.2 QUALITY ASSURANCE RECORDS

- 17.2.1 Quality assurance records are defined as that minimum amount of documentation necessary to support the validity of work, and which would allow the work to be recreated, if necessary.
- 17.2.2 Quality assurance records (Project-specific) are maintained under control of the Quality Assurance Manager or designee (for the duration of the Project.
- 17.2.3 Records common to all projects shall be stored in generic record files. Records include quality control sample data, instrument charts, calibration records, etc.
- 17.2.4 Records necessary to document activities performed in the monitoring program are described in the Quality Control Procedures Manual QCPM-1. These sections describe calibration of equipment, analysis of duplicates, spiked and standard solutions, control of counting equipment, data reductions, reporting of data and records storage.

17.3 PROJECT RECORDS

- 17.3.1 Project records shall be moved to storage promptly after project completion. Project-specific records may be dispositioned to the client on a periodic (annual) basis at the client's discretion. Data not shipped to the client will be dispositioned according to Section 17.4.
- 17.3.2 Organization of project records for submission to storage is the responsibility of the Laboratory Manager or designee.
- 17.3.3 All project-specific records shall be packed in containers so as to preserve the quality and integrity of the records. Each container shall clearly identify its contents as to project name and number, client, and specific records contained therein.

17.4 RECORDS STORAGE

- 17.4.1 Records shall be stored in such a manner as to prevent deterioration, damage from condensation, and theft or vandalism.
- 17.4.2 After completion of the study or submission of the annual report, project-specific records shall be packed in appropriately labeled containers, and stored temporarily in a fireproof safe (no more than two years). Access to the safe is limited to EIML management.
- 17.4.3 After one to two years the records shall be transferred to general storage and maintained for a minimum of five years. After five years, a written request to dispose of the records may be made to the client. If the client requires the records to be retained, the Laboratory Manager may choose to either continue storing them or return them to the client. Records may be returned to the client at any time after the five year retention period in the general storage area.

SECTION 18.0 AUDITS CRITERIA XVIII IN NRC 10 CFR 50, APPENDIX B

18.1 PURPOSE

To describe the auditor training program and the responsibilities of those who participate in the audit function, the method for scheduling audits (internal and external), the requirements for audit preparation and notification, including audit plan development, applicable document review, audit checklist preparation, and audit notification, performance of audits, including the pre-audit conference, preparation and documentation of audit findings, the post-audit conference, the preparation and distribution of the audit reports and to describe the steps to be taken to assure that corrective action on audit findings is adequate and complete.

18.2 AUDITOR TRAINING

18.2.1 Basic Training

Internal and external audits shall be performed by persons who have either a degree in a technical field, satisfactory work experience in a technical field, or knowledge and experience in the field of quality assurance. Auditors shall have or be given training to achieve the required level of competence. Training shall, as minimum, include the following.

- 18.2.1.1 Specific training in the content and objectives of the Quality Assurance Program Manual, QAP-1.
- 18.2.1.2 Participation, as a team member, in at least two internal or external audits led by an experienced auditor.

18.2.2 Supplemental Training

Training shall be supplemented where necessary by participation in professional short courses covering quality assurance principles, including auditing.

18.2.3 Documentation

A training file will be maintained for each auditor with appropriate documentation of training phases, courses and experience.

18.3 RESPONSIBILITIES

18.3.1 Auditors

Audits are performed by the Quality Assurance Manager and assisted by, if required, a technical specialist. Auditors shall have the organizational freedom to identify problems, to initiate, recommend or provide solutions to quality problems, and to verify implementation of corrective action. Auditors shall have no direct responsibilities for the technical aspects of the study audited.

18.3.2 Quality Assurance Manager

The Quality Assurance Manager has the overall authority and responsibility for implementing the requirements of Section 18.0 and insuring that the requirements are followed by each auditor. The duties of the Quality Assurance Manager include the following.

Plan, schedule, conduct, and analyze audits. 18.3.2.1 Insure that all audits are performed and closed-out according to 18.3.2.2 written procedures. Report the status of audit programs to upper management on a 18.3.2.3 regular basis. Document the results of each audit. 18.3.2.4 Review the results of each audit with laboratory management. 18.3.2.5 Prepare an Audit Finding Report for each nonconformance. 18.3.2.6 Maintain a file for all Audit Reports and all Audit Finding Reports. 18.3.2.7 Verify that corrective action has been implemented to resolve non-18.3.2.8 conformances.

18.4 AUDIT SCHEDULES

- 18.4.1 The audit program shall be scheduled and implemented to ensure coverage of the applicable elements of the Quality Assurance Program.
- 18.4.2 Audits of the Quality Assurance Program shall be performed periodically. Audits shall be performed more frequently if results of previous audits indicate a greater frequency is necessary. The need for more frequent audits shall be based on the following considerations:
 - 18.4.2.1 The importance of the activity to the successful completion of the program.
 - 18.4.2.2 Significant changes in the functional areas of the quality assurance program, such as significant re-organization or procedural revisions.
 - 18.4.2.3 A suspected nonconformance in an item or service.
 - 18.4.2.4 The necessity to verify implementation of required corrective action.
- 18.4.3 Audits for projects shall be performed according to contractual agreements. Comprehensive audits performed in support of a project may, at the discretion of the Quality Assurance Manager, serve to satisfy the requirements of the annual audit.

18.5 AUDIT PREPARATION

- 18.5.1 The auditor shall develop a written audit plan. It shall include, but not be limited to, the following information:
 - 18.5.1.1 Organization to be audited.
 - 18.5.1.2 Purpose of Audit.
 - 18.5.1.3 Reference to applicable documents.
- 18.5.2 The auditor shall prepare an audit checklist to cover the activities to be audited. The activities to be compared, verified, or identified shall be listed on the checklist.
- 18.5.3 Pertinent information shall be obtained and reviewed by the auditor. This information can be found in study plans, technical procedures, quality control / assurance manuals and specifications.
- 18.5.4 The auditee shall be notified at least two weeks prior to the planned date of the audit.

18.6 <u>AUDIT PERFORMANCE</u>

18.6.1 Pre-audit Conference

The auditor may conduct a pre-audit conference at the audit site with the management of the organization to be audited. The purpose of the meeting will be to:

- 18.6.1.1 Introduce auditors.
- 18.6.1.2 Meet counterparts.
- 18.6.1.3 Confirm the purpose and scope of the audit.
- 18.6.1.4 Discuss the sequence and duration of the audit.
- 18.6.1.5 Review previous audit results.
- 18.6.1.6 Establish channels of communication.
- 18.6.1.7 Arrange post-audit conference.

18.6.2 Audit Checklist

The audit checklist prepared by the auditor shall be used to provide a systematic approach to the assessment. The checklist shall be used as a guide and shall not restrict the audit. Audit results may necessitate that additional information be added to assure that an activity is adequately controlled.

18.6.3 Audit Findings

- 18.6.3.1 The auditor shall record each finding on an Audit Finding Report form. The form shall be prepared according to procedures in Section 18.7.
- 18.6.3.2 When a finding is detected, sufficient investigation shall be conducted to identify the basic cause of the finding.
- 18.6.3.3 Any finding requiring immediate corrective action shall be reported to the auditee.
- 18.6.3.4 Audit findings shall be stated in clear, concise statements of fact, which identify the problem. Persons in the audited organization who can attest to the validity of the findings shall be identified by name.

18.6.4 Post-audit Conference

At the conclusion of the audit, a post-audit conference may be held with the audited organization. Those persons should attend who can verify the validity of the findings and can assist in correcting any problems identified. The objectives of the post audit conference shall be to:

- 18.6.4.1 Discuss audit findings.
- 18.6.4.2 Determine and resolve any errors or misunderstanding regarding the findings.
- 18.6.4.3 Reach agreement on validity of the findings.
- 18.6.4.4 Recommend corrective action for findings and improvements for observations.
- 18.6.4.5 Establish a tentative plan for corrective action and implementation.

1

18.7 AUDIT FINDING REPORTS

- 18.7.1 Completion of the Audit Finding Report form shall be the responsibility of the auditor and the management of the audited organization.
- 18.7.2 The Audit Finding Report shall be used to record all findings identified during audits, including their resolution.
- 18.7.3 Each Audit Finding Report shall be assigned an audit finding number which consists of the audit identification number and a sequential number.

18.7.4 Quality Assurance

The Quality Assurance Manager maintains audit files, containing original Audit Finding Reports, documentation of corrective action responses, and final audit reports. Closed Audit Finding Reports are filed as quality assurance records.

18.8 AUDIT REPORTS

- 18.8.1 The auditor shall be responsible for the preparation and distribution of an audit report within 30 days of the post-audit conference.
- 18.8.2 An audit report shall contain the following elements:
 - 18.8.2.1 The name of the audited organization (laboratory, technical discipline, project or supplier), project number and the date on which the audit was conducted.
 - 18.8.2.3 The name of each auditor.
 - 18.8.2.4 Personnel contacted during the pre- and post-audit conferences, and during the performance of the audit.
 - 18.8.2.5 Documents which serve as a basis for the audit (title, revision number and revision date).
 - 18.8.2.6 A brief statement of the purpose of the audit.
 - 18.8.2.7 A general statement based on results of the audit, including a brief statement of any findings.
 - 18.8.2.8 Recommendations for correcting non-conformances or improving the quality of work.
 - 18.8.2.9 Observations of problem elements that could be improved, but which require no corrective action response.
 - 18.8.2.10 An itemized list of audit findings together with assigned Audit Finding Report numbers.

18.9 AUDIT FOLLOW-UP

18.9.1 Corrective Action Responses

The auditor shall review any response to findings to assure corrective action has been adequately completed or scheduled.

18.9.2 Classification of Responses

The auditor shall classify each finding as either "unresolved", "open", or "closed".

18.9.2.1 Unresolved Status

"Unresolved" status is reserved for findings with unacceptable planned corrective actions, or those findings not responded to in the time specified. The auditor shall inform the auditee in writing of any unsatisfactory response and specify a reply due date.

18.9.2.2. Open Status

The "open" status is reserved for those findings that have acceptable planned corrective action, but remain open pending verification..

18.9.2.3. Closed Status

The "closed" status is reserved for those findings for which corrective action has been implemented.

18.9.3 Verification Methods

Verification of corrective actions shall be made by one of the following methods:

- 18.9.3.1 Review of the documentation or certification that corrective action has been implemented.
- 18.9.3.2 Examination of the affected area in the next scheduled audit.
- 18.9.3.3 Re-audit of the affected area.

18.9.4 Closure Procedures

18.9.4.1 Audit Findings

The auditor shall indicate closure of audit findings by indicating the method used to verify implementation of corrective action on the AUDIT FINDING REPORT and signing and dating the form.

18.9.4.2 Audit Report

The Audit Report will be closed upon satisfactory completion of corrective actions for all findings.

Revision 0

C.2 TELEDYNE BROWN ENGINEERING, INC.

Quality Assurance Manual

For

Teledyne Brown Engineering

Environmental Services

2508 Quality Lane

Knoxville, Tennessee 37931-3133

865-690-6819

Generated by: Symul Verry
Lynne Perry, QA Marrager

Approved by: Keith Jeter, Operations Manager

Сору Мо..

Issued To: 6

Date:

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
1.0	KNOXVILLE QAM SECTION INTRODUCTION	7
2.0	QUALITY SYSTEM	10
2.1	Policy	10
2.2	Quality System Structure	10
2.3	Quality System Objectives	10
2.4	Personnel Orientation, Training, and Qualification	11
3.0	ORGANIZATION, AUTHORITY, AND RESPONSIBILITY	12
4.0	PERSONNEL ORIENTATION, DATA INTEGRITY, TRAINING, AND QUALIFICATION	13
4.1	Orientation	13
4.2	Data Integrity	13
4.3	Training	13
4.4	Qualification	13
4.5	Records	13
5.0	CUSTOMER INTERFACES	14
5.1	Interface Personnel	14
5.2	Bid Requests and Tenders	14
5.3	Contracts	14
5.4	TBE's Expectation of Customers	14
5.5	Customer Satisfaction	15
	5.5.1 Customer Complaints	15
	5.5.2 Customer Confidentiality	15
6.0	DOCUMENTATION GENERATION AND CONTROL	16
6.1	General	16
6.2	New Documentation	16
6.3	Documentation Changes	16

TABLE OF CONTENTS - Continued

6.4	Docum	nentation Lists and Distributions	16
6.5	Other	Documentation	16
6.6	Docum	nentation Reviews	16
7.0	DESIG	N OF LABORATORY CONTROLS	17
7.1	Genera	al	17
7.2	Facility	<i>(</i>	17
7.3	Techni	ical Processes and Methods	17
	7.3.1	Operational Flow	17
	7.3.2	Methods	18
	7.3.3	Data Reduction and Analysis	18
7.4	Verifica	ation of Technical Processes, Methods, and Software	18
	7.4.1	Operational Flow Verification	18
	7.4.2	Method Verifications	18
	7.4.3	Data Reduction and Analysis Verification	18
7.5	Design	of Quality Controls	18
	7.5.1	General	19
	7.5.2	Demonstration of Capability (D of C)	19
	7.5.3	Process Control Checks	19
7.6	Counti	ng Instrument Controls	20
8.0	PURC	HASING AND SUBCONTRACT CONTROLS	21
8.1	Genera	al	21
8.2	Source	Selection	21
8.3	Procur	ement of Supplies and Support Services	21
	8.3.1	Catalog Supplies	21
	8.3.2	Support Services	21
	8.3.3	Equipment and Software	22
8.4	Subco	ntracting of Analytical Services	22
8.5	Accept	tance of Items or Services	22

Page 3 of 32

TABLE OF CONTENTS - Continued

9.0	TEST SAMPLE IDENTIFICATION AND CONTROL	23
9.1	Sample Identification	23
9.2	LIMS	23
9.3	Sample Control	23
10.0	SPECIAL PROCESSES, INSPECTION, AND TEST	24
10.1	Special Processes	24
10.2	Inspections and Tests	24
	10.2.1 Intra Laboratory Checks (QC Checks)	24
	10.2.2 Inter Laboratory Checks	24
	10.2.3 Data Reviews	24
10.3	Control of Sampling of Samples	24
10.4	Reference Standards / Material	24
	10.4.1 Weights and Temperatures	25
	10.4.2 Radioactive Materials	25
11.0	EQUIPMENT MAINTENANCE AND CALIBRATION	26
11.1	General	26
11.2	Support Equipment	26
11.3	Instruments	26
11.4	Nonconformances and Corrective Actions	26
11.5	Records	27
12.0	NONCONFORMANCE CONTROLS	28
12.1	General	28
12.2	Responsibility and Authority	28
12.3	10CFR21 Reporting	28

Page 4 of 32

TABLE OF CONTENTS - Continued

CORRECTIVE AND PREVENTIVE ACTIONS	29
General	29
Corrective Actions	29
Preventive Actions	29
RESULTS ANALYSIS AND REPORTING	30
General	30
Results Review	30
Reports	30
RECORDS	31
General	31
Type of Records	31
Storage and Retention	31
Destruction or Disposal	31
ASSESSMENTS	32
General	32
Audits	32
Management Reviews	32
	General Corrective Actions Preventive Actions RESULTS ANALYSIS AND REPORTING General Results Review Reports RECORDS General Type of Records Storage and Retention Destruction or Disposal ASSESSMENTS General Audits

Page 5 of 32

REVISION HISTORY

Revision 7 Complete re-write January 1, 2005 Bill Meyer

Revision 8 Updated organization chart, minor change to 1.0, 4.4, 7.5.3.2, 10.2.3, and 12.3

Page 6 of 32

1.0 Knoxville QAM Section Introduction

This Quality Assurance Manual (QAM) and related Procedures describes the Knoxville Environmental Services Laboratory's QA system. This system is designed to meet multiple quality standards imposed by Customers and regulatory agencies including:

NRC's 10 CFR 50 Appendix B NRC's Regulatory Guide 4.15 DOE's Order 414.1 DOE's QSAS ANSI N 42.23 ANSI N 13.30 NELAC Standard, Chapter 5

The Environmental Services (ES) Laboratory does low level radioactivity analyses for Power Plants and other customers. It primarily analyzes environmental samples (natural products from around plants such as milk), in-plant samples (air filters, waters), bioassay samples from customer's employees, and waste disposal samples (liquids and solids).

Potable and non-potable water samples are tested using methods based on EPA standards as cited in State licenses (see Procedure 4010). The listing [current as of initial printing of this Manual – see current index for revision status and additions / deletions] of implementing Procedures (SOPs) covering Administration, Methods, Counting Instruments, Technical, Miscellaneous, and LIMS is shown in Table 1-1. Reference to these Procedures by number is made throughout this QAM.

Table 1-1

Number	Title
Part 1	Administrative Procedures
1001	Validation and Verification of Computer Programs for Radiochemistry Data Reduction
1002	Organization and Responsibility
1003	Control, Retention, and Disposal of Quality Assurance Records
1004	Definitions
1005	Data Integrity
1006	Job Descriptions
1007	Training and Certifications
1008	Procedure and Document Control
1009	Calibration System
1010	Nonconformance Controls
1011	10CFR21 Reporting
1012	Corrective Action and Preventive Action

Number	Title
1013	Internal Audits and Management Reviews
1014	RFP, Contract Review, and Order Entry (formerly 4001)
1015	Procurement Controls
Part 2	Method Procedures
2001	Alpha Isotopic and Plutonium-241
2002	Carbon-14 Activity in Various Matrices
2003	Carbon-14 and Tritium in Soils, Solids, and Biological Samples; Harvey Oxidizer Method
2004	Cerium-141 and Cerium-144 by Radiochemical Separation
2005	Cesium-137 by Radiochemical Separation
2006	Iron-55 Activity in Various Matrices
2007	Gamma Emitting Radioisotope Analysis
2008	Gross Alpha and/or Gross Beta Activity in Various Matrices
2009	Gross Beta Minus Potassium-40 Activity in Urine and Fecal Samples
2010	Tritium and Carbon-14 Analysis by Liquid Scintillation
2011	Tritium Analysis in Drinking Water by Liquid Scintillation
2012	Radioiodine in Various Matrices
2013	Radionickel Activity in Various Matrices
2014	Phosphorus-32 Activity in Various Matrices
2015	Lead-210 Activity in Various Matrices
2016	Radium-226 Analysis in Various Matrices
2017	Total Radium in Water Samples
2018	Radiostrontium Analysis by Chemical Separation
2019	Radiostrontium Analysis by Ion Exchange
2020	Sulfur-35 Analysis
2021	Technetium-99 Analysis by Eichrom Resin Separation
2022	Total Uranium Analysis by KPA
2023	Compositing of Samples
2024	Dry Ashing of Environmental Samples
2025	Preparation and Standardization of Carrier Solutions
2026	Radioactive Reference Standard Solutions and Records
2027	Glassware Washing and Storage
2028	Moisture Content of Various Matrices
2029	Polonium-210 Activity in Various Matrices
2030	Promethium-147 Analysis

Number	Title
Part 3	Instrument Procedures
3001	Calibration and Control of Gamma-Ray Spectrometers
3002	Calibration of Alpha Spectrometers
3003	Calibration and Control of Alpha and Beta Counting Instruments
3004	Calibration and Control of Liquid Scintillation Counters
3005	Calibration and Operation of pH Meters
3006	Balance Calibration and Check
3008	Negative Results Evaluation Policy
3009	Use and Maintenance of Mechanical Pipettors
3010	Microwave Digestion System Use and Maintenance
Part 4	Technical Procedures
4001	Not Used
4002	QC Checks on Data
4003	Sample Regent and Control
4004	Data Package Preparation and Reporting
4005	Blank, Spike, and Duplicate Controls
4006	Inter-Laboratory Comparison Study Process
4007	Method Basis and Initial Validation Process
4008	Not Used
4009	MDL Controls
4010	State Certification Process
4011	Accuracy, Precision, Efficiency, and Bias Controls and Data Quality Objectives
4012	Not Used
4013	Not Used
4014	Facility Operation and Control
4015	Documentation of Analytical Laboratory Logbooks (formerly 1002)
4016	Total Propagated Uncertainty (formerly 1004)
4017	LIMS Operation
4018	Instrument Calibration System
4019	Radioactive Reference Material Standards
Part 5	Miscellaneous Procedures
5001	Laboratory Hood Operations
5002	Operation and Maintenance of Deionized Water System
5003	Waste Management
5004	Acid Neutralization and Purification System Operation Procedure

Part 6	LIMS
6001	LIMS Raw Data Processing and Reporting
6002	Software Development and/or Pilots of COTS Packages
6003	Software Change and Version Control
6004	Backup of Data and System Files
6005	Disaster Recovery Plan
6006	LIMS Hardware
6007	LIMS User Access
6008	LIMS Training
6009	LIMS Security

2.0 QUALITY SYSTEM

The TBE-ES QA system is designed to comply with multiple customer- and regulatory agency-imposed specifications related to quality. This quality system applies to all activities of TBE-ES that affect the quality of analyses performed by the laboratory.

2.1 Policy

The TBE quality policy, given in Company Policy P-501, is "TBE will continually improve our processes and effectiveness in providing products and services that exceed our customer's expectations."

This policy is amplified by this Laboratory's commitment, as attested to by the title page signatures, to perform all work to good professional practices and to deliver high quality services to our customers with full data integrity. (See Section 4.0 and Procedure 1005).

2.2 **Quality System Structure**

The Quality System is operated by the organizations described in Section 3.0 of this Manual. The Quality System is described in this Manual and in the Procedures Manual, both of which are maintained by the QA Manager. Procedures are divided into 6 sections – Administrative, Methods, Equipments, Technical, Miscellaneous, and LIMS. This Manual is structured as shown in the Table of Contents and refers to Procedures when applicable. Cross references to the various imposed quality specifications are contained in Appendices to this Manual.

2.3 Quality System Objectives

The Quality System is established to meet the objective of assuring all operations are planned and executed in accordance with system requirements. The Quality System also assures that performance evaluations are performed (see Procedure 4006), and that appropriate verifications are performed (see Procedures in the 1000 and 4000 series) to further assure compliance. Verification includes

examination of final reports (prior to submittal to customers) to determine their quality (see Procedure 4004).

To further these objectives, various in-process assessments of data, as well as assessments of the system, via internal audits and management reviews, are performed. Both internal experts and customer / regulatory agencies perform further assessments of the system and compliance to requirements.

2.4 <u>Personnel Orientation, Training, and Qualification</u>

TBE provides indoctrination and training to employees and performs proficiency evaluation of technical personnel. This effort is described in Section 4.0.

3.0 ORGANIZATION, AUTHORITY, AND RESPONSIBILITY

TBE has established an effective organization for conducting laboratory analyses at the Knoxville Environmental Services Laboratory. The basic organization is shown in Figure 3-1. Detail organization charts with names, authorities, and responsibilities are given in Procedure 1002. Job descriptions are given in Procedure 1006.

This organization provides clearly established Quality Assurance authorities, duties, and functions. QA has the organizational freedom needed to:

- (1) Identify problems
- (2) Stop nonconforming work
- (3) Initiate investigations
- (4) Recommend corrective and preventive actions
- (5) Provide solutions or recommend solutions
- (6) Verify implementation of actions

All Laboratory personnel have the authority and resources to do their assigned duties and have the freedom to act on problems. The QA personnel have direct, independent access to Company management as shown in Figure 3-1.

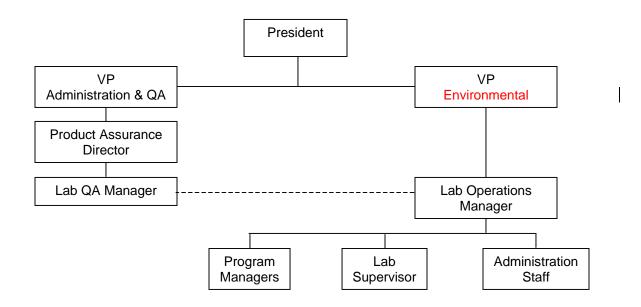


Figure 3.1. Laboratory Organization

Page 12 of 32

4.0 PERSONNEL ORIENTATION, DATA INTEGRITY, TRAINING, AND QUALIFICATION

4.1 **Orientation**

All laboratory personnel must receive orientation to the quality program if their work can affect quality. Orientation includes a brief review of customer- and regulatory agency-imposed quality requirements, the structure of the QAM, and the implementing procedures. The goal of orientation is to cover the nature and goals of the QA program.

4.2 **Data Integrity**

The primary output of the Laboratory is data. Special emphasis and training in data integrity is given to all personnel whose work provides or supports data delivery. The Laboratory Data Integrity Procedure (Procedure 1005) describes training, personnel attestations, and monitoring operations. Annual reviews are required.

4.3 Training

The Quality Assurance Manager (QAM) maintains a training matrix indicating which laboratory personnel need training in which specific Procedures. This matrix is updated when personnel change or change assignments. All personnel are trained per these requirements and procedures. This training program is described in Procedure 1007. The assigned responsibilities for employees are described in Procedure 1002 (See Section 3.0) on Organization and in Procedure 1006, Job Descriptions. Refresher training or re-training is given annually as appropriate.

4.4 Qualification

Personnel are qualified as required by their job description. Management and non-analysts are evaluated based on past experience, education, and management's assessment of their capabilities. Formal qualification is required of analysts and related technical personnel who perform laboratory functions. Each applicable person is given training and then formally evaluated by the Operations Manager (or his designees) and by QA. Each analyst must initially demonstrate capability to perform each assigned analytical effort. Each year, thereafter, he or she must perform similar analyses on Interlab Comparison Samples (see Procedure 4006) or on equivalent blanks and spikes samples. Acceptable results extend qualifications (certification). Unacceptable results require retraining in the subject method / Procedures. (See Procedure 1007 for added information, records, forms, etc. used.)

4.5 Records

Records of training subjects, contents, attendees, instructors, and certifications are maintained by QA.

Page 13 of 32

5.0 CUSTOMER INTERFACES

5.1 Interface Personnel

The Laboratory has designated Program Managers as the primary interface with all customers. Other interfaces may be the QA Manager or the Lab Operations Manager.

5.2 **Bid Requests and Tenders**

The Program Managers respond to customer requests for bids and proposals per Procedure 1014 for bids, proposals, and contract reviews. They clarify customer requests so both the customer and the lab staff understand requests. As responses are developed, internal reviews are conducted to ensure that requirements are adequately defined and documented and to verify that the Laboratory has adequate resources in physical capabilities, personal skills, and technical information to perform the work. Accreditation needs are reviewed. If subcontracts are required to perform any analysis, the subcontractor is similarly evaluated and the client notified in writing of the effort. Most qualifications are routine with standard pricing and the review of these quotes is performed by the Program Manager. Larger or more complex quotes are reviewed by the Operations Manager and the QA Manager (or designees). Evidence of review is by initialing and dating applicable papers, signatures on quotations, or by memo.

5.3 Contracts

The Program Manager's receive contract awards (oral or written) and generate the work planning for initiation preparation (charge numbers, data structure or contents in LIMS, etc.). They review contracts for possible differences from quotations and, if acceptable, contracts are processed. Documentation of the review is by initials and date as a minimum. Contract changes receive similar reviews and planning.

5.4 TBE's Expectation of Customers

TBE expects customers to provide samples suitable for lab analysis. These expectations include:

- Accurate and unambiguous identification of samples
- Proper collection and preservation of samples
- Use of appropriate containers free from external and internal contamination
- Integrity preservation during shipment and timely delivery of samples that are age sensitive
- Adequate sized samples that allow for retest, if needed
- Specification of unique MOA/MDC requirements
- Alerting the lab about abnormal samples (high activity, different chemical contents, etc.)
- Chain of custody initiation, when required.

5.5 <u>Customer Satisfaction</u>

TBE's quality policy centers on customer satisfaction (See 2.0). TBE will work to satisfy customers through full compliance with contract requirements, providing accurate data and properly responding to any questions or complaints. Customers are provided full cooperation in their monitoring of Laboratory performance. Customers are notified if any applicable State Accreditation is withdrawn, revoked, or suspended.

5.5.1 Customer Complaints

Any customer complaints are documented and tracked to closure. Most complaints concern analysis data and are received by Program Managers. They log each such complaint, order retests for verification, and provide documented results to customers. Complaints may also be received by QA or Operations.

If complaints are other than re-test type, the nonconformance and corrective action systems (Sections 12 and 13) are used to resolve them and record all actions taken.

5.5.2 Customer Confidentiality

All laboratory personnel maintain confidentiality of customer-unique information.

6.0 DOCUMENTATION GENERATION & CONTROL

6.1 General

The documentation generation and control system is detailed in Procedure 1008. An overview is given below. The basic quality system documents are described in Section 2.0.

6.2 New Documentation

Each Procedure and this QAM is written by appropriate personnel, validated if applicable (see Section 7.0), reviewed for adequacy, completeness, and correctness, and, if acceptable, accepted by the authorized approver [QA Manager, Operations Manager (or their designee)]. Both approvals are required if a Procedure affects both QA and Operations. (See Responsibilities in Section 3.0). These procedures control the quality measurements and their accuracy.

Each document carries a unique identification number, a revision level, dates, page numbers and total page count, and approver identification and sign off. If TBE writes code for software, the software is version identified and issued after Verification and Validation per Section 7.0.

6.3 Documentation Changes

Each change is reviewed in the same manner and by the same people as new documentation. Revision identifications are updated and changes indicated by side bars, italicized words, or by revision description when practical. Obsolete revisions are maintained by QA after being identified as obsolete.

6.4 Documentation Lists and Distributions

Computer indexes of documents are maintained by Quality showing the current authorized revision level of each document. These revisions are placed on the Laboratory server and obsolete ones are removed so that all personnel have only the current documents. If hard copies are produced and distributed, separate distribution lists are maintained indicating who has them and their revision level(s). Copies downloaded off the server are uncontrolled unless verified by the user (on the computer) to be the latest revision.

6.5 Other Documentation

In addition to TBE-generated documentation, QA maintains copies of applicable specifications, regulations, and standard methods.

6.6 <u>Documentation Reviews</u>

Each issued document is reviewed at least every third year by the approving personnel. This review determines continued suitability for use and compliance with requirements.

7.0 DESIGN OF LABORATORY CONTROLS

7.1 General

The Laboratory and its operating procedures are designed specifically for low level (environmental and in-plant) radioactive sample analysis. The various aspects of the laboratory design include the following which are discussed in subsequent paragraphs of this Section:

- (a) Facility
- (b) Technical Processes and Methods
- (c) Verification of Design of Processes, Methods, and Software.
- (d) Design of Quality Controls
- (e) Counting Instrument Controls

7.2 Facility

The facility was designed and built in 2000 to facilitate correct performance of operations in accordance with good laboratory practices and regulatory requirements. It provides security for operations and samples. It separates sample storage areas based on activity levels, separates wet chemistry from counting instrumentation for contamination control, and provides space and electronic systems for documentation, analysis, and record storage. Procedure 4014 describes the facility, room uses, layouts, etc.

7.3 Technical Processes and Methods

7.3.1 Operational Flow

The laboratory design provides for sample receipt and storage (including special environmental provisions for perishable items) where samples are received from clients and other labs (see Section 9.0). The samples are logged into the computer based Laboratory Information Management System (LIMS) and receive unique identification numbers and bar code labels. (See Procedure 4017 for LIMS description and user procedures). The Program Managers then plan the work and assure LIMS contains any special instructions to analysts. Samples then go to sample preparation, wet chemistry (for chemical separation), and counting based on the radionuclides. See Procedures in the 2000 and 3000 series. Analysts perform the required tasks with data being entered into logbooks, LIMS, and counting equipment data systems as appropriate. Results are collected and reviewed by the Operations Manager and Program Managers and reports to clients are generated (See Section 14.0). All records (electronic or hard copy) are maintained in files or in back-up electronic copies (see Section 15.0). After the required hold periods and client notification and approval, samples are disposed of in compliance with regulatory requirements (see Procedures 5003 and 5004).

7.3.2 Methods

The laboratory methods documented in the 2000 and 3000 series of Procedures were primarily developed by senior TBE laboratory personnel based on years of experience at our prior facility in New Jersey. They have been improved, supplemented and implemented here. Where EPA or other accepted national methods exist (primarily for water analyses under State certification programs - see Procedure 4010), the TBE methods conform to the imposed requirements or State accepted alternate requirements. Any method modifications are documented and described in the Procedure. There are no nationally recognized methods for most other analysis methods but references to other method documents are noted where applicable.

7.3.3 <u>Data Reduction and Analysis</u>

Whenever possible automatic data capture and computerized data reduction programs are used. Calculations are either performed using commercial software (counting system operating systems) or TBE developed and validated software is used (see 7.4 below). Analysis of reduced data is performed as described in Section 14.0 and Procedure 4004.

7.4 <u>Verification of Technical Processes, Methods, and Software</u>

7.4.1 **Operational Flow Verification**

The entire QA Manual and related procedures describe the verification of elements of the technical process flow and the establishment of quality check points, reviews, and controls.

7.4.2 Method Verifications

Methods are verified and validated per Procedure 4007 prior to use unless otherwise agreed to by the client. For most TBE methods initial validation occurred well in the past. New or significantly revised Methods receive initial validation by demonstration of their performance using known analytes (NIST traceable) in appropriate matrices. Sufficient samples are run to obtain statistical data that provides evidence of process capability and control, establishes detection levels (see procedure 4009), bias and precision data (see Procedure 4011). All method procedures and validation data are available to respective clients. Also see Section 7.5 below for the Demonstration of Capability program.

7.4.3 <u>Data Reduction and Analysis Verification</u>

Data reduction and analysis verification is performed by personnel who did not generate the data. (See Section 14.0).

7.5 Design of Quality Controls

7.5.1 General

There are multiple quality controls designed into the laboratory operations. Many of these are described elsewhere in this manual and include personnel qualification (Section 4.0), Document control (6.0), Sample identification and control (9.0), Use of reference standards (10.0), intra- and inter- laboratory tests (10.0), etc. This Section describes the basic quality control systems used to verify Method capability and performance.

7.5.2 <u>Demonstration of Capability (D of C)</u>

The demonstration of capability system verifies and documents that the method, analyst, and the equipment can perform within acceptable limits. The D of C is certified for each combination of analyte, method, and instrument type. D of C's are certified based on objective evidence at least annually. This program is combined with the analyst D of C program (See Section 4.0). Initial D of C's use the method validation effort as covered above. Subsequent D of C's use Inter-Laboratory samples (Procedure 4006) or, if necessary, laboratory generated samples using NIST traceable standards. If results are outside of control limits, redemonstration is required after investigation and corrective action is accomplished (See Sections 12.0 and 13.0)

7.5.3 Process Control Checks

Process control checks are designed to include Inter-Lab samples, Intra-lab QC check samples, and customer provided check samples. 10% of laboratory analysis samples are for process control purposes.

7.5.3.1 Inter- Lab Samples. Inter-lab samples are procured or obtained from sources providing analytes of interest in matrices similar to normal client samples. These samples may be used for Demonstration of Capability of analyst's, equipment and methods. They also provide for independent insight into the lab's process capabilities. Any value reported as being in the warning zone (over 2 sigma) is reviewed and improvements taken. Any value failing (over 3 sigma) is documented on an NCR and formal investigation per Section 12.0 and 13.0 is performed. If root causes are not clearly understood and fixed, re-tests are required using lab prepared samples (See Procedure 4006).

7.5.3.2 QC Samples. QC samples, along with Inter-lab samples and customer check samples, are 10% of the annual lab workload for the applicable analyte and method. If batch processing is used, some specifications require specific checks with each batch or each day rather than as continuous process controls. (See Procedure 4005)

QC samples consist of multiple types of samples including:

- (a) Method blanks
- (b) Blank spikes
- (c) Matrix spikes

- (d) Duplicates
- (e) Tracers and carriers

Acceptance limits for these samples are given in Procedures or in lab standards. The number, frequency, and use of these sample types varies with the method, matrix, and supplemental requirements. The patterns of use versus method and the use of the resulting test data is described in Procedure 4005.

7.5.3.3 Customer Provided Check Samples. Customers may provide blind check samples and duplicates to aid in their evaluation of the Laboratory. When the lab is notified that samples are check samples their results are included in the QC sample percentage counts. Any reported problems are treated as formal complaints and investigated per Section 5.

7.6 Counting Instrument Controls

The calibration of instruments is their primary control and is described in Section 11.0. In addition, counting procedures (3000 series) also specify use of background checks (method blank data is not used for this) to evaluate possible counting equipment contamination. Instrument calibration checks using a lab standard from a different source than the one used for calibration are also used. Background data can be used to adjust client and test data. Checks with lab standards indicate potential calibration changes.

8.0 PURCHASING AND SUBCONTRACT CONTROLS

8.1 General

Procurement and Subcontracts efforts use the Huntsville-based Cost Point computer system to process orders. The Laboratory-generated Purchase Requisitions are electronically copied into Purchase Orders in Huntsville. The Laboratory also specifies sources to be used. Procured items and services are received at the Laboratory where receiving checks and inspections are made. Laboratory Procedure 1015 provides details on the procurement control system at the Laboratory and references the Huntsville procedures as applicable.

8.2 <u>Source Selection</u>

Sources for procurements of items and services are evaluated and approved by QA as described in Procedure 1015. Nationally recognized catalog item sources are approved by the QA Manager based on reputation. Maintenance services by an approved distributor or the equipment manufacturing company are pre-approved. Sources for other services are evaluated by QA, based on service criticality to the quality system, by phone, mail out, or site visit.

Subcontract sources for laboratory analysis services are only placed with accredited laboratories (by NELAP, NUPIC, State, Client, etc.) as applicable for the type of analysis to be performed. QA maintains lists of approved vendors and records of evaluations performed.

8.3 Procurement of Supplies and Support Services

8.3.1 Catalog Supplies

The Laboratory procures reagents, processing chemicals, laboratory "glassware," consumables, and other catalog items from nationally known vendors and to applicable laboratory grades, purities, concentrations, accuracy levels, etc. Purchase Requisitions for these items specify catalog numbers or similar call-outs for these off-the-shelf items. Requisitions are generated by the personnel in the lab needing the item and are approved by the Operations or Production Manager. Reagents are analytical reagent grade only.

8.3.2 **Support Services**

Purchase Requisitions for support services (such as balance calibration, equipment maintenance, etc.) are processed as in 8.3.1 but technical requirements are specified and reviewed before approvals are given.

8.3.3 Equipment and Software

Purchase Requisitions for new equipment, software programs, and major facility modifications affecting the quality system are reviewed and approved by the Operations Manager and the QA Manager.

8.4 **Subcontracting of Analytical Services**

When necessary, the Laboratory may subcontract analytical services required by a client. This may be because of special needs, infrequency of analysis, etc. Applicable quality and regulatory requirements are imposed in the Purchase Requisition and undergo a technical review by QA. TBE reserves the right of access by TBE and our client for verification purposes.

8.5 Acceptance of Items or Services

Items and services affecting the quality system are verified at receipt based on objective evidence supplied by the vendor. Supply items are reviewed by the requisitioner and, if acceptable, are accepted via annotation on the vendor packing list or similar document. Similarly, equipment services are accepted by the requisitioning lab person. Calibration services are accepted by QA based on certification reviews. (See Section 11.0.)

Data reports from analytical subcontractors are evaluated by Program Managers and subsequently by the Operations Manager (or designee) as part of client report reviews.

Items are not used until accepted and if items or services are rejected, QA is notified and nonconformance controls per Section 12.0 are followed. Vendors may be removed from the approved vendor's list if their performance is unacceptable.

9.0 TEST SAMPLE IDENTIFICATION AND CONTROL

9.1 Sample Identification

Incoming samples are inspected for customer identification, container condition, chain of custody forms, and radioactivity levels. If acceptable, the sample information is entered into LIMS which generates bar coded labels for attachment to the sample(s). The labels are attached and samples stored in the assigned location. If environmental controls are needed (refrigeration, freezing, etc.), the samples are placed in these storage locations. If not acceptable, the Program Manager is notified, the customer contacted, and the problem resolved (return of sample, added data receipts, etc.). See Procedure 4003 for more information on sample receipt.

9.2 <u>LIMS</u>

The LIMS is used to schedule work, provide special information to analysts, and record all actions taken on samples. See Procedure 4017 and the 6000 series of procedures for more information on LIMS operations.

9.3 Sample Control

The sample, with its bar coded label, is logged out to the applicable lab operation where the sample is processed per the applicable methods (Procedures 2000 and 3000). The LIMS-assigned numbers are used for identification through all operations to record data. Data is entered into LIMS, log books (kept by the analysts) or equipment data systems to record data. The combination of LIMS, logbooks, and equipment data systems provide the Chain of Custody data and document all actions taken on samples. Unused sample portions are returned to its storage area for possible verification use. Samples are discarded after required time limits are passed and after client notification and approval, if required.

10.0 SPECIAL PROCESSES, INSPECTION, AND TEST

10.1 **Special Processes**

The Laboratory's special processes are the methods used to analyze a sample and control equipment. These methods are defined in Procedures in the 2000 and 3000 series. These processes are performed to the qualified methods (see Section 7.0) by qualified people (see 4.0).

10.2 Inspections and Tests

The quality of the process is monitored by indirect means. This program involves calibration checks on counting equipments (see Section 11.0), intralaboratory checks, and inter-laboratory checks. In addition, some customers submit quality control check samples (blinds, duplicates, external reference standards). All generated data gets independent reviews.

10.2.1 Intra Laboratory Checks (QC Checks)

The quantity and types of checks varies with the method, but basic checks which may include blanks, spiked blanks, matrix spikes, matrix spike duplicates, and duplicates are used as appropriate for customer samples. This process is described in Procedure 4005 and in Section 7.0.

10.2.2 <u>Inter Laboratory Checks</u>

TBE participates in Inter-lab performance evaluation (check) programs with multiple higher level labs. These programs provide blind matrices for the types of matrix/analyte combinations routinely processed by the Lab, if available. This program is described in Procedure 4006.

10.2.3 Data Reviews

Raw data and reports are reviewed by the Operations Manager, or designees. This review checks for data logic, expected results, procedure compliance, etc. (See Section 14.0).

10.3 Control of Sampling of Samples

Samples for analysis are supplied by customers preferably in quantities sufficient to allow re-verification analyses if needed. The samples are prepared for analysis by analysts and then an aliquot (partial sample extraction) is taken from the homogeneous customer sample for the initial analysis. Methods specify standard volumes of sample material required. Sampling data is recorded in LIMS and/or logbooks.

10.4 Reference Standards / Material

10.4.1 Weights and Temperatures

Reference standards are used by the Laboratory's calibration vendor to calibrate the Labs working instruments measuring weights and thermometers.

10.4.2 Radioactive Materials

Reference radioactive standards, traceable to NIST, are procured from higher level laboratories. These reference materials are maintained in the standards area and are diluted down for use by laboratory analysts. All original and diluted volumes are fully traceable to source, procedure, analyst, dilution, and acquisition dates. See Section 11.0 and Procedure 1009.

11.0 EQUIPMENT MAINTENANCE AND CALIBRATION

11.1 General

There are two types of equipment used by the Laboratory: support equipment (scales, glassware, weights, thermometers, etc.) and instruments for counting. Standards traceable to NIST are used for calibration and are of the needed accuracy for laboratory operations. Procedures 1009, 4018, and 4019 describe the calibration and maintenance programs.

11.2 Support Equipment

Analytical support equipment is purchased with the necessary accuracies and appropriate calibration data. If needed, initial calibration by the Laboratory or its calibration vendor is performed. Recalibration schedules are established and equipment recalibrated by the scheduled date by a calibration vendor or by Laboratory personnel. Maintenance is performed, as needed, per manufacturer's manuals or lab procedures.

In addition to calibrations and recalibrations, checks are made on the continued accuracy of items as described in Procedure 1009. Records are maintained of calibration and specified checks.

11.3 <u>Instruments</u>

Instruments receive initial calibration using radioactive sources traceable to NIST. The initial calibration establishes statistical limits of variation that are used to set control limits for future checks and recalibration. This process is described in Procedure 4018. Instruments are maintained per Instrument Manual requirements. Recalibrations are performed per the Procedure.

Between calibrations, check sources are used to assure no significant changes have occurred in the calibration of items. Background checks are performed to check for possible radioactive contamination. Background values are used to adjust sample results. Hardware and software are safeguarded from adjustments that could invalidate calibrations or results.

11.4 Nonconformances and Corrective Actions

If calibrations or checks indicate a problem, the nonconformance system (Section 12.0) and corrective action system (Section 13.0) are initiated to document the problem and its resolution. Equipment is promptly removed from service if questionable.

11.5 Records

Records of calibrations are maintained. Calibration certificates from calibration vendors are maintained by QA. Other calibration data and check data is maintained in log books, LIMS, or instrument software as appropriate and as described in Procedures 1009, 4018, and 4019.

12.0 NONCONFORMANCE CONTROLS

12.1 General

The nonconformance control system is implemented whenever a nonconforming condition on any aspect of Laboratory analysis, testing, or results exist. The system takes graded actions based on the nature and severity of the nonconformance. Nonconforming items or processes are controlled to prevent inadvertent use. Nonconformances are documented and dispositioned. Notification is made to affected organizations, including clients. Procedure 1010 describes the procedures followed. Sample results are only reported after resolution.

12.2 Responsibility and Authority

Each Laboratory employee has the responsibility to report nonconformances and the authority to stop performing nonconforming work or using nonconforming equipment. Laboratory supervision can disposition and take corrective actions on minor problems. Any significant problem is documented by QA using the Laboratory's NCR system per Procedure 1010. QA conducts or assures the conduct of cause analyses, disposition of items or data, and initiation of corrective action if the nonconformance could recur.

12.3 <u>10CFR21 Reporting</u>

The QA Manager reviews NCRs for possible need of customer and/or NRC notification per the requirements of 10CFR21. Procedure 1011 is followed in this review and for any required reporting.

13.0 CORRECTIVE AND PREVENTIVE ACTIONS

13.1 General

The Laboratory takes corrective actions on significant nonconformances (see Section 12.0). It also initiates preventive and improvement actions per the Company Quality Policy (see Section 2.0). The procedures for Corrective Action/Preventive Action systems are contained in Procedure 1012.

13.2 Corrective Actions

Corrective actions are taken by Operations and Quality to promptly correct significant conditions adverse to quality. The condition is identified and cause analysis is performed to identify root causes. Solutions are evaluated and the optimum one selected that will prevent recurrence, can be implemented by the Laboratory, allows the Laboratory to meet its other goals, and is commensurate with the significance of the problem. All steps are documented, action plans developed for major efforts, and reports made to Management. QA verifies the implementation effectiveness. Procedure 1012 provides instructions and designates authorities and responsibilities.

13.3 Preventive Actions

Preventive actions are improvements intended to reduce the potential for nonconformances. Possible preventive actions are developed from suggestions from employees and from analysis of Laboratory technical and quality systems by management. If preventive actions or improvements are selected for investigation, the issues, investigation, recommendations, and implementation actions are documented. Follow up verifies effectiveness.

Page 29 of 32

14.0 RESULTS ANALYSIS AND REPORTING

14.1 General

The Laboratory's role is to provide measurement-based information to clients that is technically valid, legally defensible, and of known quality.

14.2 Results Review

The results obtained from analytical efforts are collected and reviewed by the Operations Manager and the Program Manager. This review verifies the reasonableness and consistency of the results. It includes review of sample and the related QC activity data. Procedure 4002 describes the process. Any deficiencies are corrected by re-analyses, recalculations, or corrective actions per Sections 12.0 and 13.0. Use of the LIMS with its automatic data loading features (see Procedure 4017) minimizes the possibility of transcription or calculation errors.

14.3 Reports

Reports range from simple results reporting to elaborate analytical reports based on the client requirements and imposed specifications and standards. (See Procedure 4004.) Reports present results accurately, clearly, unambiguously, objectively, and as required by the applicable Method(s). Reports include reproduction restrictions, information on any deviations from methods, and any needed data qualifiers based on QC data. If any data is supplied by analytical subcontractors (see Section 8.0), it is clearly identified and attributed to that Laboratory by either name or accreditation number.

If results are faxed or transmitted electronically, confidentiality statements are included in case of receipt by other than the intended client.

Reports are approved by the Program Manager and Operations Manager and record copies kept in file (See Section 15.0).

15.0 RECORDS

15.1 General

The Laboratory collects generated data and information related to quality or technical data and maintains them as records. Records are identified, prepared, reviewed, placed in storage, and maintained as set forth in Procedure 1003.

15.2 Type of Records

All original observations, calculations, derived data, calibration data, and test reports are included. In addition QA data such as audits, management reviews, corrective and preventive actions, manuals, and procedures are included.

15.3 Storage and Retention

Records are stored in files after completion in the lab. Files are in specified locations and under the control of custodians. Filing systems provide for retrieval. Electronic files are kept on Company servers (with regular back up) or on media stored in fireproof file cabinets. Records are kept in Laboratory files for at least 2 years after the last entry and then in Company files for another year as a minimum. Some customers specify larger periods – up to 7 years – which is also met. Generic records supporting multiple customers are kept for the longest applicable period.

15.4 <u>Destruction or Disposal</u>

Records may be destroyed after the retention period and after client notification and acceptance, if required. If the Laboratory closes, records will go in to company storage in Huntsville unless otherwise directed by customers. If the Laboratory is sold, either the new owner will accept record ownership or the records will go into Company storage as stated above.

16.0 ASSESSMENTS

16.1 General

Assessments consist of internal audits and management reviews as set forth in Procedure 1013.

16.2 **<u>Audits</u>**

Internal audits are planned, performed at least annually on all areas of the quality system, and are performed by qualified people who are as independent as possible from the activity audited. (The Laboratory's small size inhibits full independence in some technical areas.) Audits are coordinated by the Quality Manager who assures audit plans and checklists are generated and the results documented. Reports include descriptions of any findings and provide the auditor's assessment of the effectiveness of the audited activity. Report data includes personnel contacted.

Audit findings are reviewed with management and corrective actions agreed to and scheduled. Follow up is performed by QA to verify accomplishment and effectiveness of the corrective action.

16.3 Management Reviews

The Annual Quality Assurance Report, prepared for some clients, is the Management Review vehicle. These reports cover audit results, corrective and preventive actions, external assessments, and QC and inter-laboratory performance checks. The report is reviewed with Management by the QA Manager for the continued suitability of the Quality Program and its effectiveness. Any needed improvements are defined, documented, and implemented. Follow ups are made to verify implementation and effectiveness.

Revision 0

APPENDIX D

LABORATORY ANALYTICAL REPORTS

- D.1 ENVIRONMENTAL, INC.
- D.2 TELEDYNE BROWN ENGINEERING, INC.

Revision 0

D.1 ENVIRONMENTAL, INC.

Environmental, Inc. Midwest Laboratory

An Allegheny Technologies Company 700 Landwehr Road * Northbrook, IL 60062-2310 Phone (847) 564-0700 * Fax (847) 564-4517 LABORATORY REPORT NO,: DATE: SAMPLES RECEIVED: TYPE OF REPORT

8004-100-2439	
05-08-06	
04-27-06	
COMPLETE	

Mr. Ed Steinke Byron Nuclear Station 4450 North German Church Road Byron, IL 61010

Dear Mr. Steinke:

Below are the results of the tritium analyses performed on sixteen water samples and one duplicate collected by Byron Station.

If you have any questions or comments, please feel free to contact me.

Sample #	Tritium (pCi/L)		Sample Type	Collection D	ate Location Name
BYWW-2782	263 ± 89		ww	4/24/2006	1CW
BYWW-2783	375 ± 93		WW	4/24/2006	VAULT 4
BYWW-2784	423 ± 95		WW	4/24/2006	VAULT 5
BYWW-2785	645 ± 103		WW	4/24/2006	VAULT 6
BYWW-2786	107 ± 71		WW	4/25/2006	WG-BYN-042506-SS-01
BYWW-2787	143 ± 72		WW	4/25/2006	WG-BYN-042506-SS-03
BYWW-2788	40 ± 67		WW	4/25/2006	WG-BYN-042506-SS-05
BYWW-2789	119 ± 71		WW	4/25/2006	WG-BYN-042506-SS-07
BYWW-2790	87 ± 70		WW	4/25/2006	WG-BYN-042506-SS-09
BYWW-2791	87 ± 70		WW	4/25/2006	WG-BYN-042506-SS-11
BYWW-2792	59 ± 68		WW	4/25/2006	WG-BYN-042506-SS-13
BYWW-2793	87 ± 70		WW	4/25/2006	WG-BYN-042506-JK-02
BYWW-2794	64 ± 68		WW	4/25/2006	WG-BYN-042506-JK-04
BYWW-2795	149 ± 72	Duplicate/2794	WW	4/25/2006	WG-BYN-042506-JK-04
BYWW-2796	229 ± 76		WW	4/25/2006	WG-BYN-042506-JK-06
BYWW-2797	56 ± 68		WW	4/25/2006	WG-BYN-042506-JK-08
BYWW-2798	59 ± 68		WW	4/25/2006	WG-BYN-042506-JK-12

Sincerely,

E. Saar Program C

Prøgram Coordinator

APPROVED BY

Bronia Grob, M.A. Laboratory Manager

Revision 0

D.2 TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28413
Exelon
May 4, 2006

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Drive Plainville CT 06062

Case Narrative - L28413 EX001-3ESPBYRON-06

05/04/2006 13:03

Sample Receipt

The following samples were received on April 27, 2006 in good condition, unless otherwise noted.

Samples WG-BYR-042606-JK-14, 16, 20, 22, 24 were received with the lids cracked. The bubble wrap bags surrounding each sample kept the slight leakage from reaching other samples.

WG-BYN-042606-JK, 20, 22 and 24 were at pH 3 at receipt. No times were listed on the sample containers.

The client was notified of the variances.

Cross Reference Table

Cross Rejerence 10	uoie
Laboratory ID	Station ID(if applicable)
L28413-1	
L28413-2	
L28413-3	
L28413-4	
L28413-5	
L28413-6	-
L28413-7	
L28413-8	
L28413-9	
L28413-10	
L28413-11	
L28413-12	
	Laboratory ID L28413-1 L28413-2 L28413-3 L28413-4 L28413-5 L28413-6 L28413-7 L28413-8 L28413-9 L28413-10 L28413-11

Analytical Method Cross Reference Table

	,		
Radiological Parameter	TBE Knoxville Method	Reference Method	
Gamma Spectrometry	TBE-2007	EPA 901.1	
H-3	TBE-2010	EPA 906.0	
SR-90 (FAST)	TBE-2019	EPA 905.0	

2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28413 EX001-3ESPBYRON-06

05/04/2006 13:03

Gamma Spectroscopy

Quality Control

Quality control samples were analyzed as WG3909.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-BYR-042606-JK-	L28413-10	WG3909-3
20		

H-3

Quality Control

Quality control samples were analyzed as WG3910.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	<u>Laboratory ID</u>	QC Sample #
WG-BYR-042606-JK-	L28413-7	WG3910-3
1.4		

SR-90

Quality Control

Quality control samples were analyzed as WG3931.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Case Narrative - L28413 EX001-3ESPBYRON-06

05/04/2006 13:03

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

Sample Receipt Summary

ESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue	SHIPPED TO (Laboratory Name):	UE DYN	TELEDYNE BROWN ENGINEERING	128413 5.30
CORD	REFERENCE NUMBER: $45/36-2$		PROJECT NAME: BYROW EXELON	
PRINTED JE	F KOLODZIEJSKI	. ОF АІИЕRS	PARAMETERS	REMARKS
SEQ. DATE TIME SAMPLE IDENTIFICATION NO.	SAMPLE NON NO. MATRIX		Ken and a second	
475661770 MG-BYN-042506-0X-	NATAN RO-	-	×	
1435			X	
5.5	90	-	×	
1745	08,		× ;	
1755	9		× :	
>	12		× :	
4/26/06/1010 W/3-BYN-0426 OB -JK	- 14	-	× ;	
1 1030 1	2		X :	
0511	<i>‰</i>			
1340	22	-6		
145.5	32	ર્જ		
7 0291	7	Œ	×	
TOTAL NUMBER OF CONTAINERS	ERS	3		
, yaran hinamisa	DATE: 4/26/06	RECEIVED BY:) BY:	DATE:
A CONTRACTOR OF THE PARTY OF TH	TIME: 1930	(2)		I IIVIE:
RELINQUISHED BY:	DATE:	RECEIVED BY:) BY:	DATE:
(2)	TIME:	9		DATE
RELINQUISHED BY:	DATE: TIME:	RECEIVED BY:) BY:	TIME:
METHOD OF SHIPMENT: FET) EX		AIR	AIR BILL NO. 85/3 8380 858/	
	SAMPLE TEAM:		RECEIVED FOR LABORATORY BY:	\(\frac{1}{2}\)
	KONTHOK			©
Goldenrod -Sampler Copy				
1001-00(SOURCE)GN-CO004				

1001-00(SOURCE)GN-CO004

L28413 7 of 45

04/27/06 14:37

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR08066

WG-BYN-042606-JK-22

WG-BYN-042606-JK-24

Other (Describe)

Client: Exelon

Project #: EX001-3ESPBYRON-06

LIMS #: L28413

lient:	Exelon Floject #.	EVOOT-2F2	EBIRON 00 EEE N. BEGILD
	ted By: PMARSHALL t Date: 04/27/06 Receive Date: 04/27/	/06	
TUT			
Person No Noti Notif	Notified: Kathy Shaw tify Date: 4/2/66 fy Method: email ty Comment:	Contacte	riance ed By: P. Charles
	Client Resp	onse	
Person	n Responding:		
	esponse Date:		
	ponse Method:		
Resp	onse Comment		
T			
Cr	riteria	Yes No NA	Comment
1	Shipping container custody seals present and intact.	t Y	
2	Sample container custody seals present and intact.	NA	
3	Sample containers received in good condition	N	
	WG-BYR-042606-JK-14,16,20,22,24	·	Amber bottle arrived with lid cracked.
4	Chain of custody received with samples	Y	
5	All samples listed on chain of custody received	Y	
6	Sample container labels present and legible.	Y	
7	Information on container labels correspond with chain of custody	N	No times on sample containers
			MO CIMES ON Sample Concarners
8	Sample(s) properly preserved and in appropriate container(s)	N	
	WG-BYN-042606-JK-20		pH 3

рН 3

рН 3

NA

4/27/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

ACKNOWLEDGEMENT This is not an invoice

Edward Steinke
Byron Station
Exelon Nuclear
4450 N. German Church Road
Byron, IL 31010

April 27, 2006

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on April 27, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by May 04, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID:

EX001-3ESPBYRON-06

P.O. #:

TBE

Release #:

Contract#:

00411203

Edward Steinke, FAX#:815-234-3301, edward.steinke@exeloncorp.com

Kathy Shaw, FAX#:860-747-1900, kshaw@craworld.com

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect End Collect Date/Time Date/Time
WG-BYR-042506-JK-02	L28413-1		04/25/06:1220
WG	H-3	108.00	
WG-BYR-042506-JK-04	L28413-2		04/25/06:1435
WG	H-3	108.00	
WG-BYR-042506-JK-06	L28413-3		04/25/06:1545
WG	H-3	108.00	
WG-BYR-042506-JK-08	L28413-4		04/25/06:1745
WG	H-3	108.00	
WG-BYR-042506-JK-10	L28413-5		04/25/06:1755
WG	H-3	108.00	
WG-BYR-042506-JK-12	L28413-6		04/25/06:1915
WG	H-3	108.00	

Client ID/ Station	Laboratory ID Analysis	Vol/Units Start Collect End Collect Price Date/Time Date/Time
WG-BYR-042606-JK-14	L28413-7	04/26/06:1010
WG	H-3	108.00
WG-BYR-042606-JK-16	L28413-8	04/26/06:1030
WG	H-3	108.00
WG-BYR-042606-JK-18	L28413-9	04/26/06:1150
WG	H-3	108.00
WG-BYR-042606-JK-20	L28413-10	04/26/06:1340
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00
WG-BYR-042606-JK-22	L28413-11	04/26/06:1455
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00
WG-BYR-042606-JK-24	L28413-12	04/26/06:1620
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00

End of document

Charles, Rebecca

From:

Charles, Rebecca

Sent:

Thursday, April 27, 2006 3:44 PM

To:

'Shaw, Kathy'; 'edward.steinke@exeloncorp.com'

Subject: acknowledgements

Please note the Sample receipt variance report. The lids were cracked on several containers and the pH of the cubitainers was 3.

Rebecca Charles Teledyne Brown Engineering Project Manager (865) 934-0379 (865) 934-0396 (fax)

This email and any of its attachments may contain Teledyne Brown Engineering proprietary information, which is privileged, confidential, or subject to copyright belong to Teledyne Brown Engineering. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy and printout of this e-mail. Thank You

Internal Chain of Custody

L28413 12 of 45

05/04/06 13:21

Teledyne Brown Engineering Internal Chain of Custody

*********************** Containernum 1

Sample # L28413-1

Prod H-3

Analyst

Relinquish Date Relinquish By

Received By

04/27/2006 00:00

099999

Containernum 1

Sample # L28413-2

Prod H-3

Analyst

Relinquish Date Relinquish By

Received By

04/27/2006 00:00

099999

Sample Custodian

Sample Custodian

************************ Sample # L28413-3

Containernum 1

Prod

Analyst

H-3

Relinquish Date Relinquish By

Received By

099999

Sample Custodian

04/27/2006 00:00 ************************ Sample # L28413-4

Containernum 1

Prod

Analyst

H-3

Relinquish Date Relinquish By

Received By

04/27/2006 00:00

099999 Sample Custodian

*********************** Sample # L28413-5

Containernum 1

Prod

Analyst

H-3

Relinquish Date Relinquish By

Received By

04/27/2006 00:00

099999

Sample Custodian

*********************** Containernum 1 Sample # L28413-6

Prod

Analyst

H-3

Relinquish Date Relinquish By 04/27/2006 00:00

Received By

099999

Sample Custodian

Sample # L28413-7

Prod

Analyst

Relinquish Date Relinquish By 04/27/2006 00:00

Received By

099999

Sample Custodian

Sample # L28413-8

Containernum 1

Containernum 1

Prod

Analyst

H-3

Relinquish Date Relinquish By

Received By

04/27/2006 00:00

Sample Custodian 099999

********************* Sample # L28413-9

Containernum 1

Prod

Analyst

L28413 13 of 45

Sample Custodian

Teledyne Brown Engineering Internal Chain of Custody

******************* Containernum 1 Sample # L28413-9 ΕJ H-3 Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 ************************ Containernum 1 Sample # L28413-10 Analyst Prod ΕJ H-3DW GELI CK SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/27/2006 00:00 Marty Webb Donna Webb 029858 04/27/2006 13:17 030854 Donna Webb 030854 Sample Custodian 099999 04/27/2006 13:17 Donna Webb Marty Webb 030854 04/29/2006 10:16 029858 099999 Sample Custodian Donna Webb 04/29/2006 10:16 030854 *********************** Containernum 2 Sample # L28413-10 Analyst Prod ΕJ H-3 DW **GELI** GK SR-90 (FAST) Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 ********************** Containernum 1 Sample # L28413-11 Analyst Prod EJH-3DW GELI GK SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/27/2006 00:00 029858 Marty Webb Donna Webb 04/27/2006 13:17 030854 030854 Donna Webb Sample Custodian 04/27/2006 13:17 099999 Donna Webb 030854 Marty Webb 04/28/2006 09:58 029858 099999 Sample Custodian Donna Webb 04/28/2006 09:59 030854 *********************** Containernum 2 Sample # L28413-11 Analyst Prod EJ H-3 DW GELI SR-90 (FAST) GK Received By Relinquish Date Relinquish By

04/27/2006 00:00

099999

L28413 14 of 45 Page: 3 of 3

05/04/06 13:21

Teledyne Brown Engineering Internal Chain of Custody

******************** Containernum 1 Sample # L28413-12 Analyst Prod ЕJ H-3 DW **GELI** SR-90 (FAST) GK Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/27/2006 00:00 029858 Marty Webb Donna Webb 04/27/2006 13:17 030854 Donna Webb 030854 Sample Custodian 099999 04/27/2006 13:17 Donna Webb 030854 Marty Webb 04/28/2006 09:58 029858 Sample Custodian 099999 Donna Webb 030854 04/28/2006 09:59 ********************* Containernum 2 Sample # L28413-12

Analyst Prod ΕJ H-3

DW GELI

GK SR-90 (FAST)

Received By Relinquish Date Relinquish By

099999 Sample Custodian 04/27/2006 00:00

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28413

		L20413	*****	******
L28413-1	WG	WG-BYR-042506-JK-02	71	Date
Process step	Prod		Analyst RCHARLES	04/27/06
Login	77 3		EJ	04/28/06
Aliquot	H-3		KOJ	04/29/06
Count Room	н-3			******

L28413-2	WG	WG-BYR-042506-JK-04	n-1t	Date
Process step	Prod		Analyst	<u>Date</u> 04/27/06
Login			RCHARLES	
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		КОЈ	04/29/06
*****	*****		*****	********
L28413-3	WG	WG-BYR-042506-JK-06	_	
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
*****	*****	****	********	***********
L28413-4	WG	WG-BYR-042506-JK-08		
Process step	Prod		<u>Analyst</u>	Date
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
*****	*****	*****	****	******
L28413-5	WG	WG-BYR-042506-JK-10		
Process step				
1100000	Prod		<u>Analyst</u>	Date
Login	Prod		Analyst RCHARLES	<u>Date</u> 04/27/06
	Prod H-3			
Login			RCHARLES	04/27/06
Login Aliquot Count Room	H-3 H-3	*****	RCHARLES EJ KOJ	04/27/06 04/28/06
Login Aliquot Count Room	H-3 H-3	**************************************	RCHARLES EJ KOJ	04/27/06 04/28/06 04/29/06
Login Aliquot Count Room ***********************************	H-3 H-3 *****		RCHARLES EJ KOJ	04/27/06 04/28/06 04/29/06
Login Aliquot Count Room ******** L28413-6 Process step	H-3 H-3 *****		RCHARLES EJ KOJ	04/27/06 04/28/06 04/29/06 *******
Login Aliquot Count Room ******* *** ****** *** *** ****** *** *** *** *** *** *** *** *** *** *	H-3 H-3 *****		RCHARLES EJ KOJ **********************************	04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ******** L28413-6 Process step	H-3 H-3 ****** WG <u>Prod</u>		RCHARLES EJ KOJ ********** Analyst RCHARLES	04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ******* L28413-6 Process step Login Aliquot Count Room	H-3 H-3 ****** WG Prod H-3 H-3	WG-BYR-042506-JK-12	RCHARLES EJ KOJ *********** Analyst RCHARLES EJ KOJ	Date 04/28/06 04/29/06 04/29/06 04/27/06 04/28/06
Login Aliquot Count Room ******** L28413-6 Process step Login Aliquot Count Room **********	H-3 H-3 ****** WG Prod H-3 H-3	WG-BYR-042506-JK-12	RCHARLES EJ KOJ *********** Analyst RCHARLES EJ KOJ	Date 04/28/06 04/29/06 04/29/06 04/27/06 04/28/06 04/29/06
Login Aliquot Count Room ******** L28413-6 Process step Login Aliquot Count Room ********** L28413-7	H-3 +****** WG Prod H-3 +-3 ******	WG-BYR-042506-JK-12	RCHARLES EJ KOJ ********** Analyst RCHARLES EJ KOJ **********************************	Date 04/28/06 04/29/06 04/29/06 04/27/06 04/28/06 04/29/06
Login Aliquot Count Room ******** L28413-6 Process step Login Aliquot Count Room ********* L28413-7 Process step	H-3 H-3 ******* WG Prod H-3 H-3	WG-BYR-042506-JK-12	RCHARLES EJ KOJ *********** Analyst RCHARLES EJ KOJ	Date 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ******** L28413-6 Process step Login Aliquot Count Room ********* L28413-7 Process step Login	H-3 H-3 ****** WG Prod H-3 H-3 ******	WG-BYR-042506-JK-12	RCHARLES EJ KOJ ********** Analyst RCHARLES EJ KOJ **********************************	04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ******** L28413-6 Process step Login Aliquot Count Room ******** L28413-7 Process step Login Aliquot	H-3 H-3 ***** WG Prod H-3 H-3 ****** WG Prod	WG-BYR-042506-JK-12	RCHARLES EJ KOJ ********** Analyst RCHARLES EJ KOJ *********** Analyst Analyst RCHARLES	04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ********* L28413-6 Process step Login Aliquot Count Room ********* L28413-7 Process step Login Aliquot Count Room	H-3 H-3 ***** WG Prod H-3 H-3 ****** WG Prod	WG-BYR-042506-JK-12	RCHARLES EJ KOJ ************ Analyst RCHARLES EJ KOJ ************** Analyst RCHARLES EJ KOJ **********************************	Date 04/27/06 04/28/06 04/29/06 *************** Date 04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ********* L28413-6 Process step Login Aliquot Count Room ********* L28413-7 Process step Login Aliquot Count Room ***********************************	H-3 H-3 ****** WG Prod H-3 H-3 ****** WG Prod H-3 ******	WG-BYR-042506-JK-12 ***********************************	RCHARLES EJ KOJ ************ Analyst RCHARLES EJ KOJ ************** Analyst RCHARLES EJ KOJ **********************************	04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ********* L28413-6 Process step Login Aliquot Count Room ******** L28413-7 Process step Login Aliquot Count Room ********* L28413-7	H-3 H-3 ****** WG Prod H-3 +-3 ****** WG Prod H-3 WG WG	WG-BYR-042506-JK-12	RCHARLES EJ KOJ ***************** Analyst RCHARLES EJ KOJ **********************************	Date 04/27/06 04/28/06 04/29/06 *************** Date 04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ********* L28413-6 Process step Login Aliquot Count Room ******** L28413-7 Process step Login Aliquot Count Room ********* L28413-7 Process step Login Aliquot Count Room ********** L28413-8 Process step	H-3 H-3 ****** WG Prod H-3 H-3 ****** WG Prod H-3 ******	WG-BYR-042506-JK-12 ***********************************	RCHARLES EJ KOJ ************ Analyst RCHARLES EJ KOJ ********** Analyst RCHARLES EJ KOJ *************** Analyst RCHARLES EJ KOJ **********************************	Date 04/27/06 04/28/06 04/29/06 ****************** Date 04/27/06 04/28/06 04/29/06 ******************* Date 04/27/06 04/29/06 ************************************
Login Aliquot Count Room ********** L28413-6 Process step Login Aliquot Count Room ********* L28413-7 Process step Login Aliquot Count Room ********* ********* L28413-8 Process step Login	H-3 H-3 ***** WG Prod H-3 H-3 ***** WG Prod H-3 H-3 H-3 H-3 H-3 H-3 H-3	WG-BYR-042506-JK-12 ***********************************	RCHARLES EJ KOJ ************ Analyst RCHARLES EJ KOJ *********** Analyst RCHARLES EJ KOJ ************ Analyst RCHARLES EJ KOJ **********************************	04/27/06 04/28/06 04/29/06 ************************************
Login Aliquot Count Room ********* L28413-6 Process step Login Aliquot Count Room ******** L28413-7 Process step Login Aliquot Count Room ********* L28413-7 Process step Login Aliquot Count Room ********** L28413-8 Process step	H-3 H-3 ****** WG Prod H-3 +-3 ****** WG Prod H-3 WG WG	WG-BYR-042506-JK-12 ***********************************	RCHARLES EJ KOJ ************ Analyst RCHARLES EJ KOJ ********** Analyst RCHARLES EJ KOJ *************** Analyst RCHARLES EJ KOJ **********************************	Date 04/27/06 04/28/06 04/29/06 ****************** Date 04/27/06 04/28/06 04/29/06 ******************* Date 04/27/06 04/29/06 ************************************

Page 2 of 2

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28413

*****	*****	*****	*****	*******
L28413-9	WG	WG-BYR-042606-JK-18		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
*****	****	******	*****	******
L28413-10	WG	WG-BYR-042606-JK-20		
Process step	Prod		<u>Analyst</u>	Date
Login			RCHARLES	04/27/06
Aliquot	GELI		DW	04/27/06
Aliquot	H-3		EJ	04/28/06
Aliquot	SR-90	(FAST)	GK	05/01/06
Count Room	GELI		MVW	04/27/06
Count Room	H-3		KOJ	04/29/06
Count Room		(FAST)	КОЈ	05/03/06
*****	*****	******	*****	********
L28413-11	WG	WG-BYR-042606-JK-22		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	GELI		DW	04/27/06
Aliquot	H-3		EJ	04/28/06
Aliquot	SR-90	(FAST)	GK	05/01/06
Count Room	GELI		MVW	04/27/06
Count Room	H-3		KOJ	04/29/06
Count Room		(FAST)	KOJ	05/03/06
*****	*****	*****	****	******
L28413-12	WG	WG-BYR-042606-JK-24		
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	GELI		DW	04/27/06
Aliquot	H-3		EJ	04/28/06
Aliquot	SR-90	(FAST)	GK	05/01/06
Count Room	GELI		MVW	04/27/06
Count Room	H-3		KOJ	04/29/06
Count Room	SR-90	(FAST)	KOJ	05/03/06

Analytical Results Summary

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28413

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(WG) (MG) (§ (§) Flag Values Flag Values \supset Units Units Count Count Σ Σ Ground Water Matrix: Ground Water Matrix: Ground Water Count Time Count Time 9 9 04/29/06 04/29/06 Count Date Count Date Matrix: Volume: Volume: Volume: % Moisture: % Moisture: Reference Reference Date Date Aliquot Aliquot Units Units Ē Ē Collect Start: 04/25/2006 14:35 Collect Start: 04/25/2006 15:45 Collect Start: 04/25/2006 12:20 Aliquot Volume Volume Aliquot Receive Date: 04/27/2006 Receive Date: 04/27/2006 Collect Stop: Collect Stop: Collect Stop: Run # Run # Units Units pCi/L pCi/L 1.85E+02 1.91E+02 MDC MDC 1.16E+02 1.07E+02 Uncertainty Uncertainty 2 Sigma 2 Sigma 2.30E+00 -7.58E+01 Activity Activity Conc Conc WG-BYR-042506-JK-06 WG-BYR-042506-JK-02 Sample ID: WG-BYR-042506-JK-04 SOP# SOP# L28413-2 L28413-1 Sample ID: LIMS Number: LIMS Number: Sample ID: Station: Description: Station: Description: Station: Radionuclide Radionuclide Kathy Shaw H-3 H-3

Radionuclide	SOP#	Activity Conc	Activity Uncertainty Conc 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Keterence Date	Count Date	Count Count Time Units	Count	Flag Values
H-3	2010	-6.73E+01	2010 -6.73E+01 1.08E+02 1.86E+02	1.86E+02	pCi/L		10	ml		04/29/06 60 M U	09	M	U
Sample ID: WG-BYR-042506-JK-08	YR-042506	5-JK-08			Collect	Start: 0	Collect Start: 04/25/2006 17:45	45		Matrix: Ground Water	round Wate	ı	(MG)
Station:					Collect Stop:	Stop:				Volume:			
Description:					Receive	Date: 0	Receive Date: 04/27/2006		W %	% Moisture:			
LIMS Number: L28413-4	3-4												
Radionuclide	#dos	Activity Conc	Activity Uncertainty Conc 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Count Count Date Time Units	Count Units	Flag Values
H-3	2010	-4.59E+00	-4.59E+00 1.15E+02	1.90E+02	pCi/L		10	ml		04/29/06 60	09	M	Ω

% Moisture:

Receive Date: 04/27/2006

L28413-3

LIMS Number:

Description:

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

MDC - Minimum Detectable Concentration

S

Page 1 of

High recovery

Low recovery

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28413

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(MG) Matrix: Ground Water Volume: % Moisture: Collect Start: 04/25/2006 17:55 Collect Stop: Sample ID: WG-BYR-042506-JK-10 Station: Kathy Shaw

Description:					Receive	Receive Date: 04/27/2006	/27/2006		VI 0%	% Moisture:			
LIMS Number: L28413-5	113-5												
Radionuclide	#dos	Activity Conc	Activity Uncertainty Cone 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values
H-3	2010	-1.15E+01	1.15E+02	1.90E+02	pCi/L		10	ш		04/29/06	09	M	D
Sample ID: WG-BYR-042506-JK-12	BYR-04250	6-JK-12			Collect	Start: 04,	Collect Start: 04/25/2006 19:15	15		Matrix: Ground Water	ound Wat	er	(MG)
Station:					Collect Stop:	Stop:				Volume:			
Description:					Receive	Receive Date: 04/27/2006	/27/2006		√ %	% Moisture:			
LIMS Number: L28413-6	113-6												
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values
H-3	2010	2010 -1.80E+01	1.12E+02	1.87E+02	pCi/L		10	m Tm		04/29/06	09	M	n
Sample ID: WG-BYR-042606-JK-14	-BYR-04260	6-JK-14			Collect	Start: 04,	Collect Start: 04/26/2006 10:10	10			Ground Water	er	(MG)
Station:					Collect Stop:	Stop:				Volume:			
Description:					Receive	Receive Date: 04/27/2006	/27/2006		2 %	% Moisture:			
LIMS Number: L28413-7	113-7												
		Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	_	
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	riag vaines
H-3	2010	-6 15E+01	1.10E+02	1.89E+02	pCi/L		10	m lm		04/29/06	09	Z	n

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

(WG)

Matrix: Ground Water

Collect Start: 04/26/2006 10:30

Sample ID: WG-BYR-042606-JK-16

Station: Description:

Receive Date: 04/27/2006

Collect Stop:

Volume:

% Moisture:

Flag Values

Units Count

Count Time 9

Count Date

Reference Date

Aliquot Units

Aliquot Volume

Run #

Units

Ē

10

pCi/L

1.85E+02 MDC

1.05E+02

-1.12E+02

Uncertainty 2 Sigma

Activity Conc

> SOP# 2010

Radionuclide

L28413-8

LIMS Number:

Σ

04/29/06

MDC - Minimum Detectable Concentration

S oę

Page 2

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery Spec High

Compound/Analyte not detected or less than 3 sigma

Flag Values

BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28413

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

(WG) (MG) Flag Values Units Count Σ Matrix: Ground Water Matrix: Ground Water Time Count 9 04/29/06 Count Date Volume: Volume: % Moisture: % Moisture: Reference Date Aliquot Units Ξ Collect Start: 04/26/2006 13:40 Collect Start: 04/26/2006 11:50 Aliquot Volume Receive Date: 04/27/2006 Receive Date: 04/27/2006 Collect Stop: Collect Stop: Run # Units pCi/L 1.82E+02 MDC 1.06E+02 Uncertainty 2 Sigma -6.37E+01 Activity Conc WG-BYR-042606-JK-18 WG-BYR-042606-JK-20 SOP# L28413-9 Sample ID: Sample ID: LIMS Number: Station: Station: Description: Description: Radionuclide

LIMS Number: L28413-10	3-10													
Radionuclide	#AOS	Activity Conc	Activity Uncertainty Cone 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	GS S
LI 3	2010	2 34E+02	1 28E+02	1.87F+02	pCi/L		10	lm		04/29/06	09	Σ	+ High	
TOTAL SR	2018	-5.11E-01	6.01E-01	1.04E+00	pCi/L		450	E	04/26/06 13:40	02/03/06	200	M	Ω	
MN-54	2007	1.93E+00	1.49E+00	2.55E+00	pCi/L		3010.63	lm	04/26/06 13:40	04/27/06	56755	Sec	D	No
CO-58	2007	2.36E+00	1.81E+00	2.59E+00	pCi/L		3010.63	ml	04/26/06 13:40	04/27/06	56755	Sec	Ď	No
FE-59	2007	1.91E+00	2.79E+00	4.71E+00	pCi/L		3010.63	Ш	04/26/06 13:40 04/27/06	04/27/06	56755	Sec	n l	No
09-03	2007	-9.00E-02	1.55E+00	2.57E+00	pCi/L		3010.63	m	04/26/06 13:40 04/27/06	04/27/06	56755	Sec	n	No
ZN-65	2007	6.03E+01	4.96E+00	9.20E+00	pCi/L		3010.63	m	04/26/06 13:40 04/27/06	04/27/06	56755	Sec	*5	No
NB-95	2007		1.66E+00	3.08E+00	pCi/L		3010.63	m	04/26/06 13:40 04/27/06	04/27/06	56755	Sec	*h	% No
ZR-95	2007		2.76E+00	4.11E+00	pCi/L		3010.63	m	04/26/06 13:40		56755	Sec	n n	No
CS-134	2007	6.11E+01	3.72E+00	5.00E+00	pCi/L		3010.63	lm	04/26/06 13:40	04/27/06	56755	Sec	*5	No
CS-137	2007	2.98E+00	1.87E+00	2.76E+00	pCi/L		3010.63	ml	04/26/06 13:40	04/27/06	56755	Sec	*5	No
BA-140	2007	-8.85E-01	5.60E+00	9.18E+00	pCi/L		3010.63	m	04/26/06 13:40 04/27/06	04/27/06	56755	Sec	n	No
LA-140	2007	1.39E+00	1.88E+00	3.19E+00	pCi/L		3010.63	m	04/26/06 13:40 04/27/06	04/27/06	56755	Sec	n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

5 Jo

Page 3

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds MDC and 3 sigma; peak identified (gamma only) Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28413

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Collect Start: 04/26/2006 14:55 Sample ID: WG-BYR-042606-JK-22

Kathy Shaw

Matrix: Ground Water

(MG)

Station:					Collec	Collect Stop:	9000/201) WW.	Volume: % Moisture:				
Description:	,				Kecelv	e Date. O	4/2//2000							
LIMS Number: L28413-11	3-11													
		Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	į	om sdu
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	nes
7	2010	4.32E+02	1.40E+02	1.89E+02	pCi/L		10	ml		04/29/06	09	M	+ High	
TOTAL CR	2018	-7 05E-01		1.10E+00	pCi/L		450	m	04/26/06 14:55	02/03/06	200	Z	n	
MN-54	2007	7.59E-01	1.76E+00	2.91E+00	pCi/L		3076.37	ml	04/26/06 14:55 04/27/06	04/27/06	56759	Sec	Ŋ	No No
CO-58	2007	3.32E-02	1.72E+00	2.81E+00	pCi/L		3076.37	m	04/26/06 14:55	04/27/06	56759	Sec	D	2
FF_50	2007	6.26E-01	3.21E+00	5.29E+00	pCi/L		3076.37	m	04/26/06 14:55	04/27/06	56759	Sec	n	No
CO-60	2007	9.20F-01	1.77E+00	2.97E+00	pCi/L		3076.37	m	04/26/06 14:55 04/27/06	04/27/06	56759	Sec	Ŋ	No
2N-65	2007	3.65E+01		9.04E+00	pCi/L		3076.37	E	04/26/06 14:55 04/27/06	04/27/06	56759	Sec	*5	No
NR-95	2007	6.35E+00		3.18E+00	pCi/L		3076.37	ml	04/26/06 14:55	04/27/06	56759	Sec	*1	No
7R-95	2007	1.45E-01		4.69E+00	pCi/L		3076.37	ш	04/26/06 14:55	04/27/06	56759	Sec	n	No
CS-134	2007	3.13E+01		4.72E+00	pCi/L		3076.37	m	04/26/06 14:55	04/27/06	56759	Sec	*1	No
CS_137	2007	2.01E+00	1	3.14E+00	pCi/L		3076.37	m	04/26/06 14:55	04/27/06	56759	Sec	Ω	No
BA-140	2007	1.76E+00		1.05E+01	pCi/L		3076.37	m	04/26/06 14:55	04/27/06	56759	Sec	ם	No
LA-140	2007	2.49E+00		3.59E+00	pCi/L		3076.37	m	04/26/06 14:55	04/27/06	56759	Sec	Ω	No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

oţ

Page 4

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery | High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28413

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Collect Start: 04/26/2006 16:20 Sample ID: WG-BYR-042606-JK-24

(WG)

Matrix: Ground Water

Station:	7007L0-XY I	4			Collec	Collect Stop:				Volume:				
Description:					Receiv	'e Date: 04	Receive Date: 04/27/2006		W %	% Moisture:				
LIMS Number: L28413-12	3-12													
		Activity	Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	į	
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	aines
H_3	2010	1.00E+02	1.19E+02	1.85E+02	pCi/L		10	lm		04/29/06	09	Σ	Ω	
TOTAL SP	2018	1 99E-01	5.25E-01	8.44E-01	pCi/L		450	m	04/26/06 16:20	90/80/50	700	Σ	n	
MNI-54	2007	1.32E+00		3.11E+00	pCi/L		3005.23	m]	04/26/06 16:20	04/27/06	56745	Sec	n	No
CO-58	2007	-4.37E-01		2.96E+00	pCi/L		3005.23	m	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	Ω	No
FF_50	2007	1.57E+00	_	5.82E+00	pCi/L		3005.23	m	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	n	No
09-00	2007	-2.04E-01		3.14E+00	pCi/L		3005.23	ш	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	n	No
ZN-65	2007	5.57E+01	5.95E+00	1.08E+01	pCi/L		3005.23	ш	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	*0	No
NR-95	2007	8.85E+00		3.65E+00	pCi/L		3005.23	lm	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	*0	No
ZR-95	2007	-1.24E+00	3.32E+00	5.07E+00	pCi/L		3005.23	m	04/26/06 16:20	04/27/06	56745	Sec	n	No
CS-134	2007	6.84E+01	3.70E+00	6.27E+00	pCi/L		3005.23	III	04/26/06 16:20	04/27/06	56745	Sec	*	No
CS-137	2007	3.88E+00	_	3.41E+00	pCi/L		3005.23	ml	04/26/06 16:20	04/27/06	56745	Sec	*0	No
BA-140	2007	2.21E-01	6.98E+00	1.14E+01	pCi/L		3005.23	ш	04/26/06 16:20	04/27/06	56745	Sec	n	No
LA-140	2007	-4.95E-01	2.31E+00	3.73E+00	pCi/L		3005.23	lm	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	n	No ;
TH-228	2007	6.17E+00	3.26E+00	5.82E+00	pCi/L		3005.23	Ш	04/26/06 16:20 04/27/06	04/27/06	56745	Sec	+	Yes

**** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum

MDC - Minimum Detectable Concentration

Jo

Page 5

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

QC Results Summary

QC Summary Report

5/4/2006

1:06:30PM

L28413

for

H-3

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

Oualifier P/F U P Range Qualifier P/F <30 ** NE $\frac{\textbf{Range}}{70\text{-}130} \; \frac{\textbf{Qualifier}}{+} \; \frac{\textbf{P/F}}{\textbf{P}}$ Spike Recovery 97.1 RPD pCi/Total pCi/Total pCi/L Units Units Units < 1.770E+02 < 1.780E+00 Blank Result LCS Result **DUP Result** 4.900E+02 Method Blank Summary LCS Sample Summary Duplicate Summary **Original Result** < 1.890E+02 Spike Value 5.05E+002 Count Date/Time Count Date/Time Count Date/Time 04/29/2006 2:47 04/29/2006 2:59 04/29/2006 1:43 <u>Matrix</u> WG Matrix WO <u>Matrix</u> WO Radionuclide Radionuclide Radionuclide Spike ID: 3H-041706-1 H-3 H-3 Spike conc: 5.05E+002 Spike Vol: 1.00E+000 TBE Sample ID TBE Sample ID TBE Sample ID WG3910-3 L28413-7 WG3910-2 WG3910-1

Page:

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Nuclide not detected

+ > * *

* *

Spiking level < 5 times activity

Not evaluated

P F NE

for QC Summary Report

L28413

BROWN ENGINEERING
A Teledyne Technologies Company

5/4/2006

1:06:30PM

WG3910 Associated Samples for

H-3

L28413

SAMPLENUM	CLIENTID
L28413-1	WG-BYR-042506-JK-02
L28413-2	WG-BYR-042506-JK-04
L28413-3	WG-BYR-042506-JK-06
L28413-4	WG-BYR-042506-JK-08
L28413-5	WG-BYR-042506-JK-10
L28413-6	WG-BYR-042506-JK-12
L28413-7	WG-BYR-042606-JK-14
L28413-8	WG-BYR-042606-JK-16
L28413-9	WG-BYR-042606-JK-18
L28413-10	WG-BYR-042606-JK-20
L28413-11	WG-BYR-042606-JK-22
L28413-12	WG-BYR-042606-JK-24

Page:

7

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

Spiking level < 5 times activity

Pass Fail Not evaluated

+D* * * d LX

QC Summary Report

5/4/2006

1:06:30PM

L28413 for

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

SR-90

Method Blank Summary

Units Blank Result < 6.130E-01

05/03/2006 21:10 Count Date/Time

Matrix

Radionuclide

TBE Sample ID

SR-90

WG3931-1

WO

pCi/Total

Qualifier P/F U P

Spike Recovery

pCi/Total

Units

5.090E+01

LCS Result

LCS Sample Summary

Spike Value 5.84E+001

05/03/2006 21:10

Matrix WO

Radionuclide

TBE Sample ID

SR-90

WG3931-2

Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001 WG-BYR-042606-JK-20

CLIENTID

WG3931

Associated Samples for

SAMPLENUM

L28413-10 L28413-11 L28413-12

SR-90 (FAST)

L28413

WG-BYR-042606-JK-24 WG-BYR-042606-JK-22

Count Date/Time

70-130

Range Qualifier P/F

3

Page:

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Positive Result

+ > * *

Pass Fail Not evaluated

Spiking level < 5 times activity

* 4 E

Raw Data

Sec. Review:

LIMS: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 08:12:22.76 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 27-APR-2006 16:26:02.03

LIMS No., Customer Name, Client ID: WG L28413-10 EXELON BYRON

Smple Date: 26-APR-2006 13:40:00. Sample ID : 07L28413-10

Geometry : 073L082504 : WG Sample Type BKGFILE : 07BG041406MT Quantity : 3.01060E+00 L

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
_	_	F2 00	000	2064	1.05	107.40	2 21F_01	3.92E-03	34 3	3.64E+00
1	1	53.28	222	2064 3092	1.42	133.21	8.00E-01	1.02E-02		2.67E+00
2	1	66.18*	582	2584	0.80	154.99	1.23E+00	2.43E-02	6.8	3.20E+00
3	1	77.07*	1381	2324	1.14	175.33	1.58E+00	1.49E-02	10.5	7.63E-01
4	5	87.24*	845	2608	1.28	180.31	1.65E+00	8.52E-03	19.4	, , , , , , , , , , , , , , , , , , , ,
5	5	89.72	483	2598	1.21	280.88	2.36E+00	8.65E-03		3.18E+00
6	1	139.99*	491	2598	1.23	397.65	2.25E+00	1.01E-02		
7	1	198.36*	574	1466	1.25 1.15	484.77	2.04E+00	3.91E-02		2.28E+00
8	1	241.91*	2217	1530	1.05	518.08	1.97E+00	3.98E-03		4.85E+00
9	1	258.55	226	1530	1.71	550.11	1.90E+00	3.43E-03		7.54E-01
10	1	274.57	195	1881	1.07	591.34		8.12E-02	2.4	
11	1	295.17*	4610 7924	1511	1.16	704.75	1.61E+00	1.40E-01	1.5	1.05E+00
12	1	351.87*		515	1.66	975.62	1.27E+00			1.80E+00
13	1	487.28	119 303	683	1.92		1.10E+00		19.3	2.11E+00
14	1	595.75	6598	596	1.38	1219.55	1.09E+00	1.16E-01	1.5	1.06E+00
15	1	609.23*	153	437		1331.75	1.02E+00		25.9	2.39E+00
16	1	665.33	663	461		1537.74		1.17E-02	7.7	
17	1	768.32	138	437		1572.72		2.43E-03		1.48E+00
18	1	785.81	126	471	1.44	1613.40		2.23E-03		9.65E-01
19	1	806.15	354	357	1.45	1868.85		6.23E-03		1.71E+00
20	1	933.88 1120.21*	1462	402	1.97		7.03E-01			2.38E+00
21	1	1120.21	157	308	2.02		6.88E-01			1.30E+00
22	1	1237.77	562	274	2.45			9.91E-03		4.85E+00
23	1	1280.80	151	214	1.57		6.39E-01		20.9	3.86E-01
24	1	1377.58	382	238		2756.04	6.07E-01		10.2	
25	1	1377.56	82	221	2.21			1.44E-03		
26	1	1401.43	134	198	2.73	2803.73		2.36E-03		1.06E+00
27	3 3	1401.43	236	184	2.46	2817.02		4.15E-03		
28	3 1	1509.29	230	245	2.95	3019.37		4.08E-03		1.03E+00
29 30	1	1729.42	260	143	2.55	3459.42		4.57E-03		2.30E+00
		1764.29*	1130	189		3529.12		1.99E-02		2.59E+00
31	1	1846.97	175	155		3694.38		3.09E-03		
32	1	1040.7/	1/5	T))	٠ ، ، ٧	5051.50				

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flaq: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID : 07L28413-10

Acquisition date : 27-APR-2006 16:26:02

32

27

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 5

**** There are no nuclides meeting summary criteria **** 15.63%

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Page: 3
Acquisition date: 27-APR-2006 16:26:02

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	53.28	222	2064	1.05	107.40	104		3.92E-03		3.31E-01	
1	66.18	582	3092	1.42	133.21	129		1.02E-02		8.00E-01	
1	77.07	1381	2584	0.80	154.99	153		2.43E-02		1.23E+00	
	87.24	845	2324	1.14	175.33	166		1.49E-02		1.58E+00	
5 5	89.72	483	2608	1.28	180.31	166		8.52E-03		1.65E+00	
1	139.99	491	2598	1.21	280.88	277		8.65E-03		2.36E+00	
1	198.36	574	2407	1.23	397.65	393		1.01E-02	33.6	2.25E+00	
1	241.91	2217	1466	1.15	484.77	472		3.91E-02	7.4	2.04E+00	
1	258.55	226	1530	1.05	518.08	514		3.98E-03		1.97E+00	
1	274.57	195	1594	1.71	550.11	546		3.43E-03	75.3	1.90E+00	
1	295.17	4610	1881	1.07	591.34	586	11	8.12E-02	4.8	1.81E+00	
1	351.87	7924	1511	1.16	704.75	699		1.40E-01	3.1	1.61E+00	
1	487.28	119	515	1.66	975.62	972		2.10E-03		1.27E+00	
1	595.75	303	683	1.92				5.34E-03		1.10E+00	
1	609.23	6598	596	1.38				1.16E-01	3.0	1.09E+00	
1	665.33	153	437	1.44	1331.75	1328				1.02E+00	
1	768.32	663	461	1.72	1537.74	1531	13	1.17E-02	15.5	9.20E-01	
1	785.81	138	437	1.72	1572.72	1568	11	2.43E-03	61.3	9.05E-01	
1	806.15	126	471	1.44	1613.40	1608	11	2.23E-03	68.8	8.89E-01	
1	933.88	354	357	1.45	1868.85	1864	11	6.23E-03	23.3	8.00E-01	
1	1120.21	1462	402	1.97	2241.45	2232	17	2.58E-02	8.5	7.03E-01	
1	1155.08	157	308	2.02	2311.16	2304	13	2.77E-03	48.8	6.88E-01	
1	1237.77	562	274	2.45	2476.52	2468	16	9.91E-03	15.9	6.55E-01	
1	1280.80	151	214	1.57				2.66E-03		6.39E-01	
1	1377.58	382	238	2.00				6.73E-03		6.07E-01	
1	1385.47	82	221	2.21				1.44E-03		6.05E-01	
3	1401.43	134	198	2.73				2.36E-03		6.00E-01	
3	1408.08	236	184	2.46	2817.02	2798	26	4.15E-03	29.5	5.98E-01	
1	1509.29	232	245	2.95	3019.37	3011	17	4.08E-03	33.9	5.70E-01	
1	1729.42	260	143	2.55				4.57E-03		5.19E-01	
1	1764.29	1130	189	2.24				1.99E-02		5.12E-01	
1	1846.97	175	155	2.79	3694.38	3685	17	3.09E-03	36.0	4.97E-01	L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

```
Total number of lines in spectrum 32
Number of unidentified lines 27
Number of lines tentatively identified by NID 5 15.63%
**** There are no nuclides meeting summary criteria ****
```

```
Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit
```

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Non-Identified Nuclides ----

	Key-Line	" Act orror	MDA	MDA error	Act/MDA
Nuclide	Activity K.I (pCi/L) Ide		(pCi/L)	FIDA CITOI	1100/11011
BE-7	7.870E+00	1.276E+01	2.052E+01	0.000E+00	0.384
NA-24	2.683E+00	8.760E+00	1.229E+01	0.000E+00	0.218
K-40	-1.312E+01	2.011E+01	3.465E+01	0.000E+00	-0.379
CR-51	-1.891E+01	1.317E+01	2.079E+01	0.000E+00	-0.910
MN-54	1.928E+00	1.490E+00	2.548E+00	0.000E+00	0.757
CO-57	-1.501E-02	1.431E+00	2.396E+00	0.000E+00	-0.006
CO-58	2.356E+00	1.809E+00	2.590E+00	0.000E+00	0.910
FE-59	1.912E+00	2.794E+00	4.705E+00	0.000E+00	0.406
CO-60	-8.998E-02	1.554E+00	2.565E+00	0.000E+00	-0.035
ZN-65	6.033E+01	4.963E+00	9.197E+00	0.000E+00	6.560
SE-75	1.895E+00	2.327E+00	3.313E+00	0.000E+00	0.572
SR-85	1.758E+01	1.645E+00	3.142E+00	0.000E+00	5.595
Y-88	1.907E-01	1.815E+00	2.482E+00	0.000E+00	0.077
NB-94	4.014E-01	1.431E+00	2.374E+00	0.000E+00	0.169
NB-95	1.098E+01	1.664E+00	3.081E+00	0.000E+00	3.564
ZR-95	-1.532E+00	2.763E+00	4.112E+00	0.000E+00	-0.372
MO-99	-8.560E+00	1.552E+01	2.511E+01	0.000E+00	-0.341
RU-103	6.798E-02	1.524E+00	2.454E+00	0.000E+00	0.028
RU-106	3.549E+00	1.321E+01	2.158E+01	0.000E+00	0.164
AG-110m	-9.870E-02	1.620E+00	2.263E+00	0.000E+00	-0.044
SN-113	8.070E-01	1.954E+00	3.233E+00	0.000E+00	0.250 0.408
SB-124	9.787E-01	3.233E+00	2.397E+00	0.000E+00	-0.099
SB-125	-6.982E-01	4.356E+00	7.081E+00	0.000E+00	0.500
TE-129M	1.421E+01	1.727E+01	2.842E+01	0.000E+00 0.000E+00	-0.613
I-131	-1.656E+00	1.661E+00	2.700E+00	0.000E+00	8.240
BA-133	4.117E+01	2.808E+00	4.996E+00	0.000E+00	12.229
CS-134	6.110E+01	3.720E+00	4.997E+00 2.510E+00	0.000E+00	-0.098
CS-136	-2.452E-01	1.573E+00	2.759E+00	0.000E+00	1.081
CS-137	2.982E+00	1.872E+00	2.759E+00 2.423E+00	0.000E+00	-0.987
CE-139	-2.391E+00	1.506E+00	9.182E+00	0.000E+00	-0.096
BA-140	-8.848E-01	5.598E+00 1.879E+00	3.185E+00	0.000E+00	0.436
LA-140	1.389E+00	2.971E+00	4.277E+00	0.000E+00	0.512
CE-141	2.190E+00	1.242E+01	1.844E+01	0.000E+00	-0.227
CE-144	-4.195E+00	5.665E+00	7.685E+00	0.000E+00	-1.328
EU-152	-1.021E+01	2.985E+00	5.018E+00	0.000E+00	0.234
EU-154	1.173E+00 1.862E+01	4.032E+01	6.384E+01	0.000E+00	0.292
RA-226	-3.643E+00	5.996E+00	9.422E+00	0.000E+00	-0.387
AC-228	2.409E+01	3.648E+00	5.635E+00	0.000E+00	4.276
TH-228	-3.641E+00	5.993E+00	9.417E+00	0.000E+00	-0.387
TH-232	-5.224E+00	1.359E+01	1.885E+01	0.000E+00	-0.277
U-235	-1.074E+02	1.782E+02	2.706E+02	0.000E+00	-0.397
U-238	-1.074E+02 -1.309E+01	1.403E+01	2.110E+01	0.000E+00	-0.620
AM-241	-1.3036701	1. 100m; O1			

```
3.011E+00,WG L28413-10 E
                     ,04/28/2006 08:12,04/26/2006 13:40,
A,07L28413-10
                                             ,06/23/2005 07:26,073L082504
                     , LIBD
B,07L28413-10
                                                                    0.384
                                                   2.052E+01,,
                                    1.276E+01,
                    7.870E+00,
C, BE-7
           , NO
                                                                    0.218
                                                   1.229E+01,
                                    8.760E+00,
           , NO
                    2.683E+00,
C, NA-24
                                                   3.465E+01,,
                                                                   -0.379
                                    2.011E+01,
C, K-40
                    -1.312E+01,
           , NO
                                                                   -0.910
                                                   2.079E+01,,
                                    1.317E+01,
           ,NO
                    -1.891E+01,
C, CR-51
                                                                    0.757
                                                   2.548E+00,,
                                    1.490E+00,
           , NO
                    1.928E+00,
C, MN-54
                                                                   -0.006
                                                   2.396E+00,,
                                    1.431E+00,
           , NO
                    -1.501E-02,
C,CO-57
                                                                    0.910
                                                   2.590E+00,,
                                    1.809E+00,
                     2.356E+00,
C, CO-58
            , NO
                                                                    0.406
                                                   4.705E+00,,
                    1.912E+00,
                                    2.794E+00,
            , NO
C, FE-59
                                                   2.565E+00,,
                                                                   -0.035
                                    1.554E+00,
                    -8.998E-02,
C, CO-60
            , NO
                                                                    6.560
                                                   9.197E+00,,
                                    4.963E+00,
                     6.033E+01,
C, ZN-65
            , NO
                                                                    0.572
                                                   3.313E+00,,
                                    2.327E+00,
C, SE-75
            , NO
                     1.895E+00,
                                                                    5.595
                                                   3.142E+00,,
                     1.758E+01,
                                    1.645E+00,
            , NO
C, SR-85
                                                                    0.077
                                                   2.482E+00,,
                                    1.815E+00,
                     1.907E-01,
C, Y-88
            , NO
                                    1.431E+00,
                                                   2.374E+00,,
                                                                    0.169
                     4.014E-01,
C, NB-94
            , NO
                                                   3.081E+00,,
                                                                    3.564
                                    1.664E+00,
                     1.098E+01,
            , NO
C, NB-95
                                                   4.112E+00,,
                                                                   -0.372
                                    2.763E+00,
                    -1.532E+00,
C, ZR-95
            , NO
                                                   2.511E+01,,
                                                                   -0.341
                    -8.560E+00,
                                    1.552E+01,
C, MO-99
            , NO
                                                                    0.028
                                    1.524E+00,
                                                   2.454E+00,,
                     6.798E-02,
            , NO
C, RU-103
                                                                    0.164
                                                   2.158E+01,,
                                    1.321E+01,
            , NO
                     3.549E+00,
C, RU-106
                                                   2.263E+00,,
                                                                   -0.044
                    -9.870E-02,
                                    1.620E+00,
C, AG-110m , NO
                                                                     0.250
                                                   3.233E+00,,
                                    1.954E+00,
            , NO
                     8.070E-01,
C, SN-113
                                                                     0.408
                                                   2.397E+00,,
                                    3.233E+00,
            , NO
                     9.787E-01,
C,SB-124
                                                                   -0.099
                                    4.356E+00,
                                                   7.081E+00,,
                    -6.982E-01,
C,SB-125
            , NO
                                                                     0.500
                                                   2.842E+01,,
                                    1.727E+01,
                     1.421E+01,
C, TE-129M
            , NO
                                                   2.700E+00,,
                                                                   -0.613
                                    1.661E+00,
            ,NO
                    -1.656E+00,
C, I-131
                                                                     8.240
                                                   4.996E+00,,
                                    2.808E+00,
                     4.117E+01,
C, BA-133
            , NO
                                                                   12.229
                                                   4.997E+00,,
                                    3.720E+00,
                     6.110E+01,
C, CS-134
            , NO
                                                   2.510E+00,,
                                                                   -0.098
                    -2.452E-01,
                                    1.573E+00,
            , NO
C, CS-136
                                                   2.759E+00,,
                                                                     1.081
                                    1.872E+00,
                     2.982E+00,
            , NO
C, CS-137
                 ,
                                                                    -0.987
                                                   2.423E+00,,
                                    1.506E+00,
            , NO
                    -2.391E+00,
C, CE-139
                                                                    -0.096
                                                   9.182E+00,,
                    -8.848E-01,
                                    5.598E+00,
C, BA-140
            , NO
                                                                     0.436
                                                   3.185E+00,,
                                    1.879E+00,
            , NO
                     1.389E+00,
C, LA-140
                 ,
                                                                     0.512
                                                   4.277E+00,,
                                    2.971E+00,
            , NO
                     2.190E+00,
C, CE-141
                                                                    -0.227
                                                   1.844E+01,,
                                    1.242E+01,
                    -4.195E+00,
C, CE-144
            , NO
                                                   7.685E+00,,
                                                                    -1.328
                                    5.665E+00,
            , NO
                    -1.021E+01,
C, EU-152
                                                                     0.234
                                                   5.018E+00,,
                     1.173E+00,
                                    2.985E+00,
C, EU-154
            , NO
                                                                     0.292
                                                   6.384E+01,,
                                    4.032E+01,
                     1.862E+01,
C, RA-226
            , NO
                                                                    -0.387
                                                   9.422E+00,,
                                    5.996E+00,
            , NO
                    -3.643E+00,
C, AC-228
                                                                     4.276
                                                   5.635E+00,,
                                    3.648E+00,
                     2.409E+01,
C, TH-228
            , NO
                                                                    -0.387
                                                    9.417E+00,,
                                    5.993E+00,
                    -3.641E+00,
C, TH-232
            , NO
                                                                    -0.277
                                                   1.885E+01,,
                                    1.359E+01,
                    -5.224E+00,
            , NO
C, U-235
                                                                    -0.397
                                    1.782E+02,
                                                   2.706E+02,,
C, U-238
            , NO
                    -1.074E+02,
                                                   2.110E+01,,
                                                                    -0.620
                                    1.403E+01,
                    -1.309E+01,
```

C, AM-241

, NO

LIMS: Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 08:12:33.20 TBE10 12892256 HpGe ******* Aquisition Date/Time: 27-APR-2006 16:26:18.40

LIMS No., Customer Name, Client ID: WG L28413-11 EXELON BYRON

Smple Date: 26-APR-2006 14:55:00. Sample ID : 10L28413-11

Geometry : 103L083004 Sample Type : WG BKGFILE : 10BG041406MT Quantity : 3.07640E+00 L

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.29*	543	2877	1.47	131.82	7.26E-01	9.56E-03	19.0	4.26E+00
2	3	74.84*	355	2234	1.09	148.94	1.03E+00	6.25E-03		2.18E+00
3	3	77.04	1021	2210	1.10	153.34	1.10E+00	1.80E-02	8.4	
4	1	87.28*	268	1828	0.93	173.82	1.39E+00	4.72E-03		2.12E+00
5	1	93.05*	221	2491	1.75	185.38	1.53E+00	3.89E-03		8.14E+00
6	1	139.95	441	2451	1.24	279.24	1.91E+00	7.77E-03	20.8	2.75E-01
7	1	185.67*	198	2244	1.58	370.74	1.77E+00	3.49E-03		2.83E+00
8	1	198.26*	229	1867	1.57	395.93	1.72E+00	4.03E-03		1.34E+00
9	2	238.66*	156	1438	1.54	476.78	1.54E+00	2.75E-03	49.5	1.41E+00
10	2	242.04	879	1173	1.13	483.55	1.52E+00	1.55E-02	7.3	
11	1	295.26*	2127	1563	1.22	590.07	1.33E+00	3.75E-02	4.7	1.50E+00
12	1	351.98*	3487	1119	1.24	703.59	1.17E+00	6.14E-02	2.7	1.02E+00
13	1	500.35	108	494	2.03	1000.57		1.90E-03	39.8	1.06E+00
14	1	595.95	195	467		1191.94		3.44E-03		1.97E+00
15	1	609.35*	2796	540	1.38	1218.77		4.93E-02		5.16E-01
16	1	665.65	81	366		1331.47		1.42E-03		2.85E+00
17	1	768.26	328	260		1536.90	6.46E-01			2.57E+00
18	1	786.37	63	279	2.29	1573.15	6.34E-01			2.37E+00
19	1	934.28	158	207	1.96	1869.27	5.54E-01			1.52E+00
20	1	968.97*	43	194	3.13	1938.73	5.38E-01	7.59E-04		1.83E+00
21	1	1120.25*	562	233	1.78	2241.65	4.79E-01		7.9	7.42E-01
22	1	1155.30	111	213	1.90	2311.81	4.67E-01		31.2	8.78E-01
23	1	1238.25	239	207	1.95	2477.93	4.42E-01			7.43E-01 9.06E-01
24	1	1377.93	222	115	2.53	2757.65		3.91E-03	12.9	
25	1	1408.18	119	120	2.75	2818.24		2.10E-03		
26	1	1509.13	100	120	2.20	3020.40		1.75E-03		6.15E-01 3.28E+00
27	1	1659.69	114	138	15.20	3321.96	3.54E-01			2.31E+00
28	1	1711.14	42	95	4.65		3.46E-01			1.71E+00
29	1	1730.10	125	96	2.87		3.43E-01		8.5	
30	1	1764.54*	430	137			3.39E-01			
31	1	1847.38	87	114	2.82	3697.90	3.29E-01	1.53E-03	30.4	±.00E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nuclide RA-226 TH-228	Energy 186.21 238.63 240.98	Area 198 156 879	%Abn 3.28* 44.60* 3.95 10.50*	%Eff 1.771E+00 1.538E+00 1.524E+00 1.905E+00	pCi/L 5.280E+01 3.518E+00 2.259E+02	pCi/L 5.280E+01 3.523E+00 2.262E+02 ne Not Found	%Error 96.90 99.05 14.50
0-235	143.76 163.35 185.71 205.31	198	4.70 54.00 4.70	1.860E+00 1.771E+00 1.684E+00	Lir 3.207E+00	ne Not Found 3.207E+00 ne Not Found	96.90

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 27-APR-2006 16:26:18 Sample ID : 10L28413-11

31 Total number of lines in spectrum

Number of unidentified lines 26
Number of lines tentatively identified by NID 5 16.13%

Nuclide Type : natural

Nuclide RA-226 TH-228	Hlife 1600.00Y 1.91Y	Decay 1.00 1.00	Uncorrected pCi/L 5.280E+01 3.518E+00	pCi/L 5.280E+01 3.523E+00	2-Sigma Error 5.117E+01 3.490E+00	96.90 99.05	-
TH-228 U-235	7.04E+08Y		3.207E+00	3.207E+00	3.108E+00	96.90	K

Total Activity : 5.953E+01 5.953E+01

Grand Total Activity: 5.953E+01 5.953E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 10L28413-11

Page: 3 Acquisition date : 27-APR-2006 16:26:18

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	lags
1	66.29	543	2877	1.47	131.82	128	9	9.56E-03	38.0	7.26E-01	
3	74.84	355	2234	1.09	148.94	142	16	6.25E-03	50.6	1.03E+00	
3	77.04	1021	2210	1.10	153.34	142	16	1.80E-02	16.8	1.10E+00	
1	87.28	268	1828	0.93	173.82	171	6	4.72E-03	55.4	1.39E+00	
1	93.05	221	2491	1.75	185.38	181	9	3.89E-03	88.5	1.53E+00	
1	139.95	441	2451	1.24	279.24	275	9	7.77E-03	41.7	1.91E+00	
1	198.26	229	1867	1.57	395.93	392	9	4.03E-03	78.0	1.72E+00	
1	295.26	2127	1563	1.22	590.07	583	14	3.75E-02	9.3	1.33E+00	
1	351.98	3487	1119	1.24	703.59	698	12	6.14E-02	5.3	1.17E+00	
1	500.35	108	494	2.03	1000.57	996	10	1.90E-03	79.7	8.97E-01	
1	595.95	195	467	2.07	1191.94	1186	12	3.44E-03		7.86E-01	
1	609.35	2796	540	1.38	1218.77		13	4.93E-02	5.4	7.72E-01	
1	665.65	81	366	1.64	1331.47	1325	11	1.42E-03	94.8	7.22E-01	
1	768.26	328	260	2.21	1536.90	1530	14		23.8	6.46E-01	
1	786.37	63	279	2.29	1573.15	1567		1.11E-03	****	6.34E-01	
1	934.28	158	207	1.96	1869.27	1864	11	2.78E-03	38.8	5.54E-01	
1	968.97	43	194	3.13	1938.73	1935		7.59E-04	****	5.38E-01	${f T}$
1	1120.25	562	233	1.78	2241.65	2236	15	9.90E-03	15.7	4.79E-01	
1	1155.30	111	213	1.90	2311.81	2305	16	1.95E-03	62.4	4.67E-01	
1	1238.25	239	207	1.95	2477.93	2471	16	4.22E-03	29.9	4.42E-01	
1	1377.93	222	115	2.53	2757.65	2751	16	3.91E-03	25.7	4.06E-01	
1	1408.18	119	120	2.75	2818.24	2810	15	2.10E-03	44.4	4.00E-01	Т
1	1509.13	100	120	2.20	3020.40		12	1.75E-03	48.2	3.79E-01	
1	1659.69	114	138	15.20	3321.96	3314			54.4	3.54E-01	
1	1711.14	42	95	4.65	3425.01		14		***	3.46E-01	
1	1730.10	125	96	2.87	3462.99		16	2.21E-03	39.6	3.43E-01	
1	1764.54	430	137	2.04	3531.98	3525	18	7.57E-03	16.9	3.39E-01	
1	1847.38	87	114	2.82	3697.90	3688	17	1.53E-03	60.8	3.29E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 31 26 Number of unidentified lines 26
Number of lines tentatively identified by NID 5 16.13%

Nuclide Type : natural

Nuclide RA-226 TH-228	Hlife 1600.00Y 1.91Y	Decay 1.00	pCi/L	Wtd Mean Decay Corr pCi/L 5.280E+01 3.523E+00	Decay Corr 2-Sigma Error 5.117E+01 3.490E+00	2-Sigma %Error Flags 96.90 99.05	S
	Total Acti	ivity :	5.632E+01	5.632E+01			

Grand Total Activity: 5.632E+01 5.632E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Ideiic	IIIed NdCIIdeb				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226 TH-228	5.280E+01 3.523E+00	5.117E+01 3.490E+00	7.092E+01 5.235E+00	0.000E+00 0.000E+00	0.745 0.673
Non-I	dentified Nuclide	s			
Nuclide	Key-Line Activity K.L (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA
Nuclide BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-95 XR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 AC-228 TH-232	9.356E+00 -5.331E-01 -7.718E+00 -1.511E+01 7.585E-01 -3.053E-01 3.321E-02 6.255E-01 9.200E-01 3.647E+01 -1.925E+00 1.733E+01 9.092E-01 1.549E+00 6.346E+00 1.451E-01 1.929E+00 1.598E+00 -3.792E+00 2.294E-02 2.212E-01 -9.840E-01 -2.920E-01 3.322E+00 -1.406E-01 4.887E+01 3.132E+01 -7.155E-01 2.011E+00 2.964E-01 1.757E+00 2.494E+00 5.061E-01 7.772E+00 -6.154E+00 7.027E-01 7.190E-01 7.190E-01 7.187E-01	1.431E+01 9.701E+00 2.559E+01 1.545E+01 1.761E+00 1.686E+00 1.717E+00 3.214E+00 1.765E+00 2.412E+00 1.962E+00 2.137E+00 1.669E+00 2.047E+01 2.093E+01 1.889E+00 1.559E+01 1.889E+00 3.960E+00 1.968E+01 1.968E+01 1.982E+00 3.747E+00 3.747E+00 3.747E+00 3.747E+00 3.748E+00 3.747E+00 3.747E+00 1.748E+00 3.747E+00 3.747E+00 1.748E+00 3.747E+00 1.748E+00 3.747E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.748E+00 1.753E+00 1.573E+01	2.391E+01 1.331E+01 4.370E+01 2.486E+00 2.792E+00 2.805E+00 2.805E+00 2.969E+00 3.943E+00 3.706E+00 3.943E+00 3.184E+00 4.687E+00 2.818E+00 2.979E+01 2.979E+01 2.979E+01 2.642E+00 3.737E+00 2.772E+00 8.478E+00 3.215E+00 4.723E+00 4.723E+00 4.723E+00 2.814E+00 3.142E+00 3.142E+00 2.928E+00 1.046E+01 3.594E+00 1.046E+01 3.594E+00 2.928E+00 1.046E+01 3.594E+00 2.928E+00 1.046E+01 3.594E+00 2.928E+00 1.046E+01 3.594E+00 2.928E+00 1.046E+01 3.594E+00 2.928E+00 1.046E+01 3.594E+00 2.928E+00 1.046E+01 3.594E+00 2.928E+00	O.000E+00 O.000E+00	0.391 -0.040 -0.177 -0.608 0.261 -0.109 0.012 0.118 0.310 4.032 -0.488 4.676 0.300 0.550 1.993 0.035 -0.059 -0.355 -0.034 0.102 -0.044 7.924 6.632 -0.254 0.640 0.101 0.168 0.694 0.102 0.353 -0.673 0.120 0.065 0.464
U-235 U-238 AM-241	1.038E+01 5.280E+01 -1.576E+01	1.844E+02 1.637E+01	3.067E+02 2.448E+01	0.000E+00 0.000E+00	0.172 -0.644

```
3.076E+00,WG L28413-11 E
                     ,04/28/2006 08:12,04/26/2006 14:55,
A,10L28413-11
                                             ,06/09/2005 08:04,103L083004
                     ,LIBD
B,10L28413-11
                                                                    0.745
                                    5.117E+01,
                                                   7.092E+01,,
C, RA-226
           , YES,
                    5.280E+01,
                                                                    0.673
                                                   5.235E+00,,
                    3.523E+00,
                                    3.490E+00,
C, TH-228
           , YES,
                                                   2.391E+01,,
                                                                    0.391
                                    1.431E+01,
           ,NO ,
                     9.356E+00,
C, BE-7
                                                                   -0.040
                                                   1.331E+01,,
                                    9.701E+00,
                    -5.331E-01,
            , NO
C, NA-24
                                                   4.370E+01,,
                                                                   -0.177
                                    2.559E+01,
C, K-40
           , NO
                    -7.718E+00,
                                                                   -0.608
                                                   2.486E+01,,
                                    1.545E+01,
                    -1.511E+01,
C, CR-51
            , NO
                                                                    0.261
                                    1.761E+00,
                                                   2.906E+00,,
                     7.585E-01,
            , NO
C, MN-54
                                                                   -0.109
                                    1.686E+00,
                                                   2.792E+00,,
                    -3.053E-01,
            ,NO
C, CO-57
                                                                    0.012
                                                   2.805E+00,,
                                    1.717E+00,
                     3.321E-02,
C, CO-58
            , NO
                                                                    0.118
                                                   5.293E+00,,
                                    3.214E+00,
            , NO
C, FE-59
                     6.255E-01,
                                                                    0.310
                                                   2.969E+00,,
            , NO
                     9.200E-01,
                                    1.765E+00,
C, CO-60
                                                                    4.032
                                                   9.044E+00,,
            ,NO
                                    5.110E+00,
                     3.647E+01,
C, ZN-65
                                                   3.943E+00,,
                                                                   -0.488
                                    2.412E+00,
                    -1.925E+00,
            , NO
C, SE-75
                                                   3.706E+00,,
                                                                    4.676
                                    1.962E+00,
            , NO
C, SR-85
                     1.733E+01,
                                                                    0.300
                                                   3.028E+00,,
                                    2.137E+00,
                     9.092E-01,
C, Y-88
            , NO
                                                                    0.550
                                    1.669E+00,
                                                   2.818E+00,,
                     1.549E+00,
C, NB-94
            , NO
                                                                    1.993
                                                   3.184E+00,,
                     6.346E+00,
                                    2.047E+00,
            , NO
C, NB-95
                                                                    0.031
                                    3.082E+00,
                                                   4.687E+00,,
                     1.451E-01,
            ,NO
C, ZR-95
                                                   2.907E+01,,
                                                                    0.066
                                    1.764E+01,
            , NO
                     1.929E+00,
C, MO-99
                                                                    0.536
                                                   2.979E+00,,
                                    2.093E+00,
                     1.598E+00,
            , NO
C, RU-103
                                                   2.506E+01,,
                                                                   -0.151
                                    1.559E+01,
C, RU-106
            , NO
                    -3.792E+00,
                                                                    0.009
                                                   2.642E+00,,
                                    1.889E+00,
                     2.294E-02,
            , NO
C, AG-110m
                                                                    0.059
                                                   3.737E+00,,
                                    2.239E+00,
                     2.212E-01,
C, SN-113
            , NO
                                                   2.772E+00,,
                                                                   -0.355
                                    3.960E+00,
                    -9.840E-01,
C,SB-124
            , NO
                                                                   -0.034
                                                   8.478E+00,,
                                    5.120E+00,
            ,NO
                    -2.920E-01,
C,SB-125
                                                                    0.102
                                                   3.260E+01,,
                                    1.968E+01,
C, TE-129M , NO
                     3.322E+00,
                                                                   -0.044
                                                   3.215E+00,,
                                    1.982E+00,
C, I-131
            ,NO
                    -1.406E-01,
                                                                    7.924
                                                   6.168E+00,,
                                    3.465E+00,
                     4.887E+01,
C, BA-133
            , NO
                                                                    6.632
                                                   4.723E+00,,
                                    3.747E+00,
                     3.132E+01,
            , NO
C, CS-134
                                                   2.814E+00,,
                                                                   -0.254
                                    1.748E+00,
                    -7.155E-01,
            , NO
C, CS-136
                                                                     0.640
                                                   3.142E+00,,
                                    2.168E+00,
            ,NO
                     2.011E+00,
C, CS-137
                                                                    0.101
                                                   2.928E+00,,
                     2.964E-01,
                                    1.785E+00,
            , NO
C, CE-139
                                                                    0.168
                                                   1.046E+01,,
                                    6.352E+00,
            , NO
                     1.757E+00,
C, BA-140
                                                                    0.694
                                                   3.594E+00,,
                                    2.060E+00,
C, LA-140
                     2.494E+00,
            , NO
                                                                     0.102
                                                   4.943E+00,,
                                    3.509E+00,
            , NO
                     5.061E-01,
C, CE-141
                                                                     0.353
                                                   2.201E+01,,
                                    1.546E+01,
                     7.772E+00,
            , NO
C, CE-144
                                                                   -0.673
                                                   9.142E+00,,
                                    6.789E+00,
            , NO
                    -6.154E+00,
C, EU-152
                                                   5.876E+00,,
                                                                     0.120
                                    3.535E+00,
                     7.027E-01,
C, EU-154
            , NO
                                                                     0.065
                                                   1.098E+01,,
                                    6.856E+00,
                     7.190E-01,
            , NO
C, AC-228
                                                                     0.065
                                                   1.097E+01,,
                                    6.853E+00,
                     7.187E-01,
C, TH-232
            , NO
                                                                     0.464
                                                   2.237E+01,,
                                    1.573E+01,
                     1.038E+01,
            , NO
C, U-235
                                                   3.067E+02,,
                                                                     0.172
                                    1.844E+02,
                     5.280E+01,
C, U-238
            , NO
                                                   2.448E+01,,
                                                                    -0.644
                                    1.637E+01,
                    -1.576E+01,
            ,NO,
```

C, AM-241

LIMS: Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 08:12:48.80 TBE11 P-20610B HpGe ******** Aquisition Date/Time: 27-APR-2006 16:26:31.05

LIMS No., Customer Name, Client ID: WG L28413-12 EXELON BYRON

Smple Date: 26-APR-2006 16:20:00. : 11L28413-12 Sample ID

Geometry : 113L082304 Sample Type : WG BKGFILE : 11BG041406MT : 3.00520E+00 L Quantity Start Channel: 40 Energy Tol: 1.30000 Real Time: 0 15:46:09.10 End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 15:45:44.97 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	66.43*	291	2694	1.00	132.04		5.13E-03		
2	3	74.85*	405	2471	1.03	148.93	9.75E-01	7.13E-03	21.8	1.32E+00
3	3	77.06	1126	2287	0.96	153.37	1.05E+00	1.98E-02	7.5	
4	0	86.90*	213	2527	1.16	173.10		3.76E-03		
5	0	139.51	385	2821	1.27	278.62		6.79E-03		
6	0	185.68*	39	1881	0.83	371.22		6.88E-042		
7	0	198.24*	312	2200	1.42	396.40		5.49E-03		
8	2	238.49*	274	1302	1.58	477.12		4.82E-03		1.48E+00
9	2	241.87	1478	1369	1.41	483.89		2.60E-02	5.0	
10	0	295.03*	2970	1682	1.37	590.49				
11	0	351.72*	5092	1275	1.30	704.16		8.97E-02	2.0	
12	0	595.11	242	496	1.85	1192.05		4.26E-03		
13	0	608.92*	4026	617	1.51			7.09E-02	2.1	
14	0	665.26	184	382		1332.63		3.24E-03		
15	0	767.90	393	327		1538.31		6.92E-03		
16	0	785.77	133	419	1.78	1574.13		2.34E-03		
17	0	805.80	120	264			6.34E-01	2.12E-03	26.9	
18	0	910.52*	29	274	1.91	1824.05		5.10E-04		
19	0	933.15	190	296			5.64E-01	3.34E-03	20.1	
20	0	965.63	21	514		1934.44		3.63E-04		
21	0	1119.71*	914	257		2243.06		1.61E-02		
22	0	1237.33*	367	220		2478.59		6.47E-03		
23	0	1280.05	76	136		2564.14		1.35E-03		
24	0	1376.93	273	153	2.27			4.82E-03		
25	0	1400.62	99	137		2805.53		1.74E-03		
26	0	1407.55	149	170		2819.40		2.63E-03		
27	0	1508.04	139	130		3020.55		2.44E-03		
28	0	1728.21	133	147		3461.17		2.35E-03		
29	0	1762.37*	700	95		3529.51		1.23E-02		
30	0	1845.20	80	121	0.87	3695.23	3.28E-01	1.42E-03	31.7	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Siqma Uncorrected Decay Corr %Error pCi/L %Abn %Eff pCi/L Area Nuclide Energy

RA-226 AC-228	186.21 835.50 911.07	39 29	3.28* 1.75 27.70*	1.799E+00 6.158E-01 5.748E-01	1.048E+01 1.048E+01 Line Not Found 2.879E+00 2.880E+00	406.60 270.71
TH-228	238.63 240.98	274 1478	44.60* 3.95	1.577E+00 1.564E+00	6.165E+00 6.173E+00 3.792E+02 3.797E+02	52.82 10.08
U-235	143.76 163.35 185.71 205.31	39	10.50* 4.70 54.00 4.70	1.906E+00 1.876E+00 1.799E+00 1.718E+00	Line Not Found Line Not Found 6.367E-01 6.367E-01 Line Not Found	406.60

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity

Acquisition date : 27-APR-2006 16:26:31 Sample ID : 11L28413-12

30 Total number of lines in spectrum

Number of unidentified lines 25
Number of lines tentatively identified by NID 5 16.67%

Nuclide Type : natural

Nuclide RA-226 AC-228	1600.00Y 5.75Y	Decay 1.00 1.00	Uncorrected pCi/L 1.048E+01 2.879E+00	pCi/L 1.048E+01 2.880E+00	Decay Corr 2-Sigma Error 4.262E+01 7.797E+00	406.60 270.71	Flags
TH-228 U-235	1.91Y 7.04E+08Y	1.00	6.165E+00 6.367E-01	6.173E+00 6.367E-01	3.260E+00 25.89E-01	52.82 406.60	K

Total Activity : 2.016E+01 2.017E+01

2.017E+01 Grand Total Activity : 2.016E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3 Acquisition date : 27-APR-2006 16:26:31

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	66.43	291	2694	1.00	132.04 148.93	129 145	7 20	5.13E-03 7.13E-03	62.7 43.5	6.91E-01 9.75E-01	
3	74.85	405	2471		153.37	145			15.0	1.05E+00	
3	77.06	1126	2287	0.96	173.10	171	20 7			1.33E+00	
0	86.90	213	2527	1.16		275	9		50.8	1.90E+00	
0	139.51	385	2821	1.27	278.62		9	5.49E-03		1.75E+00	
0	198.24	312	2200	1.42	396.40	392	_		6.8	1.37E+00	
Ο	295.03	2970	1682	1.37	590.49	585	12			1.20E+00	
0	351.72	5092	1275	1.30	704.16	698	12	8.97E-02	4.1	8.04E-01	
0	595.11	242	496	1.85	1192.05	1187		4.26E-03	37.8		
0	608.92	4026	617	1.51	1219.73	1214		7.09E-02	4.2	7.90E-01	
0	665.26	184	382	2.19	1332.63	1328	12	3.24E-03	45.2	7.37E-01	
0	767.90	393	327	1.34	1538.31	1533		6.92E-03	20.6	6.59E-01	
0	785.77	133	419	1.78	1574.13	1565	16		71.3	6.47E-01	
0	805.80	120	264	1.76	1614.24	1610		2.12E-03	53.8	6.34E-01	
0	933.15	190	296	1.81	1869.39	1863		3.34E-03		5.64E-01	
0	965.63	21	514	4.67	1934.44	1931	21	3.63E-04		5.48E-01	
0	1119.71	914	257	1.85	2243.06	2236				4.86E-01	
Ō	1237.33	367	220	1.71	2478.59	2471	18	6.47E-03	23.4	4.48E-01	
0	1280.05	76	136	1.82	2564.14	2560	10	1.35E-03	61.4	4.36E-01	
0	1376.93	273	153	2.27	2758.09	2752	13	4.82E-03	22.2	4.11E-01	
0	1400.62	99	137	2.47	2805.53	2800	13	1.74E-03	52.9	4.05E-01	•
0	1407.55	149	170	1.51	2819.40	2813	15	2.63E-03	41.3	4.04E-01	. Т
0	1508.04	139	130	2.29	3020.55	3014	14	2.44E-03	38.7	3.82E-01	
0	1728.21	133	147	1.14	3461.17	3452	15	2.35E-03	43.1	3.44E-01	
0	1762.37	700	95	2.30	3529.51			1.23E-02		3.39E-01	
0	1845.20	80	121	0.87				1.42E-03	63.5	3.28E-01	•

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum	30	
Number of unidentified lines	25	
Number of lines tentatively identified by NID	5	16.67%

Nuclide Type : natural

Nuclide	Type : natu	ıral	Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide RA-226 AC-228 TH-228	Hlife 1600.00Y 5.75Y 1.91Y	Decay 1.00 1.00 1.00	pCi/L 1.048E+01 2.879E+00 6.165E+00	pCi/L 1.048E+01 2.880E+00 6.173E+00	2-Sigma Error 4.262E+01 7.797E+00 3.260E+00	%Error Flam 406.60 270.71 52.82	gs
	Total Acti	ivity :	1.953E+01	1.954E+01			

Grand Total Activity: 1.953E+01 1.954E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

"E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

1001101					
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
		4 0 COE : 01	7 010E:01	0.000E+00	0.134
RA-226	1.048E+01	4.262E+01	7.812E+01	0.000E+00	0.262
AC-228	2.880E+00	7.797E+00	1.100E+01	0.000E+00	1.060
TH-228	6.173E+00	3.260E+00	5.824E+00	0.0006+00	1.000
Non-Id	entified Nuclides	5			
	Key-Line				
	Activity K.L	. Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L) Ideo	đ	(pCi/L)		
			0 5767.01	0.000E+00	-0.024
BE-7	-6.144E-01	1.571E+01	2.576E+01	0.000E+00	0.009
NA-24	1.163E-01	9.849E+00	1.363E+01		2.285
K-40	9.487E+01	2.226E+01	4.152E+01	0.000E+00	-0.751
CR-51	-1.975E+01	1.648E+01	2.630E+01	0.000E+00 0.000E+00	0.425
MN-54	1.324E+00	1.874E+00	3.113E+00		-0.308
CO-57	-9.587E-01	1.907E+00	3.113E+00	0.000E+00	
CO-58	-4.368E-01	2.179E+00	2.963E+00	0.000E+00	-0.147
FE-59	1.572E+00	3.498E+00	5.815E+00	0.000E+00	0.270
CO-60	-2.036E-01	1.911E+00	3.143E+00	0.000E+00	-0.065
ZN-65	5.574E+01	5.951E+00	1.083E+01	0.000E+00	5.149
SE-75	-1.275E+00	2.600E+00	4.243E+00	0.000E+00	-0.301
SR-85	1.618E+01	2.029E+00	3.765E+00	0.000E+00	4.296
Y-88	1.120E+00	2.319E+00	3.311E+00	0.000E+00	0.338
NB-94	1.737E+00	1.730E+00	2.923E+00	0.000E+00	0.594
NB-95	8.851E+00	2.019E+00	3.646E+00	0.000E+00	2.428
ZR-95	-1.238E+00	3.324E+00	5.073E+00	0.000E+00	-0.244
MO-99	1.442E+01	1.876E+01	3.145E+01	0.000E+00	0.459
RU-103	1.924E+00	1.866E+00	3.122E+00	0.000E+00	0.616
RU-106	3.792E+00	1.667E+01	2.746E+01	0.000E+00	0.138
AG-110m	-1.854E-02	2.024E+00	2.824E+00	0.000E+00	-0.007
SN-113	1.132E+00	2.446E+00	4.091E+00	0.000E+00	0.277
SB-124	2.475E+00	4.069E+00	3.078E+00	0.000E+00	0.804
SB-125	4.601E-01	5.339E+00	8.831E+00	0.000E+00	0.052
TE-129M	-8.541E+00	2.135E+01	3.484E+01	0.000E+00	-0.245
I-131	1.503E-01	2.110E+00	3.519E+00	0.000E+00	0.043
BA-133	5.418E+01	3.783E+00	6.615E+00	0.000E+00	8.191
CS-134	6.835E+01	3.697E+00	6.268E+00	0.000E+00	10.904
CS-136	2.105E+00	1.905E+00	3.171E+00	0.000E+00	0.664
CS-137	3.883E+00	2.299E+00	3.412E+00	0.000E+00	1.138
CE-139	1.933E-01	2.037E+00	3.308E+00	0.000E+00	0.058
BA-140	2.208E-01	6.978E+00	1.138E+01	0.000E+00	0.019
LA-140	-4.947E-01	2.309E+00	3.727E+00	0.000E+00	-0.133
CE-141	2.048E+00	4.043E+00	5.655E+00	0.000E+00	0.362
CE-144	-5.144E+00	1.751E+01	2.429E+01	0.000E+00	-0.212
EU-152	-7.075E+00	7.186E+00	9.601E+00	0.000E+00	-0.737
EU-154	-4.207E+00	4.021E+00	6.525E+00	0.000E+00	-0.645
TH-232	2.879E+00 +	7.793E+00	1.210E+01	0.000E+00	0.238
U-235	-1.438E+01	1.879E+01	2.525E+01	0.000E+00	-0.570
U-238	2.491E+02	2.011E+02	3.444E+02	0.000E+00	0.723
AM-241	5.274E+01	2.512E+01	3.833E+01	0.000E+00	1.376
مشرطه استه کاملان					

```
3.005E+00,WG L28413-12 E
                    ,04/28/2006 08:12,04/26/2006 16:20,
A,11L28413-12
                                             ,09/01/2005 07:43,113L082304
                    ,LIBD
B,11L28413-12
                                                  7.812E+01,,
                                                                    0.134
                    1.048E+01,
                                    4.262E+01,
C, RA-226
           , YES,
                                                                    0.262
                                                   1.100E+01,,
                    2.880E+00,
                                    7.797E+00,
C, AC-228
           , YES,
                                                                    1.060
                                    3.260E+00,
                                                   5.824E+00,,
                    6.173E+00,
C, TH-228
           , YES,
                                                   2.576E+01,,
                                                                   -0.024
                                    1.571E+01,
C, BE-7
           , NO
                   -6.144E-01,
                                                   1.363E+01,,
                                                                    0.009
                    1.163E-01,
                                    9.849E+00,
C, NA-24
           ,NO
                                                                    2.285
                                                   4.152E+01,,
                                    2.226E+01,
C,K-40
           , NO
                    9.487E+01,
                                                                   -0.751
                                                   2.630E+01,,
                    -1.975E+01,
                                    1.648E+01,
           , NO
C, CR-51
                                                   3.113E+00,,
                                                                    0.425
                    1.324E+00,
                                    1.874E+00,
           , NO
C, MN-54
                                                   3.113E+00,,
                                                                   -0.308
                                    1.907E+00,
C, CO-57
           , NO
                    -9.587E-01,
                                                                   -0.147
                                                   2.963E+00,,
                    -4.368E-01,
                                    2.179E+00,
C, CO-58
           , NO
                                                   5.815E+00,,
                                                                    0.270
                                    3.498E+00,
C, FE-59
           , NO
                    1.572E+00,
                                                                   -0.065
                                                   3.143E+00,,
                    -2.036E-01,
                                    1.911E+00,
C, CO-60
            , NO
                                                                    5.149
                                                   1.083E+01,,
                                    5.951E+00,
C, ZN-65
                     5.574E+01,
            , NO
                                                   4.243E+00,,
                                                                   -0.301
                                    2.600E+00,
                    -1.275E+00,
C, SE-75
            , NO
                                                                    4.296
                                                   3.765E+00,,
                                    2.029E+00,
C, SR-85
            ,NO
                     1.618E+01,
                                                                    0.338
                                    2.319E+00,
                                                   3.311E+00,,
            , NO
                     1.120E+00,
C, Y-88
                                                   2.923E+00,,
                                                                    0.594
                     1.737E+00,
                                    1.730E+00,
C, NB-94
            , NO
                                    2.019E+00,
                                                   3.646E+00,,
                                                                    2.428
                     8.851E+00,
C, NB-95
            , NO
                                                   5.073E+00,,
                                                                   -0.244
                                    3.324E+00,
                    -1.238E+00,
C, ZR-95
            , NO
                                                                    0.459
                                                   3.145E+01,,
C, MO-99
            , NO
                     1.442E+01,
                                    1.876E+01,
                                                                    0.616
                                                   3.122E+00,,
                     1.924E+00,
                                    1.866E+00,
            , NO
C, RU-103
                                                                    0.138
                                    1.667E+01,
                                                   2.746E+01,,
                     3.792E+00,
            , NO
C, RU-106
                                                   2.824E+00,,
                                                                   -0.007
                                    2.024E+00,
                    -1.854E-02,
C, AG-110m , NO
                                                   4.091E+00,,
                                                                    0.277
                                    2.446E+00,
                     1.132E+00,
C, SN-113
            , NO
                                                                    0.804
                                                   3.078E+00,,
                     2.475E+00,
                                    4.069E+00,
C,SB-124
            , NO
                                                                    0.052
                                                   8.831E+00,,
                     4.601E-01,
                                    5.339E+00,
C,SB-125
            , NO
                                    2.135E+01,
                                                   3.484E+01,,
                                                                   -0.245
            , NO
                    -8.541E+00,
C, TE-129M
                                                   3.519E+00,,
                                                                     0.043
                                    2.110E+00,
            , NO
                     1.503E-01,
C, I-131
                                                                     8.191
                                                   6.615E+00,,
                                    3.783E+00,
C, BA-133
            , NO
                     5.418E+01,
                                                                   10.904
                                                   6.268E+00,,
            , NO
                     6.835E+01,
                                    3.697E+00,
C, CS-134
                                                                     0.664
                                                   3.171E+00,,
                     2.105E+00,
                                    1.905E+00,
            , NO
C, CS-136
                     3.883E+00,
                                    2.299E+00,
                                                   3.412E+00,,
                                                                     1.138
C, CS-137
            , NO
                                                   3.308E+00,,
                                                                     0.058
                                    2.037E+00,
                     1.933E-01,
C, CE-139
            , NO
                                                   1.138E+01,,
                                                                     0.019
                                    6.978E+00,
            , NO
                     2.208E-01,
C, BA-140
                                                                   -0.133
                                                   3.727E+00,,
                    -4.947E-01,
                                    2.309E+00,
            ,NO
C, LA-140
                                                   5.655E+00,,
                                                                     0.362
                                    4.043E+00,
            , NO
                     2.048E+00,
C, CE-141
                                                   2.429E+01,,
                                                                   -0.212
                                    1.751E+01,
                    -5.144E+00,
C, CE-144
            , NO
                                                   9.601E+00,,
                                                                   -0.737
                                    7.186E+00,
                    -7.075E+00,
C, EU-152
            , NO
                                                                    -0.645
                                                   6.525E+00,,
                    -4.207E+00,
                                    4.021E+00,
C, EU-154
            , NO
                                                                     0.238
                                                   1.210E+01,,
                                    7.793E+00,
C, TH-232
                     2.879E+00,
            , NO
                                                                    -0.570
                                                   2.525E+01,,
            , NO
                                    1.879E+01,
                    -1.438E+01,
C, U-235
                                                   3.444E+02,,
                                                                     0.723
                                    2.011E+02,
                     2.491E+02,
C, U-238
            , NO
                                                   3.833E+01,,
                                                                     1.376
```

2.512E+01,

C, AM-241

,NO,

5.274E+01,

Raw Data Sheet (rawdata) May 04 2006, 01:28 pm

Customer: Exelon

Work Order: <u>L28413</u>

Page: 1

Nuclide: H-3	Project : EX001-3ESPBYRON-06	ESPBYRON-06								Десау &	
Run Analysis		Scavenge Milking	Mount	Count	Counter	Total	Sample dt(min)	Bkg counts d	Bkg dt (min)	Eff. Ingrowth Factor	Analyst
L28413-1 # H-3	a Aliquot		0	29-apr-06	LS5	115	9	6	9	.196	EG
02				10:51							
Activity: 2.3E+00 Error: 1.16E+02	MDC: 1.91E+02 *				1			,	3	ccc	FB
L28413-2 H-3			0	29-apr-06	LSS	д. 4.	0 9	۲.۶	0	707.	2
WG-BYR-042506-JK-04	10 ml			11:54							
Activity: -7.58E+01 Error: 1.07E+02	MDC: 1.85E+02 *		and the state of t						į		
L28413-3 H-3			0	29-apr-06	LS5	96	09	۲.9	09	707.	ਸ
WG-BYR-042506-JK-06	10 ml			12:58							
Activity: -6.73E+01 Error: 1.08E+02	MDC: 1.86E+02 *										
L28413-4 H-3			0	29-apr-06	1.35	113	9	1.9	9	.197	E
WG-BYR-042506-JK-08	10 ml			14:02							
Activity: -4.59E+00 Error: 1.15E+02	MDC: 1.9E+02 *										
L28413-5 H-3			0	29-apr-06	LS5	111	09	۲.9	9	.197	b H
WG-BYR-042506-JK-10	10 ml			15:06							
Activity: -1.15E+01 Error: 1.15E+02	MDC: 1.9E+02 *										
L28413-6 H-3			0	29-apr-06	LS5	109	09	ы 6.	9	7.	P
WG-BYR-042506-JK-12	10 ml			16:10							
Activity: -1.8E+01 Error: 1.12E+02	MDC: 1.87E+02 *										
L28413-7 H-3			0	29-apr-06	LS5	86	09	۲.9	9	.198	B
WG-BYR-042606-JK-14	10 ml			17:14							
Activity: -6.15E+01 Error: 1.1E+02	MDC: 1.89E+02 *		The second secon				-	-			
L28413-8 H-3			0	29-apr-06	LS5	84	09	1.9	09	.202	Dia.
WG-BYR-042606-JK-16	10 ml			18:17							
Activity: -1.12E+02 Error: 1.05E+02	MDC: 1.85E+02 *		A SAN THE REAL PROPERTY OF THE								
L28413-9 H-3			0	29-apr-06	LS5	97	9	1.9	9	.205	EE C
WG-BYR-042606-JK-18	10 ml			19:22							
Activity: -6.37E+01 Error: 1.06E+02	MDC: 1.82E+02 *		the second secon		-					-	
L28413-10 H-3			0	29-apr-06	LS5	176	9	1.9	60	7.	Ħ
WG-BYR-042606-JK-20	10 ml			20:26							
Activity: 2.34E+02 * Error: 1.28E+02	MDC: 1.87E+02						-				
L28413-11 H-3			0	29-apr-06	LS5	228	9	1.9	9	.198	EC
WG-BYR-042606-JK-22	10 ml			21:30							
Activity: 4.32E+02 * Error: 1.4E+02	MDC: 1.89E+02							· ·			
L28413-12 H-3			0	29-apr-06	LS5	141	09	1.9	09	.202	E E
WG-BYR-042606-JK-24	10 ml			22:33							
Activity: 1E+02 Error: 1.19E+02	MDC: 1.85E+02 *										

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28414 Revised 050806

Exelon May 8, 2006

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Edward Steinke Byron Station Exelon Nuclear 4450 N. German Church Road Byron IL 31010

Case Narrative - L28414 EX001-3ESPBYRON-06

05/08/2006 15:07

Sample Receipt

The following samples were received on April 27, 2006 in good condition, unless otherwise noted. Samples WG-BYN-042606-SS-25 preserved was received at pH 3.

Sample L28414-16 was reanalyzed for tritium and the original results were confirmed. The report has been revised and both sets of results are included in this report.

Cross Reference Table

	Cross Rejerence 10	ivic
Client ID	Laboratory ID	Station ID(if applicable)
WG-BYR-042506-SS-01	L28414-1	
WG-BYR-042506-SS-03	L28414-2	
WG-BYR-042506-SS-05	L28414-3	
WG-BYR-042506-SS-07	L28414-4	
WG-BYR-042506-SS-09	L28414-5	
WG-BYR-042506-SS-09	L28414-6	
WG-BYR-042506-SS-09	L28414-7	
WG-BYR-042506-SS-11	L28414-8	
WG-BYR-042506-SS-13	L28414-9	
WG-BYR-042606-SS-15	L28414-10	
WG-BYR-042606-SS-17	L28414-11	
WG-BYR-042606-SS-19	L28414-12	
WG-BYR-042606-SS-21	L28414-13	
WG-BYR-042606-SS-23	L28414-14	
WG-BYR-042606-SS-25	L28414-15	
WG-BYR-042606-SS-27	L28414-16	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
SAMPLE	NA	
SR-90 (FAST)	TBE-2018	EPA 905.0

Case Narrative - L28414 EX001-3ESPBYRON-06

05/08/2006 15:07

Gamma Spectroscopy

Quality Control

Quality control samples were analyzed as WG3909.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-BYR-042606-JK-	L28413-10	WG3909-3
20		

<u>H-3</u>

Confirm High result

Quality Control

Quality control samples were analyzed as WG3910,WG3918,WG3942.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-BYR-042606-JK- 14	L28413-7	WG3910-3
WG-BYR-042506-SS-	L28414-8	WG3918-3
GW-OYS-SW-3-	L28470-1	WG3942-3
042806-JAS-022		

2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28414 EX001-3ESPBYRON-06

05/08/2006 15:07

SR-90

Quality Control

Quality control samples were analyzed as WG3931.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

Sample Receipt

L28414 6 of 44

04/27/06 14:37

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR08067

Client: Exelon Project #: EX001-3ESPBYRON-06

LIMS #: L28414

Initiated By: PMARSHALL

04/27/06 Receive Date: Init Date: 04/27/06

Notification of Variance

Person Notified:

Contacted By: R. Charles

Kalhy-Shaw 4/27/06 cemail Notify Date: Notify Method: Notify Comment:

Client Response

Person Responding: Response Date: Response Method: Response Comment

> Yes No NA Comment Criteria

1	L	Shipping container custody seals present and intact.	Y	
	2	Sample container custody seals present and intact.	NA	
	3	Sample containers received in good condition	Y	
	4	Chain of custody received with samples	Y	
	5	All samples listed on chain of custody received	Y	
	6	Sample container labels present and legible.	Y	
	7	Information on container labels correspond with chain of custody	Y	
	8	Sample(s) properly preserved and in appropriate container(s) WG-BYN-042606-SS-25 WG-BYN-042606-SS-27	N pH 3 pH 3	
	9	Other (Describe)	NA	

CONESTOG	CONESTOGA-ROVERS & ASSOCIATES SHIPPED TO	1 '	Ĺ	しつとれてつ
Chic		Peledyne	Dawn Engineering	2.5
1	(773)380-9933 phone REFERENCE NUMBER: (773)380-6421 fax	•	PROJECT NAME:	
CHAIR	CHAIN-OF-CUSTODY RECORD (5136 2)		1	
SAMPLER'S SIGNATURE:	PRINTED David	OF INERS	PARAMETERS	REMARKS
SEQ. DATE	TIME SAMPLE IDENTIFICATION No.	SAMPLE 22 MATRIX CO	To so the second	
4/35/06	040 WG. BIN-042506 55-01	exita X		
	50.	× ×		
	40 CG. ByN-044506 SS.C.1		1/4/ WS	()
	WG BYN OHASON	X >		
	40 656 BYN 0425 06 35 13	× ×		
4 126 16.	RB. Byn. Olabob.		×	
-	WG BYN OYDER SS	Water 17	×>	
9	6.6. BY M. O42606-55-		X	
	WG BYN CHARGE SO	\\		
	523	1	×	
->	150 WG - BYN - OY 2606-55-37	> x		
	\vdash	a		
	TOTAL NUMBER OF CONTAINERS		100	DATE: 4/26/56
RELINQUISHED BY:	1. MNIMI LOLMES TIME: 19	04/26/66 RECEIVED BY: 15-4/5 (2)	" Therish (. Hosur	
RELINQUISMED, BX	10011	4/26/06 RECEIVED BY:	.X:	DATE: TIME:
2 //4/1	Color James	1430	NY.	DATE:
RELINGUISIBLE BY	Y: DAIE: TIME:	RECEIVED BY:		TIME:
METHOD OF SHIPMENT:	HIPMENT: FOR	AIR BILL No.	LNO. 85/383808581	
10/15	AS >	M:	RECEIVED FOR LABORATORY BY:	7 7 7
>	y Copy	Tyran	DATE: 4/27/06 TIME: 1000	X000
enrod		rang spendi	1 1	
1001-00(SOURCE)GN-CO004	E)GN-C0004			

1001-00(SOURCE)GN-CO004

Charles, Rebecca

From:

Charles, Rebecca

Sent:

Thursday, April 27, 2006 3:44 PM

To:

'Shaw, Kathy'; 'edward.steinke@exeloncorp.com'

Subject: acknowledgements

Please note the Sample receipt variance report. The lids were cracked on several containers and the pH of the cubitainers was 3.

Rebecca Charles Teledyne Brown Engineering Project Manager (865) 934-0379 (865) 934-0396 (fax)

This email and any of its attachments may contain Teledyne Brown Engineering proprietary information, which is privileged, confidential, or subject to copyright belong to Teledyne Brown Engineering. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy and printout of this e-mail. Thank You

4/27/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

ACKNOWLEDGEMENT This is not an invoice

April 27, 2006

Edward Steinke
Byron Station
Exelon Nuclear
4450 N. German Church Road
Byron, IL 31010

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on April 27, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by May 04, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID:

EX001-3ESPBYRON-06

P.O. #: 5

TBE

Release #:

Contract#: 00411203

Edward Steinke, FAX#:815-234-3301, edward.steinke@exeloncorp.com

Kathy Shaw, FAX#:860-747-1900, kshaw@craworld.com

Client ID/ Station	Laboratory ID Analysis	Vol/Units Start Collect End Collect Price Date/Time Date/Time
WG-BYR-042506-SS-01	L28414-1	04/25/06:0950
WG	H-3	108.00
WG-BYR-042506-SS-03	L28414-2	04/25/06:1250
WG	H-3	108.00
WG-BYR-042506-SS-05	L28414-3	04/25/06:1400
WG	H-3	108.00
WG-BYR-042506-SS-07	L28414-4	04/25/06:1425
WG	H-3	108.00
WG-BYR-042506-SS-09	L28414-5	04/25/06:1550
WG	H-3	108.00
WG-BYR-042506-SS-09	L28414-6	04/25/06:1550
MS WG	Н-3	108.00

Client ID/ Station		Vol/Units Start Collect End Collect Price Date/Time Date/Time
WG-BYR-042506-SS-09	L28414-7	04/25/06:1550
WG MSD	H-3	108.00
WG-BYR-042506-SS-11	L28414-8	04/26/06:1710
WG	H-3	108.00
WG-BYR-042506-SS-13	L28414-9	04/26/06:1825
WG	H-3	108.00
WG-BYR-042606-SS-15	L28414-10	04/26/06:0725
WG	H-3	108.00
WG-BYR-042606-SS-17	L28414-11	04/26/06:0835
WG	H-3	108.00
WG-BYR-042606-SS-19	L28414-12	04/26/06:0835
WG	H-3	108.00
WG-BYR-042606-SS-21	L28414-13	04/26/06:1030
WG	H-3	108.00
WG-BYR-042606-SS-23	L28414-14	04/26/06:1055
WG	H-3	108.00
WG-BYR-042606-SS-25	L28414-15	04/26/06:1309
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00
WG-BYR-042606-SS-27	L28414-16	04/26/06:1510
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00

End of document

Internal Chain of Custody

Teledyne Brown Engineering Internal Chain of Custody

****************** Containernum 1 Sample # L28414-1

Analyst Prod

H-3

Relinquish Date Relinquish By

Received By 099999

Sample Custodian 04/27/2006 00:00

Containernum 1 Sample # L28414-2

Analyst Prod H-3

Received By Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Containernum 1 Sample # L28414-3

Analyst Prod

H-3Received By Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Containernum 1 Sample # L28414-4

Analyst Prod

Received By Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Containernum 1 Sample # L28414-5

Analyst Prod H-3

Received By Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Containernum 1 Sample # L28414-6

Analyst Prod

SAMPLE

Received By Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Containernum 1 Sample # L28414-7

Analyst Prod

SAMPLE

H-3

Received By Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Containernum 1 Sample # L28414-8

Analyst Prod

EJ

Received By

Relinquish Date Relinquish By

Sample Custodian 099999 04/27/2006 00:00

Erin Jenkins 029964 Sample Custodian 05/01/2006 15:12 099999

Sample Custodian 099999 Erin Jenkins 029964 05/02/2006 14:11

Sample Custodian

099999

05/02/2006 14:11

029964

Teledyne Brown Engineering

Internal Chain of Custody ************************* Containernum 1 Sample # L28414-9 Analyst Prod EJ H-3Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 029964 Erin Jenkins Sample Custodian 05/01/2006 15:12 099999 Sample Custodian 099999 Erin Jenkins 05/02/2006 14:11 029964 Containernum 1 Sample # L28414-10 Analyst Prod H-3ΕJ Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/27/2006 00:00 Erin Jenkins Sample Custodian 029964 05/01/2006 15:12 099999 Sample Custodian 099999 Erin Jenkins 029964 05/02/2006 14:11 Containernum 1 Sample # L28414-11 Analyst Prod. H-3Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 Erin Jenkins 029964 Sample Custodian 099999 05/01/2006 15:12 099999 Sample Custodian Erin Jenkins 029964 05/02/2006 14:11 ************************ Containernum 1 Sample # L28414-12 Analyst Prod H-3 Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 029964 Erin Jenkins Sample Custodian 099999 05/01/2006 15:12 099999 Sample Custodian Erin Jenkins 05/02/2006 14:11 029964 ************************* Containernum 1 Sample # L28414-13 Analyst Prod EJ H-3Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 029964 Erin Jenkins Sample Custodian 05/01/2006 15:12 099999 Sample Custodian 099999 Erin Jenkins 05/02/2006 14:11 029964 ************************* Containernum 1 Sample # L28414-14 Analyst Prod H-3Received By Relinquish Date Relinquish By Sample Custodian 099999 04/27/2006 00:00 029964 Erin Jenkins Sample Custodian 05/01/2006 15:12 099999

Erin Jenkins

04/27/2006 00:00

Teledyne Brown Engineering
Internal Chain of Custody

Page: L28414 14 of 44

		nternal Chain of Custody		
******	******	**************************************	******	****
Sample # L28414-15	Analy			
Prod H-3	EJ	5.0		
GELI	D W			
SR-90 (FAST)	GK			
Relinquish Date Rel	inquish By		Received By	a l Guntadina
04/27/2006 00:00			099999	Sample Custodian
04/27/2006 13:17	030854	Donna Webb	029858	Marty Webb
04/27/2006 13:17	099999	Sample Custodian	030854	Donna Webb
04/28/2006 09:59	029858	Marty Webb	030854	Donna Webb
04/28/2006 09:59	030854	Donna Webb	099999	Sample Custodian
05/01/2006 15:12	099999	Sample Custodian	029964	Erin Jenkins
05/02/2006 14:11	029964	Erin Jenkins	099999	Sample Custodian
**************************************	*****	**************************************	******	****
Prod	Anal	yst		
н-3	EJ			
GELI	DW			
SR-90 (FAST)	GK		Daneirrad Pre	
Relinquish Date Re	linquish By		Received By 099999	Sample Custodian
04/27/2006 00:00		Sample Custodian	029964	Erin Jenkins
05/01/2006 15:12	099999	Erin Jenkins	099999	Sample Custodian
05/02/2006 14:11	029964	***********	-	
**************************************		Containernum I		
Prod	Ana] EJ	lyst		
H-3	DW			
GELI	GK			
SR-90 (FAST)			Received By	
Relinquish Date Re 04/27/2006 00:00	linduisu by		099999	Sample Custodian
04/27/2006 00:00	030854	Donna Webb	029858	Marty Webb
04/27/2006 13:17	099999	Sample Custodian	030854	Donna Webb
04/28/2006 09:59	029858	Marty Webb	030854	Donna Webb
04/28/2006 09:59	030854	Donna Webb	099999	Sample Custodian
	099999	Sample Custodian	029964	Erin Jenkins
05/01/2006 15:12	029964	Erin Jenkins	099999	Sample Custodian
05/02/2006 14:11		****	****	*****
Sample # L28414-16	5	Containernum 2		
Prod H-3	Ana EJ	lyst		
GELI	D W			
SR-90 (FAST)	GK			
Relinquish Date R	elinguish Bv		Received By	
04/27/2006 00:00	<u>.</u> <u>.</u> .		099999	Sample Custodian

 $_{\text{Page:}}$ L28414₄15 of 44

05/04/06 13:21

Teledyne Brown Engineering Internal Chain of Custody

Sample # L28414-16

Containernum 2

Relinquish Date

05/01/2006 15:12

099999

Sample Custodian

Received By

029964

Erin Jenkins

029964

099999

Sample Custodian

05/02/2006 14:11

Erin Jenkins

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28414

		L28414		
*****	*****		*****	********
L28414-1	WG	WG-BYR-042506-SS-01		
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	н-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
******	****	******	*****	*******
L28414-2	WG	WG-BYR-042506-SS-03		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	н-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
*****	*****	*****	*****	******
L28414-3	WG	WG-BYR-042506-SS-05		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
*****	*****	******	*****	*******
L28414-4	WG	WG-BYR-042506-SS-07		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		KOJ	04/29/06
*****	*****	******	*****	********
L28414-5	WG	WG-BYR-042506-SS-09		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	04/28/06
Count Room	H-3		КОЈ	04/29/06
	*****	******	*****	*******
L28414-6	WG	WG-BYR-042506-SS-09		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	SAMPL	E		
Count Room	SAMPL	E		
*****	****	******	*****	******
L28414-7	WG	WG-BYR-042506-SS-09		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	SAMPL	E		
Count Room	SAMPL			
			*****	*******
L28414-8	WG	WG-BYR-042506-SS-11		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	05/02/06
Count Room	н-3		KOJ	05/03/06
304110 1100111				

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28414

		L28414		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
*****			*****	*******
L28414-9	WG	WG-BYR-042506-SS-13		5.
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	н-3		EJ	05/02/06
Count Room	H-3		KOJ	05/03/06
*****			*****	*********
L28414-10	WG	WG-BYR-042606-SS-15		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	н-3		EJ	05/02/06
Count Room	H-3		KOJ	05/03/06
*****	*****	*****	****	*********
L28414-11	WG	WG-BYR-042606-SS-17		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	05/02/06
Count Room	н-3		KOJ	05/03/06
*****	****	****	*****	*******
L28414-12	WG	WG-BYR-042606-SS-19		
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3		EJ	05/02/06
Count Room	н-3		KOJ	05/03/06
****	*****	*****	*****	********
L28414-13	WG	WG-BYR-042606-SS-21		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	н-3		EJ	05/02/06
Count Room	н-3		KOJ	05/03/06
*****	*****	*****	*****	********
L28414-14	WG	WG-BYR-042606-SS-23		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/27/06
Aliquot	н-3		EJ	05/02/06
Count Room	H-3		KOJ	05/03/06
**********		******	*****	*****
L28414-15	WG	WG-BYR-042606-SS-25		
Process step	Prod	WO Date of the second	Analyst	Date
Login	1100		RCHARLES	04/27/06
Aliquot	GELI		DM	04/27/06
Aliquot	SR-90	(FAST)	GK	05/01/06
_	H-3	(IADI)	EJ	05/02/06
Aliquot			MVW	04/27/06
Count Room	GELI u_3		KOJ	05/03/06
Count Room	H-3	(F) CT)	KOJ	05/03/06
Count Room	SR-90			*******
L28414-16	WG	WG-BYR-042606-SS-27	•	

Page 3 of 3

05/04/06

Internal Chain of Custody Supplemental Sheet

L28414

L28414-16	WG	WG-BYR-042606-SS-27		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	GELI		DW	04/27/06
Aliquot	SR-90	(FAST)	GK	05/01/06
Aliquot	н-3	,	EJ	05/02/06
Count Room	GELI		MVW	04/27/06
	H-3		KOJ	05/03/06
Count Room		/ E7 CE)	KOJ	05/03/06
Count Room	SR-90	(FAST)		*****
******	****			
L28414-	WG	WG-BYR-042606-SS-27		
16R1			n 1 -	Dato
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/27/06
Aliquot	H-3			

Analytical Results and QC Summary

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28414

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

(MG) (MG) (MG) (MG) Flag Values Flag Values Flag Values Flag Values \supset \supset \supset Units Count Units Count Units Count Units Count Σ Σ Σ Matrix: Ground Water Matrix: Ground Water Matrix: Ground Water Ground Water Count Time Count Time Count Time Count Time 9 9 04/29/06 04/29/06 04/29/06 Count Count Count Date Date Date Count Date Volume: Matrix: Volume: Volume % Moisture: % Moisture: % Moisture: % Moisture: Reference Reference Reference Reference Date Date Date Aliquot Units Aliquot Aliquot Aliquot Units Units Units Ē Ē Ē Collect Start: 04/25/2006 14:25 Collect Start: 04/25/2006 14:00 Collect Start: 04/25/2006 09:50 Collect Start: 04/25/2006 12:50 Aliquot Volume Volume Aliquot Volume Volume Aliquot Aliquot Receive Date: 04/27/2006 Receive Date: 04/27/2006 Receive Date: 04/27/2006 Receive Date: 04/27/2006 Collect Stop: Collect Stop: Collect Stop: Run Run Collect Stop: Run Run # Units Units Units Units pCi/L DCi/L 1.76E+02 1.76E+02 1.75E+02 MDC MDC MDC MDC 1.13E+02 Uncertainty 1.13E+02 1.07E+02 Uncertainty Uncertainty Uncertainty 2 Sigma 2 Sigma 2 Sigma -2.25E+00 9.21E+01 1.03E+02 Activity Conc Activity Conc Activity Conc Activity WG-BYR-042506-SS-05 WG-BYR-042506-SS-07 WG-BYR-042506-SS-03 WG-BYR-042506-SS-01 SOP# 2010 2010 L28414-4 L28414-3 L28414-1 L28414-2 Sample ID: Sample ID: LIMS Number: Sample ID: LIMS Number: Sample ID: LIMS Number: Station: LIMS Number: Station: Description: Description: Station: Description: Description: Radionuclide Radionuclide Radionuclide H-3 H-3

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

Activity concentration exceeds MDC and 3 signa, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification

Low recovery

High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

Σ

9

04/29/06

Ē

10

pCi/L

1.75E+02

1.08E+02

2.90E+01

2 Sigma

Conc

SOP# 2010

Radionuclide

H-3

#

MDC - Minimum Detectable Concentration

9

Jo

Page 1

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28414

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

(WG) (MG) (MG) Flag Values Flag Values Flag Values \Box \supset Units Units Units Count Count Count Σ Matrix: Ground Water Matrix: Ground Water Ground Water Count Time Count Time Count Time 9 04/29/06 Count Count Date Date Count Date Matrix: Volume: Volume: Volume: % Moisture: % Moisture: % Moisture: Reference Reference Reference Date Date Aliquot Units Aliquot Units Aliquot Units 핍 Collect Start: 04/25/2006 15:50 Collect Start: 04/25/2006 15:50 Collect Start: 04/25/2006 15:50 Aliquot Volume Volume Volume Aliquot Aliquot Receive Date: 04/27/2006 Receive Date: 04/27/2006 Receive Date: 04/27/2006 Collect Stop: Collect Stop: Collect Stop: Run # Run Run # # Units Units Units pCi/L 1.76E+02 MDC MDC MDC Uncertainty 1.17E+02 Uncertainty Uncertainty 2 Sigma 2 Sigma 2 Sigma 1.58E+02 Activity Conc Activity Conc Activity Conc MS cancelled per CRA WG-BYR-042506-SS-09 WG-BYR-042506-SS-09 WG-BYR-042506-SS-09 2010 SOP# SOP# SOP# L28414-6 L28414-7 L28414-5 Sample ID: Sample ID: LIMS Number: Sample ID: LIMS Number: LIMS Number: Station: Description: Station: Station: Description: Description: Radionuclide Radionuclide Radionuclide Comment: SAMPLE

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

9 oę

7

Page

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Compound/Analyte not detected or less than 3 sigma

Flag Values

MSD cancelled per CRA

Comment:

SAMPLE

Bolded text indicates reportable value.

Low recovery

High Spec

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28414

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

(MG) (MG) (MG) (MG) Flag Values Flag Values Flag Values Flag Values \supset \supset Units Units Count Units Count Count Count ∑ Σ Ξ Matrix: Ground Water Matrix: Ground Water Ground Water Ground Water Time Count Time Count Count Time Count 9 9 9 05/03/06 05/03/06 05/03/06 Count Count Count Count Date Date Date Matrix: Volume: Matrix: % Moisture: Volume: Volume: % Moisture: % Moisture: % Moisture: Reference Reference Reference Reference Date Date Aliquot Units Aliquot Aliquot Aliquot Units Units Ē E Collect Start: 04/26/2006 07:25 Collect Start: 04/26/2006 08:35 Collect Start: 04/26/2006 18:25 Collect Start: 04/26/2006 17:10 Aliquot Volume Aliquot Volume Aliquot Volume Aliquot Volume Receive Date: 04/27/2006 Receive Date: 04/27/2006 Receive Date: 04/27/2006 Receive Date: 04/27/2006 Collect Stop: Collect Stop: Collect Stop: Collect Stop: Run Run Run Run # # # Units Units Units pCi/L DCi/L pCi/L 1.65E+02 1.62E+02 1.66E+02 MDC MDC MDC 1.00E+02 1.01E+02 Uncertainty 1.04E+02 Uncertainty Uncertainty Uncertainty 2 Sigma 2 Sigma -2.10E+00 5.86E+01 2.05E+01 Activity Activity Conc Activity Conc Activity Conc WG-BYR-042606-SS-15 WG-BYR-042606-SS-17 Sample ID: WG-BYR-042506-SS-13 WG-BYR-042506-SS-11 SOP# #dOS SOP# L28414-10 L28414-11 L28414-8 L28414-9 Sample ID: Sample ID: LIMS Number: Sample ID: LIMS Number: LIMS Number: Description: LIMS Number: Station: Station: Station Station Description: Description: Description: Radionuclide Radionuclide Radionuclide H-3 H-3

**** Results are reported on an as received basis No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum unless otherwise noted

 \Box

Σ

9

05/03/06

Units

Time

Date

Units

Units

MDC

2 Sigma

Conc

SOP#

Radionuclide

H-3

pCi/L

1.65E+02

1.01E+02

8.35E+00

Ξ

MDC - Minimum Detectable Concentration

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification jo Page 3

9

Bolded text indicates reportable value.

Low recovery

High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28414

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Ground Water Matrix: Volume: % Moisture: Collect Start: 04/26/2006 08:35 Receive Date: 04/27/2006 Collect Stop: WG-BYR-042606-SS-19

Sample ID:

Kathy Shaw

Station: Description:

(WG)

(MG) (MG) Flag Values Flag Values Flag Values \supset Units Units Count Units Count Σ \geq Matrix: Ground Water Matrix: Ground Water Count Count Count Time Time Time 9 9 90/80/50 05/03/06 05/03/06 Count Count Count Date Date Date Volume: Volume: % Moisture: % Moisture: Reference Reference Reference Date Date Date Aliquot Units Aliquot Aliquot Units Units Ē Ē Collect Start: 04/26/2006 10:30 Collect Start: 04/26/2006 10:55 Aliquot Volume Aliquot Volume Volume Aliquot Receive Date: 04/27/2006 Receive Date: 04/27/2006 Collect Stop: Collect Stop: Run # Run # Run # Units Units Units pCi/L pCi/L 1.64E+02 1.65E+02 MDC MDC MDC 1.02E+02 Uncertainty Uncertainty Uncertainty 9.92E+01 2 Sigma -4.14E+00 1.88E+01 Activity Conc Conc Activity Conc Activity WG-BYR-042606-SS-23 WG-BYR-042606-SS-21 SOP# SOP# SOP# L28414-14 L28414-12 L28414-13 Sample ID: Sample ID: LIMS Number: LIMS Number: LIMS Number: Station: Description: Station: Description: Radionuclide Radionuclide Radionuclide H-3 H-3

Σ

9

Ξ

10

pCi/L

1.61E+02

1.02E+02

6.53E+01

2010

H-3

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

9 Jo

Page 4

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery || High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28414

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Sample ID: WG-BYR-042606-SS-25	YR-04260	6-SS-25	CONTRACTOR OF THE CONTRACTOR O	A CONTRACTOR OF THE CONTRACTOR	Collect	Start: 04	Collect Start: 04/26/2006 13:09	60			Ground Water	to to		(MG)
Station:					Collect Stop:	t Stop:				Volume:				
Description:					Receive	Date: 04	Receive Date: 04/27/2006		W%	% Moisture:				
LIMS Number: L28414-15	4-15													
Radionuclide	#dos	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	lues
H-3	2010	-3.95E+01	9.71E+01	1.65E+02	pCi/L		10	m		90/60/50	09	M	U	
TOTALSR	2018	.00E+00	5.79E-01	9.55E-01	pCi/L		450	Ē	04/26/06 13:09 05/03/06	05/03/06	200	M	Ū	
MN-54	2007	1.41E+00	2.07E+00	2.94E+00	pCi/L		3068.35	m	04/26/06 13:09 04/27/06	04/27/06	26971	Sec	n	No
CO-58	2007	2.87E+00	2.01E+00	2.94E+00	pCi/L		3068.35	lm	04/26/06 13:09 04/27/06	04/27/06	56971	Sec	ם	No
FE-59	2007	-7.55E-02	3.29E+00	5.41E+00	pCi/L		3068.35	lm	04/26/06 13:09 04/27/06	04/27/06	56971	Sec	ח	No
09-03	2007	1.19E+00	1.73E+00	2.92E+00	pCi/L		3068.35	III	04/26/06 13:09	04/27/06	56971	Sec	D	No
ZN-65	2007	7.53E+01	5.75E+00	1.07E+01	pCi/L		3068.35	lm	04/26/06 13:09 04/27/06	04/27/06	56971	Sec	#D	No
NB-95	2007	1.81E+01	2.25E+00	3.82E+00	pCi/L		3068.35	ш	04/26/06 13:09	04/27/06	56971	Sec	1 *D	No
ZR-95	2007	4.00E-02	3.09E+00	4.84E+00	pCi/L		3068.35	m	04/26/06 13:09	04/27/06	56971	Sec	ב	No
CS-134	2007	6.32E+01	3.09E+00	5.39E+00	pCi/L		3068.35	m	04/26/06 13:09	04/27/06	56971	Sec	* D	No
CS-137	2007	3.85E+00	2.33E+00	3.32E+00	pCi/L		3068.35	ш	04/26/06 13:09	04/27/06	56971	Sec	*>	No
BA-140	2007	5.18E+00	6.36E+00	1.07E+01	pCi/L		3068.35	ml	04/26/06 13:09	04/27/06	56971	Sec	D	No
LA-140	2007	2.17E+00	2.40E+00	3.68E+00	pCi/L		3068.35	ml	04/26/06 13:09 04/27/06	04/27/06	56971	Sec	n	No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

9 oę

Page 5

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification High recovery 11 11 High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28414

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Sample ID: W	Sample ID: WG-BYR-042606-SS-27	6-SS-27			Collec	t Start: 0	Collect Start: 04/26/2006 15:10	10		Matrix: Ground Water	ound Wate	er.		(WG)
Station:					Collec	Collect Stop:			F	Volume:				
Description:					Receive	3 Date: 0	Receive Date: 04/27/2006		% W	% Moisture:				
LIMS Number: L28414-16	28414-16													
		Activity	Uncertainty		;	Run	Aliquot	Aliquot	Reference	Count	Count	Count	Flog Volues	39
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Ime	Units	riag van	3
H-3	2010	2.34E+03	2.82E+02	2.25E+02	pCi/L		10	TIII		90/20/50	29.96	M	+ High	
H-3	2010	2.34E+03	2.82E+02	2.26E+02	pCi/L	R1	10	lm		90/80/50	30.05	M	+ High	
TOTAL SR	2018	-6.23E-02	5.65E-01	9.37E-01	pCi/L		450	m	04/26/06 15:10	90/20/50	200	M	n	
MN-54	2007	-9.10E-01	1.61E+00	2.61E+00	pCi/L		3012.55	m	04/26/06 15:10	04/27/06	56683	Sec	n	No
CO-58	2007	4.31E-01	1.58E+00	2.62E+00	pCi/L		3012.55	m	04/26/06 15:10 04/27/06	04/27/06	56683	Sec	n	No
FE-59	2007	2.00E+00	3.05E+00	5.15E+00	pCi/L		3012.55	m	04/26/06 15:10 04/27/06	04/27/06	56683	Sec	n	No
09-03	2007	5.26E-01	1.63E+00	2.71E+00	pCi/L		3012.55	ш	04/26/06 15:10	04/27/06	56683	Sec	Ŋ	No
ZN-65	2007	7.61E+00	4.11E+00	6.23E+00	pCi/L		3012.55	m	04/26/06 15:10	04/27/06	56683	Sec	*^	No
NB-95	2007	1.49E+00	1.60E+00	2.72E+00	pCi/L		3012.55	m	04/26/06 15:10 04/27/06	04/27/06	56683	Sec	n	No
ZR-95	2007	-4.81E+00	2.82E+00	4.43E+00	pCi/L		3012.55	m	04/26/06 15:10	04/27/06	56683	Sec	ח	No No
CS-134	2007	1.01E+01	3.81E+00	3.30E+00	pCi/L		3012.55	m	04/26/06 15:10	04/27/06	56683	Sec	*n	No
CS-137	2007	-5.18E-01	2.00E+00	2.97E+00	pCi/L		3012.55	m	04/26/06 15:10	04/27/06	56683	Sec	ם	No
BA-140	2007	1.77E+00	6.09E+00	1.01E+01	pCi/L		3012.55	ш	04/26/06 15:10	04/27/06	56683	Sec	Ω	No No
LA-140	2007	4.76E-01	1.96E+00	3.26E+00	pCi/L		3012.55	ml	04/26/06 15:10	04/27/06	56683	Sec	Ŋ	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

9 $_{\rm jo}$

Page 6

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Low recovery High recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values U =

QC Results Summary

QC Summary Report 5/8/2006

3:15:11PM

L28414 for

BROWN ENGINEERING
A Teledyne Technologies Company

				H-3 Mothod Blank Summary	Vaen				
TBE Sample ID WG3910-1	Radionuclide H-3	Matrix WO	Count Date/Time 04/29/2006 1:43	METHOR DIAMS SHIM	Blank Result 1.780E+00 	Units pCi/Total		Qual	Qualifier P/F U P
WG3918-1		MO	05/03/2006 5:55		< 1.670E+00	pCi/Total			U P
WG3942-1		WO	05/05/2006 20:41		< 1.630E+00	pCi/Total			U P
				LCS Sample Summary	lary				
TBE Sample ID WG3910-2	Radionuclide H-3	<u>Matrix</u> WO	Count Date/Time 04/29/2006 2:47	Spike Value 5.05E+002	LCS Result 4.900E+02	Units Speci/Total	Spike Recovery 97.1	Range Qualifier P/F 70-130 + P	<u>ifier P/F</u> + P
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000 WG3918-2	706-1 -002 -000	WO	05/03/2006 6:59	5.05E+002	5.050E+02	pCi/Total	100.0	70-130	<u>+</u>
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000 WG3942-2	706-1 +002 -000	OW	05/05/2006 23:00	5.05E+002	4.850E+02	pCi/Total	96.1	70-130	-
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000	706-1 +002 -000								
+ Positive U Compo * < 5 tim ** Nuclide *** Spiking P Pass F Fail	Positive Result Compound/analyte was analyzed, pea < 5 times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Fail Not evaluated	yzed, peak 1 evaluated rity	not identified and/or n	Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected Spiking level < 5 times activity Pass Fail Not evaluated				Page:	- H20414 27 OI

7

Page:

QC Summary Report

3:15:11PM

L28414

for

H-3

BROWN ENGINEERING A Teledyne Technologies Company

				Duplicate Summary	y					
TBE Sample ID Rac WG3910-3 H-3 L28413-7	lionuclide	<u>Matrix</u> WG	Count Date/Time 04/29/2006 2:59	Original Result < 1.890E+02	<u>DUP Result</u> < 1.770E+02	Units pCi/L	RPD	Range Qualifier <30 **	**	NE NE
WG3942-3 L28470-1	r	WG	05/06/2006 1:18	< 1.610E+02	< 1.650E+02	pCi/L		<30	* *	NE
WG3918-3 L28414-8		ЭM	05/03/2006 7:09	< 1.650E+02	< 1.660E+02	pCi/L		<30	* *	NE

	WG3918	CLIENTID	WG-BYR-042506-SS-11	WG-BYR-042506-SS-13	WG-BYR-042606-SS-15	WG-BYR-042606-SS-17	WG-BYR-042606-SS-19	WG-BYR-042606-SS-21	WG-BYR-042606-SS-23	WG-BYR-042606-SS-25	WG-BYR-042606-SS-27
L28414 H-3	Associated Samples for	SAMPLENUM	L28414-8	L28414-9	L28414-10	L28414-11	L28414-12	L28414-13	L28414-14	L28414-15	L28414-16

Spiking level < 5 times activity

Fail Not evaluated Pass

+ > * *

QC Summary Report

3:15:11PM

L28414

for

BROWN ENGINEERING A Teledyne Technologies Company

SR-90

Method Blank Summary

Blank Result < 6.130E-01

> 05/03/2006 21:10 Count Date/Time

Matrix WO

Radionuclide

TBE Sample ID

WG3931-1

SR-90

pCi/Total Units

Δ,

Qualifier P/F

Radionuclide TBE Sample ID WG3931-2

SR-90

Spike ID: 90SR-011905 Spike conc: 2.34E+002

Spike Vol: 2.50E-001

05/03/2006 21:10 Count Date/Time <u>Matrix</u> WO

Spike Value 5.84E+001

Units

87.2

Range Qualifier P/F

LCS Sample Summary

LCS Result 5.090E+01

70-130

Spike Recovery

pCi/Total

WG-BYR-042606-SS-25

CLIENTID

WG3931

Associated Samples for

SAMPLENUM

L28414-15 L28414-16

SR-90 (FAST)

L28414

WG-BYR-042606-SS-27

m

Page:

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Positive Result

+ > * *

Spiking level < 5 times activity Nuclide not detected

Fail Not evaluated Pass

P **

Page:

QC Summary Report

for

5/8/2006

3:15:11PM

L28414

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

TOTAL SR

Duplicate Summary

Original Result < 1.040E+00

Units

RPD

Range Qualifier P/F <30 ** NE

pCi/L

< 1.890E+00 **DUP Result**

05/04/2006 14:20 Count Date/Time

Matrix

Radionuclide

TBE Sample ID

WG3931-3 L28413-10

TOTAL SR

WG

WG3931

Associated Samples for

SAMPLENUM

L28414-15 L28414-16

SR-90 (FAST)

L28414

CLIENTID

WG-BYR-042606-SS-25

WG-BYR-042606-SS-27

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

Spiking level < 5 times activity

Fail Not evaluated Pass

+ > * * * P F NE Sec. Review:

Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 08:17:34.95 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 27-APR-2006 16:27:21.21

LIMS No., Customer Name, Client ID: WG L28414-15 EXELON BYRON

: 13L28414-15 Sample ID

Smple Date: 26-APR-2006 13:09:00.

Sample Type : WG

Geometry : 133L082404 BKGFILE : 13BG041406MT

Quantity : 3.06840E+00 L

End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 15:49:30.77 MDA Constant : 0.00 Library Used: LIBD

MDA	Cons	tant : 0.0	10 1111	orary or						
Pk	It	Energy	Area	Bkgnd	FWHM (Channel		Cts/Sec ^s		
_		16 10+	173	2677	1.45	92.95	1.58E-01 3.	.04E-03 !	53.1 8.69E-01	
1	1	46.48*		4524	1.03	126.87	7.13E-01 1.	.23E-031	74.8 1.40E+00	
2	1	63.45*	70	3593	0.83	149.83	1.17E+00 1	.74E-02	10.4 9.56E+00	
3	3	74.94*	989		0.82	154.27	1 258100 4	69E-02	3.9	
2 3 4 5 6	3	77.17*	2675	2934	1.54	169.54	1 51E+00 2	.08E-04*	**** 1.74E+00	
5	6	84.81*	12	4054		174.38	1.59E+00 2	.23E-02	7.4	
6	6	87.23*	1270	2675	0.99		1.66E+00 1	08E-02	13.9	
7 8	6	89.80	613	2640	0.95	179.52	1.74E+00 9	42E-041	79.5	
8	6	92.66*	54	2613	1.07	185.23	1.746400 7	38E-03	22.1 2.54E+00	
9	1	139.85*	420	3043	0.83	279.54	2.2/5+00 /	76F-03	75.8 1.39E+00	
10	1	185.71*	157	3789	1.12	371.19	2.18E+00 Z	.705 03	30.8 1.93E+00	
11		198.34*	309	2823	0.96	396.42	2.IZE+00 3	.4ZE-03	92.0 1.72E+00	
12		238.74*	101	2419	1.28	477.18	1.94日+00 工	. / / 5 - 0 3	2.8	
13		241.95	3152	1752	1.03	483.59	1.92E+00 5	.53E-02	2.0 26 4 1 83E±00	
14		258.58	329	2223	1.50	516.82	1.85E+00 5	.//E-03	26.4 1.83E+00 2.0 5.50E-01	
15		295.16*	6853	2652	1.07		1.70E+00 1	.20E-01		
16		351.84*	11792	1854	1.11	703.23	1.51E+00 2	.07E-01	1.2 1.01E+00	
17		595.74	128	689	1.20	1190.85	1.02E+00 2	.25E-03	37.9 2.55E+00	
		609.25*	9412	963	1.33	1217.86	1.01E+00 1	65E-01	1.3 1.01E+00	
18		665.51	228	557	1.38	1330.35	9.40E-01 4	OOE-03	19.9 1.21E+00	
19			131	373	1.68	1440.01	8.84E-01 2	2.30E-03	27.1 1.27E+00	
20		720.34	922	734	1.50	1536.10	g 41E-01 1	.62E-02	7.1 5.43E-UI	
21		768.39	216	455	1.43	1571.57	8.26E-01 3	3.79E-03	20.3 2.36E+00	
22		786.13	277	598	2.16	1613.20	8 09E-01 4	1.87E-03	20.4 5.86年00	
23		806.94	120	506	2 37	1677.97	7 85E-01 2	2.11E-03	37.4 1.87E+00	
24		839.33		549	1 78	1868.16		3.26E-03	11.5 2.46E+00	
25		934.41	471	492	1 81	2240.57	6 26E-01 3	3.69E-02	3.5 1.43E+00	
26		1120.56*	2105	427	1 02	2309.76	6.12E-01 4	1.12E-03	20.3 2.58E+00	
2		1155.14	235		2.00	2476.12	5 80E-01 1	1.33E-02	6.7 2.79E+00	
28		1238.29*	758	327	2.00	2561.86	5 66E-01 3	3.43E-03	19.9 1.14E+00	
29	9 1	1281.14	196	306	2.34	2756.07	5 36E-01 9	9.36E-03	9.3 2.12E+00	
3 (0 1	1378.18	533	361	2.23	2771.88		2.10E-03	25.8 1.93E+00	
3	1 1	1386.08	120	202	2.24	2//1.00		2 92E-03	19.6 1.41E+00	
3:		1401.77	166	219	2.05	2803.29	5.30E 01 2	5 49E-03	15.1 2.20E+00	
	3 1	1408.64	313	333	2.32	2817.03	5.205-01	5 58E-03	10.8 4.63E-01	
3		1509.56	318	205	2.47	3019.04	3.03E-01	3 84E-03	19.3 3.90E+01	
3		1540.73	219	353		3081.44	4.90E-UI	3.04B 03	42.8 1.45E+00	
3		1583.72	78	232		3167.48	4.8/E-U1	1.5/E 03	33.5 9.83E-01	
3		1661.72	88	185		3323.64	4.72E-01 4.60E-01	7.248.02	8.5 6.45E-01	
3		1729.99	408	158		3460.32	4.6UE-U1) VOE 00		
	9 1	1764.87*	1756	171		3530.16	4.55E-01	3.VOE-U4	14.6 1.09E+00	
	0 1	1848.04	216	146	2.34	3696.70	4.43E-UI	3./oE-U3	. T. 10 T. 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
-1) <u>1</u>							•		

Nuclide Line Activity Report

Nuclide T	Type: natura	al			Uncorrected	Decay Corr	2-Sigma
Nuclide RA-226 TH-228 U-235	Energy 186.21 238.63 240.98 143.76 163.35 185.71 205.31	Area 157 101 3152 157	%Abn 3.28* 44.60* 3.95 10.50* 4.70 54.00 4.70	%Eff 2.179E+00 1.938E+00 1.923E+00 2.278E+00 2.256E+00 2.179E+00 2.093E+00	1.799E+00 6.416E+02 Lin 2.065E+00	pCi/L 3.400E+01 1.802E+00 6.426E+02 ne Not Found ne Not Found 2.065E+00 ne Not Found	%Error 151.58 183.94 5.52 151.58

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID : 13L28414-15

Acquisition date : 27-APR-2006 16:27:21

Total number of lines in spectrum Number of unidentified lines

40 36

Number of lines tentatively identified by NID 4

10.00%

Nuclide Type : natural

Nuclide Hlife Decay pCi/L RA-226 1600.00Y 1.00 3.400E+01 TH-228 1.91Y 1.00 1.799E+00 U-235 7.04E+08Y 1.00 2.065E+00	Decay Corr pCi/L 3.400E+01 1.802E+00 2.065E+00	2-Sigma Error 5.154E+01 3.315E+00	2-Sigma %Error 151.58 183.94 151.58	
--	--	---	---	--

Total Activity : 3.787E+01 3.787E+01

Grand Total Activity: 3.787E+01 3.787E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"M" = Manuarry accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 13L28414-15 Page : 3
Acquisition date : 27-APR-2006 16:27:21

Damp	110 110 . 1	01110111				-					
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	lags
٦	46.48	173	2677	1.45	92.95	90	7	3.04E-03	***	1.58E-01	
1	63.45	70	4524	1.03	126.87	123	8	1.23E-03	* * * *	7.13E-01	
1	74.94	989	3593	0.83	149.83	146	12	1.74E-02	20.8	1.17E+00	
3	74.94	2675	2934	0.82	154.27	146	12	4.69E-02	7.8	1.25E+00	
3	84.81	12	4054	1.54	169.54	165	25	2.08E-04	***	1.51E+00	
6	87.23	1270	2675	0.99	174.38	165	25	2.23E-02	14.8	1.59E+00	
6	89.80	613	2640	0.95	179.52	165	25	1.08E-02	27.8	1.66E+00	
6	92.66	54	2613	1.07	185.23	165	25	9.42E-04	***	1.74E+00	
6	139.85	420	3043	0.83	279.54	277	6	7.38E-03	44.2	2.27E+00	
1	139.65	309	2823	0.96	396.42	393	7	5.42E-03	61.6	2.12E+00	
1	258.58	329	2223	1.50	516.82	512	9	5.77E-03	52.8	1.85E+00	
1		6853	2652	1.07	589.94	584	12	1.20E-01	3.9	1.70E+00	
1	295.16	11792	1854	1.11	703.23		11	2.07E-01	2.4	1.51E+00	
1	351.84 595.74	128	689	1.20	1190.85			2.25E-03	75.8	1.02E+00	
1	609.25	9412	963	1.33	1217.86	1211	14	1.65E-01	2.6	1.01E+00	
1		228	557	1.38	1330.35	1326	9	4.00E-03	39.8	9.40E-01	
1	665.51 720.34	131	373	1.68	1440.01	1436	8	2.30E-03	54.2	8.84E-01	
1		922	734	1.50	1536.10	1529	14	1.62E-02	14.1	8.41E-01	
1	768.39	216	455	1.43	1571.57	1565	11	3.79E-03	40.6	8.26E-01	
1	786.13 806.94	277	598	2.16	1613.20	1606	15	4.87E-03	40.8	8.09E-01	
1		120	506	2.37	1677.97	1673	11	2.11E-03	74.9	7.85E-01	
1	839.33	471	549	1.78	1868.16	1861	14	8.26E-03	23.0	7.22E-01	
1	934.41	2105	492	1.81	2240.57	2230	19	3.69E-02	7.0	6.26E-01	
1	1120.56	235	427	1.88	2309.76	2303	15	4.12E-03	40.5	6.12E-01	
1	1155.14	758	327	2.00	2476 12	2469	15	1.33E-02	13.3	5.80E-01	
1	1238.29	196	306	2.34	2561.86	2557	13	3.43E-03	39.8	5.66E-01	
1	1281.14	533	361	2.23	2756.07	2749	17	9.36E-03	18.7	5.36E-01	
1	1378.18	120	202	2.24	2771.88	2767	12	2.10E-03	51.5	5.34E-01	
1	1386.08	166	219	2.05	2803.29	2797	12	2.92E-03	39.1	5.30E-01	
1	1401.77		333	2.32	2817.03	2811	18	5.49E-03	30.2	5.28E-01	
1	1408.64	313 318	205	2.47	3019.04	3013	3 13	5.58E-03	21.7	5.03E-01	-
1	1509.56	219	353	1.70	3081.44	3074	1 16	3.84E-03	38.7	4.96E-01	
1	1540.73	78	232	2.72	3167.48	3162	2 14	1.37E-03	85.6	4.87E-01	-
1	1583.72		185			3316	5 13	1.54E-03	67.0	4.72E-01	L
1	1661.72	88				3457	3 16	7.17E-03	17.1	4.60E-01	L
1	1729.99	408	158 171			3522	2 1	7 3.08E-02	6.1	4.55E-01	L
1	1764.87	1756	1/1			3689	9 1	7 3.78E-03			
1	1848.04	216	146	∠.54	5090.70	, 500.					

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 40
Number of unidentified lines 36
Number of lines tentatively identified by NID 4 10.00%

Nuclide Type : natural

Nucrrae	1/10		Wtd Mean	Wtd Mean	Decay Corr	2-Siqma	
Nuclide RA-226 TH-228	Hlife 1600.00Y 1.91Y	Decay 1.00	Uncorrected pCi/L 3.400E+01 1.799E+00	pCi/L 3.400E+01 1.802E+00	2-Sigma Error 5.154E+01		;

Total Activity : 3.580E+01 3.580E+01

0.588

0.000E+00

0.000E+00

Grand Total Activity: 3.580E+01 3.580E+01

"M" = Manually accepted

Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

Identif	Tied Nuclides				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226 TH-228	3.400E+01 1.802E+00	5.154E+01 3.315E+00	7.348E+01 5.438E+00	0.000E+00 0.000E+00	0.463 0.331
Non-Ide	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125	1.232E+01 -2.537E+00 -3.290E+01 -1.652E+01 1.413E+00 -4.414E-01 2.873E+00 -7.548E-02 1.193E+00 7.532E+01 -1.777E+00 1.726E+01 1.646E+00 2.489E-01 1.813E+01 3.995E-02 1.301E+01 1.657E+00 -1.167E+01 9.067E-01 2.882E+00 -2.068E+00 1.423E+00	1.477E+01 1.064E+01 2.420E+01 1.523E+01 2.073E+00 1.685E+00 2.014E+00 3.287E+00 1.728E+00 2.766E+00 2.766E+00 1.876E+00 2.047E+00 1.649E+00 2.252E+00 3.086E+00 1.775E+01 1.698E+00 1.521E+01 1.911E+00 2.288E+00 3.823E+00 5.045E+00	2.444E+01 1.454E+01 4.083E+01 2.441E+01 2.944E+00 2.805E+00 2.940E+00 5.406E+00 2.918E+00 1.070E+01 3.851E+00 3.451E+00 2.997E+00 2.693E+00 4.839E+00 4.839E+00 2.999E+01 2.812E+00 2.462E+01 2.681E+00 3.860E+00 2.711E+00 8.341E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.504 -0.174 -0.806 -0.677 0.480 -0.157 0.977 -0.014 0.409 7.042 -0.462 5.002 0.549 0.092 4.742 0.008 0.434 0.589 -0.474 0.338 0.747 -0.763 0.171 0.310
TE-129M I-131 BA-133 CS-134 CS-136 CS-137	1.004E+01 -9.639E-01 4.712E+01 6.320E+01 -1.059E+00 3.853E+00	1.963E+01 1.905E+00 3.181E+00 3.093E+00 1.934E+00 2.325E+00 1.834E+00	3.241E+01 3.150E+00 5.608E+00 5.392E+00 2.909E+00 3.320E+00 2.979E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.306 8.402 11.722 -0.364 1.160 -0.543
CE-139	-1.618E+00	T.05-EE.00	1 073E±01	0.000E+00	0.483

6.355E+00

2.400E+00

1.073E+01

3.683E+00

5.180E+00

2.166E+00

BA-140

LA-140

L28414 36 of 44

CE-141 CE-144 EU-152 EU-154 AC-228 TH-232 U-235 U-238 AM-241	1.361E+00 6.747E+00 -1.329E+01 -1.082E+00 -3.988E+00 -3.986E+00 -1.149E+01 1.848E+02 2.488E+01	3.469E+00 1.447E+01 6.530E+00 3.561E+00 7.242E+00 7.239E+00 1.670E+01 2.036E+02 1.678E+01	5.153E+00 2.238E+01 8.942E+00 5.922E+00 1.102E+01 1.101E+01 2.304E+01 3.339E+02 2.464E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.264 0.302 -1.487 -0.183 -0.362 -0.362 -0.499 0.553 1.010
--	--	---	---	---	--

```
3.068E+00,WG L28414-15 E
                     ,04/28/2006 08:17,04/26/2006 13:09,
A,13L28414-15
                                             ,08/05/2005 08:16,133L082404
                     ,LIBD
B, 13L28414-15
                                                                    0.463
                                                   7.348E+01,,
                                    5.154E+01,
            , YES,
                     3.400E+01,
C, RA-226
                                                                    0.331
                                                   5.438E+00,,
                                    3.315E+00,
                     1.802E+00,
C, TH-228
            , YES,
                                                                    0.504
                                                   2.444E+01,,
                                    1.477E+01,
                     1.232E+01,
C, BE-7
            , NO
                                                                   -0.174
                                                   1.454E+01,,
                                    1.064E+01,
                    -2.537E+00,
            , NO
C, NA-24
                                                                   -0.806
                                                   4.083E+01,,
                                    2.420E+01,
                    -3.290E+01,
C, K-40
            , NO
                                                   2.441E+01,,
                                                                   -0.677
                                    1.523E+01,
                    -1.652E+01,
C, CR-51
            , NO
                                                                    0.480
                                                   2.944E+00,,
                                    2.073E+00,
                     1.413E+00,
            , NO
C, MN-54
                                                   2.805E+00,,
                                                                   -0.157
                                    1.685E+00,
                    -4.414E-01,
            ,NO
C, CO-57
                                                                     0.977
                                                   2.940E+00,,
                                    2.014E+00,
                     2.873E+00,
            , NO
C, CO-58
                                                                   -0.014
                                                   5.406E+00,,
                                    3.287E+00,
                    -7.548E-02,
            , NO
C, FE-59
                                                                     0.409
                                                   2.918E+00,,
                                    1.728E+00,
                     1.193E+00,
C, CO-60
            , NO
                                                                     7.042
                                                   1.070E+01,,
                                    5.753E+00,
                     7.532E+01,
            , NO
C, ZN-65
                                                                    -0.462
                                                   3.851E+00,,
                                    2.766E+00,
                    -1.777E+00,
            , NO
C,SE-75
                                                                     5.002
                                                   3.451E+00,,
                                    1.876E+00,
                     1.726E+01,
            , NO
C, SR-85
                                                                     0.549
                                                   2.997E+00,,
                                    2.047E+00,
                     1.646E+00,
            ,NO
C, Y-88
                                                                     0.092
                                                   2.693E+00,,
                                    1.649E+00,
                     2.489E-01,
            ,NO
C, NB-94
                                                                     4.742
                                                   3.824E+00,,
                                     2.252E+00,
                     1.813E+01,
C, NB-95
            , NO
                                                                     0.008
                                                   4.839E+00,,
                                     3.086E+00,
                     3.995E-02,
C, ZR-95
            , NO
                                                                     0.434
                                                    2.999E+01,,
                                     1.775E+01,
                     1.301E+01,
            , NO
 C, MO-99
                                                                     0.589
                                                    2.812E+00,,
                                     1.698E+00,
                      1.657E+00,
             , NO
 C, RU-103
                                                                    -0.474
                                                    2.462E+01,,
                                     1.521E+01,
                     -1.167E+01,
             , NO
 C, RU-106
                                                                     0.338
                                                    2.681E+00,,
                                     1.911E+00,
                      9.067E-01,
 C, AG-110m
            , NO
                                                                     0.747
                                                    3.860E+00,,
                                     2.288E+00,
                      2.882E+00,
             , NO
 C, SN-113
                                                                    -0.763
                                                    2.711E+00,,
                                     3.823E+00,
                     -2.068E+00,
 C,SB-124
             , NO
                                                                     0.171
                                                    8.341E+00,,
                                     5.045E+00,
                      1.423E+00,
             , NO
 C,SB-125
                                                                     0.310
                                                    3.241E+01,,
                                     1.963E+01,
                      1.004E+01,
 C, TE-129M
             , NO
                                                                    -0.306
                                                    3.150E+00,,
                                     1.905E+00,
                     -9.639E-01,
 C, I-131
             , NO
                                                                     8.402
                                                    5.608E+00,,
                                     3.181E+00,
                      4.712E+01,
             , NO
 C,BA-133
                                                    5.392E+00,,
                                                                    11.722
                                     3.093E+00,
                      6.320E+01,
             , NO
 C, CS-134
                                                                    -0.364
                                                    2.909E+00,,
                                     1.934E+00,
                     -1.059E+00,
             , NO
 C,CS-136
                                                                     1.160
                                                    3.320E+00,,
                                     2.325E+00,
                      3.853E+00,
 C, CS-137
             , NO
                                                                    -0.543
                                                    2.979E+00,,
                                     1.834E+00,
                     -1.618E+00,
             , NO
 C, CE-139
                                                                      0.483
                                                    1.073E+01,,
                                     6.355E+00,
                      5.180E+00,
             , NO
 C, BA-140
                                                    3.683E+00,,
                                                                      0.588
                                     2.400E+00,
                      2.166E+00,
 C, LA-140
             , NO
                                                                      0.264
                                                    5.153E+00,,
                                     3.469E+00,
                      1.361E+00,
             , NO
 C, CE-141
                                                                      0.302
                                                    2.238E+01,,
                                     1.447E+01,
                      6.747E+00,
 C, CE-144
             , NO
                                                                     -1.487
                                                    8.942E+00,,
                                     6.530E+00,
                     -1.329E+01,
             , NO
 C, EU-152
                                                                     -0.183
                                                    5.922E+00,,
                                     3.561E+00,
                     -1.082E+00,
             , NO
 C, EU-154
                                                    1.102E+01,,
                                                                     -0.362
                                     7.242E+00,
                     -3.988E+00,
             , NO
 C, AC-228
                                                                     -0.362
                                                    1.101E+01,,
                                      7.239E+00,
                     -3.986E+00,
             , NO
 C, TH-232
                                                                     -0.499
                                                     2.304E+01,,
                                      1.670E+01,
                     -1.149E+01,
  C, U-235
             , NO
                                                                      0.553
                                                     3.339E+02,,
                                      2.036E+02,
                      1.848E+02,
             ,NO ,
  C, U-238
                                                                      1.010
                                                     2.464E+01,,
                                      1.678E+01,
                       2.488E+01,
```

,NO ,

C, AM-241

Sec. Review:

LIMS: \ Analyst:

4_________ VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 08:12:59.88

TBE14 P-10933A HpGe ******** Aquisition Date/Time: 27-APR-2006 16:28:01.54

LIMS No., Customer Name, Client ID: WG L28414-16 EXELON BYRON

Smple Date: 26-APR-2006 15:10:00. : 14L28414-16 Sample ID

Geometry : 143L082304 Sample Type : WG BKGFILE: 14BG041406MT : 3.01260E+00 L Quantity Start Channel: 90 Energy Tol: 1.30000 Real Time: 0 15:44:52.27 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 15:44:42.98 MDA Constant: 0.00 Library Used: LIBD

Pk I	it.	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 2 2 1 1 1 1	66.09* 92.63* 139.76 175.19 198.37* 238.58* 241.85 295.47* 351.97* 583.13* 595.93 609.17* 1120.24* 1730.48 1766.17	441 52 543 329 358 133 285 325 533 12 161 313 53 38 162	2244 2196 1806 1295 1906 1199 1151 1099 733 345 496 420 183 87 100	1.49 1.71 1.64 2.46 1.47 1.65 1.71 1.99 1.66 1.52 2.30 3.36 2.49		5.05E-01 1.28E+00 1.89E+00 1.90E+00 1.83E+00 1.68E+00 1.66E+00 1.46E+00 1.28E+00 8.62E-01 8.48E-01 8.34E-01 5.30E-01 3.85E-01 3.79E-01	5.81E-03 6.31E-03 2.34E-03 5.03E-03 5.74E-03 9.40E-03 2.13E-04 2.85E-03 5.52E-03 9.42E-04 6.71E-04	191.6 15.2 19.4 26.3 55.7 23.5 22.7 12.2 364.4 28.7 16.4 63.1 56.1	1.21E+00 9.65E-01 4.85E+00 9.43E-01 1.44E+00 3.78E+00 2.13E+00 6.25E-01 7.32E-01 1.91E+00 6.69E-01 1.53E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Siqma Uncorrected Decay Corr %Error pCi/L pCi/L %Abn %Eff Area Nuclide Energy 111.46 2.815E+00 2.811E+00 1.675E+00 44.60* 133 TH-228 238.63 46.91 1.662E+00 6.879E+01 6.889E+01 3.95 285 240.98

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 14L28414-16

Acquisition date : 27-APR-2006 16:28:01

Total number of lines in spectrum 15

Number of unidentified lines 12

Number of lines tentatively identified by NID 3 20.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

TH-228 1.91Y 1.00 2.811E+00 2.815E+00 3.137E+00 111.46

Total Activity : 2.811E+00 2.815E+00

Grand Total Activity: 2.811E+00 2.815E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 14L28414-16

Page: Acquisition date : 27-APR-2006 16:28:01

т.											
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	Flags
1 1 1 1 1 1 1 1 1	66.09 92.63 139.76 175.19 198.37 295.47 351.97 583.13 595.93 609.17 1120.24 1730.48 1766.17	441 52 543 329 358 325 533 12 161 313 53 38 162	2244 2196 1806 1295 1906 1099 733 345 496 420 183 87	1.49 1.71 1.64 2.46 1.47 1.99 1.66 1.99 1.66 1.52 2.30 3.36 2.49	133.31 186.59 281.18 352.27 398.77 593.43 706.65 1169.23 1194.83 1221.30 2240.64 3452.15 3522.83	276 350 393 588 702 1165 1190 1216 2235 3446	11 10 8 12 12 11 10 12 11 12 15	6.31E-03 5.74E-03 9.40E-03 2.13E-04 2.85E-03 5.52E-03	38.9 52.5 45.4 24.4 **** 57.4 32.7 ****	5.05E-01 1.28E+00 1.89E+00 1.90E+00 1.83E+00 1.46E+00 1.28E+00 8.62E-01 8.48E-01 8.34E-01 5.30E-01 3.85E-01 3.79E-01	Т

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

15 Total number of lines in spectrum 12 Number of unidentified lines Number of lines tentatively identified by NID 3 20.00%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma 2-Sigma Error %Error Flags Nuclide Hlife Decay pCi/L pCi/L 2.815E+00 3.137E+00 111.46 1.91Y 1.00 2.811E+00 TH-228 _____ 2.815E+00

Total Activity : 2.811E+00

Grand Total Activity: 2.811E+00 2.815E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Identiti	ICA MAGILIAN				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	2.815E+00	3.137E+00	4.713E+00	0.000E+00	0.597
Non-Ide	ntified Nuclide	es			

Non-Identified Nuclides

Key-Line Act/MDA MDA error MDAActivity K.L. Act error

Nuclide	(pCi/L) Ideo	d	(pCi/L)		
BE-7	-1.034E+01	1.342E+01	2.188E+01	0.000E+00	-0.473 -0.727
NA-24	-8.720E+00	7.725E+00	1.199E+01	0.000E+00	3.863
K-40	1.652E+02	2.117E+01	4.275E+01	0.000E+00	-0.922
CR-51	-2.036E+01	1.377E+01	2.208E+01	0.000E+00	-0.349
MN-54	-9.100E-01	1.613E+00	2.611E+00	0.000E+00	0.134
CO-57	3.632E-01	1.627E+00	2.708E+00	0.000E+00	0.164
CO-58	4.314E-01	1.577E+00	2.623E+00	0.000E+00	0.184
FE-59	1.997E+00	3.045E+00	5.150E+00	0.000E+00	0.194
CO-60	5.258E-01	1.634E+00	2.707E+00	0.000E+00	1.221
ZN-65	7.610E+00	4.113E+00	6.231E+00	0.000E+00	0.227
SE-75	7.816E-01	2.058E+00	3.437E+00	0.000E+00	5.347
SR-85	1.914E+01	1.848E+00	3.579E+00	0.000E+00	-0.274
Y-88	-7.679E-01	1.762E+00	2.808E+00	0.000E+00	0.820
NB-94	2.259E+00	1.636E+00	2.755E+00	0.000E+00	0.546
NB-95	1.487E+00	1.603E+00	2.721E+00	0.000E+00	-1.085
ZR-95	-4.811E+00	2.817E+00	4.434E+00	0.000E+00	-0.153
MO-99	-4.227E+00	1.683E+01	2.771E+01	0.000E+00	0.169
RU-103	4.640E-01	1.650E+00	2.748E+00	0.000E+00	0.109
RU-106	1.037E+00	1.515E+01	2.450E+01	0.000E+00	0.189
AG-110m	4.989E-01	1.609E+00	2.645E+00	0.000E+00	0.316
SN-113	1.081E+00	2.072E+00	3.416E+00	0.000E+00	0.250
SB-124	6.759E-01	3.817E+00	2.707E+00	0.000E+00	-0.112
SB-125	-8.443E-01	4.660E+00	7.537E+00	0.000E+00	0.123
TE-129M	3.798E+00	1.852E+01	3.090E+01	0.000E+00	0.150
I-131	4.497E-01	1.828E+00	3.006E+00	0.000E+00	2.127
BA-133	8.746E+00	2.739E+00	4.112E+00	0.000E+00	3.047
CS-134	1.005E+01	3.812E+00	3.298E+00	0.000E+00	-0.640
CS-136	-1.682E+00	1.647E+00	2.628E+00	0.000E+00	-0.175
CS-137	-5.182E-01	1.998E+00	2.969E+00	0.000E+00 0.000E+00	0.232
CE-139	5.972E-01	1.582E+00	2.569E+00	0.000E+00	0.175
BA-140	1.765E+00	6.092E+00	1.011E+01	0.000E+00	0.146
LA-140	4.761E-01	1.961E+00	3.263E+00	0.000E+00	0.773
CE-141	3.509E+00	3.172E+00	4.541E+00	0.000E+00	-0.261
CE-144	-5.269E+00	1.445E+01	2.018E+01		-0.871
EU-152	-7.039E+00	6.025E+00	8.080E+00	0.000E+00 0.000E+00	0.015
EU-154	8.286E-02	3.415E+00	5.668E+00	0.000E+00	-0.095
RA-226	-6.257E+00	4.379E+01	6.554E+01	0.000E+00	-0.199
AC-228	-2.041E+00	6.836E+00	1.025E+01	0.000E+00	-0.199
TH-232	-2.040E+00	6.833E+00	1.024E+01	0.000E+00	1.290
U-235	2.708E+01	1.446E+01	2.099E+01	0.000E+00	0.489
U-238	1.480E+02	1.809E+02	3.028E+02	0.000E+00	-0.200
AM-241	-7.084E+00	2.554E+01	3.547E+01	0.000#00	0.200

```
3.013E+00,WG L28414-16 E
                     ,04/28/2006 08:13,04/26/2006 15:10,
A,14L28414-16
                                             ,06/22/2005 08:57,143L082304
                     , LIBD
B,14L28414-16
                                                                    0.597
                                                   4.713E+00,,
                                    3.137E+00,
                    2.815E+00,
           , YES,
C, TH-228
                                                                   -0.473
                                                   2.188E+01,,
                                    1.342E+01,
                   -1.034E+01,
C,BE-7
            , NO
                                                                   -0.727
                                    7.725E+00,
                                                   1.199E+01,,
                   -8.720E+00,
            ,NO
C, NA-24
                                                   4.275E+01,,
                                                                    3.863
                                    2.117E+01,
                     1.652E+02,
            ,NO
C, K-40
                                                                   -0.922
                                                   2.208E+01,,
                                    1.377E+01,
                    -2.036E+01,
C, CR-51
            , NO
                                                                   -0.349
                                                   2.611E+00,,
                                    1.613E+00,
                    -9.100E-01,
C, MN-54
            , NO
                                                                    0.134
                                                   2.708E+00,,
                                    1.627E+00,
            , NO
                     3.632E-01,
C, CO-57
                                                                    0.164
                                                   2.623E+00,,
                                    1.577E+00,
                     4.314E-01,
            , NO
C, CO-58
                                                                    0.388
                                                   5.150E+00,,
                                    3.045E+00,
                     1.997E+00,
C, FE-59
            , NO
                                                                    0.194
                                                   2.707E+00,,
                                    1.634E+00,
                     5.258E-01,
C, CO-60
            , NO
                                                                    1.221
                                                   6.231E+00,,
                                    4.113E+00,
                     7.610E+00,
            , NO
C, ZN-65
                                                                    0.227
                                                   3.437E+00,,
                                    2.058E+00,
                     7.816E-01,
C, SE-75
            , NO
                                                                    5.347
                                                   3.579E+00,,
                                    1.848E+00,
                     1.914E+01,
            , NO
C, SR-85
                                                                   -0.274
                                                   2.808E+00,,
                    -7.679E-01,
                                    1.762E+00,
C,Y-88
            , NO
                                                                     0.820
                                                   2.755E+00,,
                                    1.636E+00,
                     2.259E+00,
            , NO
C, NB-94
                                                   2.721E+00,,
                                                                     0.546
                                    1.603E+00,
                     1.487E+00,
C, NB-95
            , NO
                                                                   -1.085
                                                   4.434E+00,,
                                    2.817E+00,
                    -4.811E+00,
            , NO
C, ZR-95
                                                   2.771E+01,,
                                                                    -0.153
                                    1.683E+01,
                    -4.227E+00,
            , NO
C, MO-99
                                                                     0.169
                                                   2.748E+00,,
                                    1.650E+00,
                     4.640E-01,
            , NO
C, RU-103
                                                                     0.042
                                    1.515E+01,
                                                   2.450E+01,,
                     1.037E+00,
C, RU-106
            , NO
                                                                     0.189
                                                   2.645E+00,,
                                    1.609E+00,
            , NO
                     4.989E-01,
C, AG-110m
                                                   3.416E+00,,
                                                                     0.316
                                    2.072E+00,
                     1.081E+00,
            ,NO
C, SN-113
                                                                     0.250
                                                   2.707E+00,,
                     6.759E-01,
                                    3.817E+00,
            , NO
C,SB-124
                                                                    -0.112
                                                   7.537E+00,,
                    -8.443E-01,
                                    4.660E+00,
C,SB-125
            , NO
                                                                     0.123
                                                   3.090E+01,,
                                    1.852E+01,
                     3.798E+00,
            , NO
C, TE-129M
                                                                     0.150
                                                   3.006E+00,,
                                    1.828E+00,
            , NO
                     4.497E-01,
C, I-131
                                                                     2.127
                                                   4.112E+00,,
                                    2.739E+00,
                      8.746E+00,
            , NO
C, BA-133
                                                                     3.047
                                                    3.298E+00,,
                      1.005E+01,
                                    3.812E+00,
            , NO
 C, CS-134
                                                                    -0.640
                                                    2.628E+00,,
                     -1.682E+00,
                                     1.647E+00,
             , NO
 C, CS-136
                                                                    -0.175
                                                    2.969E+00,,
                                     1.998E+00,
                     -5.182E-01,
             , NO
 C, CS-137
                                                                     0.232
                                                    2.569E+00,,
                                     1.582E+00,
                      5.972E-01,
 C, CE-139
             , NO
                                                    1.011E+01,,
                                                                     0.175
                                     6.092E+00,
                      1.765E+00,
            ,NO
 C, BA-140
                                                                     0.146
                                                    3.263E+00,,
                                     1.961E+00,
            ,NO
                      4.761E-01,
 C, LA-140
                                                                     0.773
                                                    4.541E+00,,
                                     3.172E+00,
                      3.509E+00,
 C, CE-141
             , NO
                                                                    -0.261
                                                    2.018E+01,,
                                     1.445E+01,
             , NO
                     -5.269E+00,
 C, CE-144
                                                    8.080E+00,,
                                                                    -0.871
                                     6.025E+00,
                     -7.039E+00,
             , NO
 C, EU-152
                                                    5.668E+00,,
                                                                     0.015
                                     3.415E+00,
                      8.286E-02,
             , NO
 C, EU-154
                                                                    -0.095
                                                    6.554E+01,,
                                     4.379E+01,
             ,NO
                     -6.257E+00,
 C, RA-226
                                                                    -0.199
                                                    1.025E+01,,
                                     6.836E+00,
             , NO
                     -2.041E+00,
 C, AC-228
                                                                    -0.199
                                                    1.024E+01,,
                                     6.833E+00,
                     -2.040E+00,
             , NO
 C, TH-232
                                                    2.099E+01,,
                                                                     1.290
                                     1.446E+01,
                      2.708E+01,
 C, U-235
             , NO
                                                                     0.489
                                                    3.028E+02,,
                                     1.809E+02,
                      1.480E+02,
 C, U-238
             , NO
                                                                    -0.200
                                                    3.547E+01,,
                                     2.554E+01,
                     -7.084E+00,
 C, AM-241
             ,NO,
```

Page: 1

Customer: Exelon

Work Order: 128414

Project : EX001-3ESPBYRON-06
Volume/ Scavenge Milking
MDC: 1.76E+02 * 10 ml
MDC: 1.76E+02 * 10 ml
1
1
MDC: 1.65E+02 * 10 ml
MDC: 1.65E+02 *
MDC: 2.25E+02 10 ml
MDC: 2.26E+02

Raw Data Sheet (rawdata) May 08 2006, 02:38 pm

	,	alyst	GK	GK	
	Decay &	Eff. Ingrowth Analyst Factor	.341 1	.351 1	
		Bkg E t (min)	200	200	
73		Bkg counts d	141	167	
Page: 2		Sample dt (min) c	200	200	
		Total	141	163	
		Counter	YIA	YIB	
		Count Date/time	0 03-may-06 YLA 141 200 141 200 85.22 21:10	03-may-06 Y1B 21:10	
		Recovery	85.22	91.67	
		Mount	0	0	
	1	рі Е		9	
	ESPBYRON-06	Scavenge Milkin	ı	03-may-06 13:40	
Customer: Exelon	Project : EX001-3ESPBYRON-06		Aliquot 6 450 ml	MDC: 9.55E-01 * 6 450 ml MDC: 9.37E-01 *	
បី	[A]	Reference	10	C	
414	(FAST)	Sample ID Run Analysis			
Work Order: 128414	Nuclide: SR-90 (FAST)	ID Run	Client ID # L28414-15 WG-BYR-042606-SS-25	Activity: 0E+00 L28414-16 WG-BYR-042606-SS-27	
Work Or	Nuclide	Sample	Client ID L28414-15 WG-BYR-0426	Activit L284. WG-BYR-	שברייה

A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28431
Exelon
May 5, 2006

2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Drive Plainville CT 06062

Case Narrative - L28431 EX001-3ESPBYRON-06

05/05/2006 15:12

Sample Receipt

The following samples were received on April 28, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	Cross Rejerence 10	1UIE
Client ID	Laboratory ID	Station ID(if applicable)
WG-BYN-042606-SS-29	L28431-1	
WG-BYN-042606-SS-31	L28431-2	
WG-BYN-042606-SS-33	L28431-3	
WG-BYN-042706-SS-34	L28431-4	
WG-BYN-042706-SS-35	L28431-5	
WG-BYN-042706-SS-36	L28431-6	
WG-BYN-042706-SS-37	L28431-7	
WG-BYN-042706-SS-38	L28431-8	
WG-BYN-042706-SS-39	L28431-9	
WG-BYN-042706-SS-40	L28431-10	
WG-BYN-042706-SS-41	L28431-11	
WG-BYN-042706-SS-42	L28431-12	
WG-BYN-042706-SS-43	L28431-13	
WG-BYN-042706-SS-44	L28431-14	
WG-BYN-042706-KD-26	L28431-15	
WG-BYN-042706-KD-28	L28431-16	
WG-BYN-042706-KD-30	L28431-17	
WG-BYN-042706-KD-32	L28431-18	
WG-BYN-042706-KD-45	L28431-19	
WG-BYN-042706-KD-46	L28431-20	

Analytical Method Cross Reference Table

Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
SR-90 (FAST)	TBE-2019	EPA 905.0

Case Narrative - L28431 EX001-3ESPBYRON-06

05/05/2006 15:12

Gamma Spectroscopy

Quality Control

Quality control samples were analyzed as WG3913.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-BYN-042706-SS-35	L28431-5	WG3913-3

H-3

Quality Control

Quality control samples were analyzed as WG3918,WG3933.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-BYR-042506-SS-11	L28414-8	WG3918-3
WG-BYN-042706-KD-45	L28431-19	WG3933-3

SR-90

Quality Control

Quality control samples were analyzed as WG3939.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Case Narrative - L28431 EX001-3ESPBYRON-06

05/05/2006 15:12

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Sample Receipt Summary

(773)380-8933 phone REFERENCE NUMBER: PROJECT NAME: CHAIN-OF-CUSTODY RECORD 4/5/36-34 PROJECT NAME: E-C CY 173/380-6421 fax PRAMETERS& E-C CY 173/380-6421 fax PRAMETERS& E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: E-C CY 173/380-6421 fax PROJECT NAME: PROJECT N	CONE	STOC 861	3A-RO 15 W. Br	CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631	SHIPPED TO (Laboratory Name):	"	Teledyne Brown Engineering	J L28431
ALL CLOSE COLCIO CLOSE		(77)	3)380-9	933 phone	REFERENCE NUM	BER:		
Sample S		CHA	N-OF-C	USTODY RECORD	45136.3	ر ـــ	xelon-	
1 1 1 1 1 1 1 1 1 1	SAMPLE	R'S RE:	Jan	PRINTED T	buid Tyran	OF	PARAMETERS &	DEMADIŽO
1 1 1 1 1 1 1 1 1 1		ATE	TIME	SAMPLE IDENTIFICA		.oN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	7	2			1	weter	/	
V 1965 V.Cr. R.Y. N- C-420C6 SS - 3.5 X X X X X X X X X				Caracters	555	,	×	- Harden
Higher 6855 WG- 68N - CYG 70G- SS - 3G WGG 2 X X X	3		1967		\$	V	*	1000
CRO R.B - BYN - CYG 766 - SS - 35 DI WORD 2 X X 1015 WG - BYN - CYG 766 - SS - 37 2 X X 1016 WG - BYN - CYG 766 - SS - 38 2 X X 1016 WG - BYN - CYG 766 - SS - 38 3 X X 1016 WG - BYN - CYG 766 - SS - 40 X 1016 WG - BYN - CYG 766 - S - 40 X 1016 WG - BYN - CYG 766 - S - 40 X 1016 WG - BYN - CYG 766 - S - 40 X 1016 WG - BYN - CYG 766 - S - 40 X 1016 WG - BYN - CYG 766 - S - 40 X 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S 1016 WG - BYN - CYG 766 - S	7			BYN -	-S-			
1/126 WIS - BYN - 043706 - SS - 35 Udde 2 X X X 1/126 WIS - BYN - 043706 - SS - 38 2 X X X 1/126 WIS - BYN - 043706 - SS - 38 2 X X X 1/126 WIS - BYN - 043706 - SS - 40 2 X X X 1/127 WIS - BYN - 043706 - SS - 40 2 X X X 1/128 WIS - BYN - 043706 - SS - 40 2 X X X 1/127 WIS - BYN - 043706 - SS - 40 2 X X X 1/128 WIS - BYN - 043706 - SS - 40 2 X X X 1/127 WIS - BYN - 043706 - SS - 40 2 X X X	5		C\$00	BYN -	-SS-6	_		and the second s
1126 WG - BYN - CH27Ge - SS - 37	و.		1015	-BYN -(SS	$\overline{}$	×	TOTAL - COMMERCIAL STREET, CONTRACTOR STREET, CONTR
1335 W.S BYN - C43-706 - SS - 39 2 X X X 1455 W.S BYN - C43-706 - SS - 40 2 X X X 1455 W.S BYN - C43-706 - SS - 40 2 X X X 1455 W.S BYN - C43-706 - SS - 42 2 X X X 1455 W.S BYN - C43-706 - SS - 42 2 X X X 1455 W.S BYN - C43-706 - SS - 42 2 X X X 1456 R.S BYN - C43-706 - SS - 42 2 X X X 1456 R.S BYN - C43-706 - SS - 42 2 X X X 1457 W.S BYN - C43-706 - SS - 42 2 X X X 1457 W.S BYN - C43-706 - SS - 42 2 X X X 1457 W.S BYN - C43-706 - SS - 42 2 X X X 1457 W.S BYN - C43-706 - SS - 42 2 X X X 1458 R.S BYN - C43-706 - SS - 42 2 X X X 1458 R.S BYN - C43-706 - SS - 42 2 X X X 1558 R.S BYN - C43-706 - SS - 42 2 X X X 1558 R.S BYN - C43-706 - SS - 42 2 X X X 1558 R.S BYN - C43-706 - SS - 42 2 X X X 1559 R.S BYN - C43-706 - SS - 42 2 X X X 1559 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X X X X 1550 R.S BYN - C43-706 - SS - 42 2 X X X X X X X X X X X X X X X X X	4		1176	- 67N-	-88	- -	×	Parameter and the second secon
1355 W.G BYN - CYGREGS - 34 2 X X X 2 X X X 3 X X X X 3 X X X X 3 X X X X	න		1335	-BYN-	S	-	×	
1335 WIG - BYN - OYG 706 - SS - 40 2 X X X X X X X X X	σ		1335	1 BYN	-55-0	6		
1455 WG - BYN - C43766 - 55 - 42 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	<u></u>		1325	- BW-	Ş	(ઇ	××	
NG - BYN - 643706 - 55 - 42			1455	- NTO-	H-SS-80	ণ	×	
TOTAL NUMBER OF CONTAINERS	7		009)	- 0X9 -	16-55-42	7	××××××××××××××××××××××××××××××××××××××	
TOTAL NUMBER OF CONTAINERS A MANA LOLA FOLG - SS-444 Maker 2 X X X TOTAL NUMBER OF CONTAINERS A MANA LOLA LOLA FOLG - SS-444 Maker 2 X X X TIME: 4760 2 TIME: 4760 2 TIME: 03 TIME: 03 TIME: 03 TIME: 04 TIME: 0530 MATE: 428/06 TIME: 0530 DATE: 428/06 TIME: 0530	13		1200 1200 1200 1200 1200 1200 1200 1200	BYN	26-55-43		××	The second secon
TOTAL NUMBER OF CONTAINERS 34	Ìά	>	SIF	BYN	4h-55-90	-	×	Addition to the second
TOTAL NUMBER OF CONTAINERS 134 Alang Langer Containers Date: 4/24/06 Received BY: TIME: 1750 2 TIME: 1750 2 TIME: 1750 2 TIME: 1750 2 TIME: 1750 2 TIME: 1750 2 TIME: 1750 3					- 6			
DATE: 424/06 RECEIVED BY: TIME: 1750 2 DATE: TIME: 1750 2 DATE: TIME: 1750 3 DATE: TIM				TOTAL NUMBER OF CONTAI	NERS	<u>.</u>		
IIPMENT: Fold Ex IS BILL No. \$538 \$34 \$34 \$34 \$35 \$35 \$34 \$34 \$34 \$35 \$35 \$34 \$35 \$34 \$35 \$35 \$34 \$35 \$35 \$35 \$35 \$35 \$35 \$35 \$35 \$35 \$35	RELINGL	JISHED	Z	7	5	900	D BY:	DATE: TIME:
IIPMENT: Fed Ex IIPMENT: Ped Ex III Executed Copy Ity Executed C	RFINO	IISHED	BY:		DATE:	RECEIVE	DBY:	DATE:
IIPMENT: Ped Ex SAMPLE TEAM: Ceiving Laboratory Copy Impler Copy Impler Copy Impler Copy Impler Copy Impler Copy Impler Copy Impler Copy Imple Copy Impl	(0)				TIME:	(e)		TIME:
AIR BILL No. \$5380834	RELINGL	JISHED	BY:		DATE: TIME:	RECEIVE (4)	D BY:	DATE: TIME:
-Fully Executed Copy -Receiving Laboratory Copy -Shipper Copy -Shipper Copy -Sampler Copy -Sampler Copy - Sampler) <u>ai</u> v	<u>ا</u>		
-Fully Executed Copy -Receiving Laboratory Copy -Shipper Copy rod -Sampler Copy	METH	o o		2			- 11	
-Kecelving Laboratory Copy -Shipper Copy rod -Sampler Copy	White		-Fully E		AMPLE TEAM:		RECEIVED FOR LABORATORY BY:	7777
Salar Salar	Yellow Pink	7	-Kecelvi -Shippel Sample	oriatory copy	D. Heroel		DATE: 4/28/06 TIME: 0930	0000
	apios		-Sallipie					

1001-00(SOURCE)GN-CO004

CONE	STOG 861 Chic	CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631	SHIPPED TO (Laboratory Name):	Pledyne Brown L	128431
	(77; CHAII	(773)380-9933 phone (773)380-6421 fax CHAIN-中作-CUSTQDY RECORD	REFERENCE NUMBER: サ5136ーコ	wan Gerekating	Station
SAMPLER'S SIGNATURE:	ER'S IRE:	PRINTED NAME: 1	m Duvol	PARAMETERS ()	200
SEQ.	DATE	TIME SAMPLE IDENTIFICATION	TION No. MATRIX	CONTA	KEWAKKO
कें	30/LG	13-201 640-106- BUN-049-706-10-10-10-10-10-10-10-10-10-10-10-10-10-	(5) - 5)6 Water	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	2.0	105- BN -042706-	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		10G- BYN-049706-1	KD - 39	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- Account of the control of the cont
		5- BYN-042706	→ 0/1-Q/	XX XX XX	
			•		
*					
		TOTAL WINNER OF CONTAINEDS	SOL		
		NOWDER OF		And the second s	
RELINQUISHED BY:	JISHED B	T. SON SAMO	DATE: 1/2/7/06 RE TIME: 19/2/00 (2)	RECEIVED BY:	DATE: TIME:
RELINQUISHED BY:	JISHED B	IY: / IV	DATE: RE	RECEIVED BY:	DATE:
RELINGU	RELINQUISHED BY:	3.5			DATE:
(e)			TIME: (4	•	TIME:
METHC	D OF S	METHOD OF SHIPMENT: FOLEX		AIR BILL NO. 851383808349	
White			SAMPLE TEAM:	RECEIVED FOR LABORATORY BY:	
Yellow		-Receiving Laboratory Copy	Du Val, Greenes		73659
Goldenrod		-Sampler Copy		DATE: 4/38/06 TIME: 0930	
1001-00	(SOURC	1001-00(SOURCE)GN-CO004			

1001-00(SOURCE)GN-CO004

04/28/06 13:15

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

SR #: SR08083

Client: Exelon Project #: EX001-3ESPBYRON-06

LIMS #: L28431

L28431 8 of 147

Initiated By: PMARSHALL

Receive Date: 04/28/06 Init Date: 04/28/06

Notification of Variance

Contacted By: R. Charles

Person Notified: Kaffy Shaw
Notify Date: 4/28/06
Notify Method: Lemail
Notify Comment:

Notify Comment:

Client Response

Person Responding: Response Date: Response Method: Response Comment

Cı	riteria	Yes No NA	Comment
1	Shipping container custody seals present and intact.	Y Y	
2	Sample container custody seals present and intact.	NA	
3	Sample containers received in good condition	Y	
4	Chain of custody received with samples	Y	
5	All samples listed on chain of custody received	Y	
6	Sample container labels present and legible.	Y	
7	Information on container labels correspond with chain of custody	Y	
	WG-BYN-042706-KD-26		No date or time listed on container
	WG-BYN-042706-KD-30		No date or time listed on container
	WG-BYN-042706-KD-45		No date or time listed on container No date or time listed on container
	WG-BYN-042706-KD-46 WG-BYN-042706-KD-32		No date or time listed on container
	WG-BYN-042706-KD-28		No date or time listed on container
8	Sample(s) properly preserved and in appropriate container(s)	NA	
9	Other (Describe)	N	
			pH at or below 2 for Gamma portion

CRA semail ++p 5/1/06

TELEDYNE BROWN ENGINEERING 2508 Quality Lane Knoxville, TN 37931-3133

ACKNOWLEDGEMENT This is not an invoice

April 28, 2006

Edward Steinke Byron Station Exelon Nuclear 4450 N. German Church Road Byron, IL 31010

The following sample(s) were received at Teledyne Brown Engineering Knoxville laboratory on April 28, 2006. The sample(s) have been scheduled for the analyses listed below and the report is scheduled for completion by May 05, 2006. Please review the following login information and pricing. Contact me if anything is incorrect or you have questions about the status of your sample(s).

Thank you for choosing Teledyne Brown Engineering for your analytical needs.

Sincerely, Rebecca Charles Project Manager (865)934-0379

Project ID: EX001-3ESPBYRON-06

P.O. #: 00411203

Release #:

Contract#: 00411203

Edward Steinke, FAX#:815-234-3301, edward.steinke@exeloncorp.com

Kathy Shaw, FAX#:860-747-1900, kshaw@craworld.com

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect End Collect Date/Time Date/Time
WG-BYN-042606-SS-29	L28431-1		04/26/06:1650
WG	H-3	108.00	
WG-BYN-042606-SS-31	L28431-2		04/26/06:1810
WG	H-3	108.00	
WG-BYN-042606-SS-33	L28431-3		04/26/06:1905
WG	H-3	108.00	
WG-BYN-042706-SS-34	L28431-4		04/27/06:0835
WG	H-3	108.00	
WG-BYN-042706-SS-35	L28431-5		04/27/06:0900
WG WG WG	GELI H-3 SR-90 (FAST)	108.00 108.00 140.00	
WG-BYN-042706-SS-36	L28431-6		04/27/06:1015

Client ID/ Station	Laboratory ID Analysis	Vol/Units Start Collect End Collect Price Date/Time Date/Time
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-37	L28431-7	04/27/06:1120
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-38	L28431-8	04/27/06:1235
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-39	L28431-9	04/27/06:1335
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-40	L28431-10	04/27/06:1335
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-41	L28431-11	04/27/06:1455
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-42	L28431-12	04/27/06:1600
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-43	L28431-13	04/27/06:1615
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-SS-44	L28431-14	04/27/06:1745
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-KD-26	L28431-15	04/27/06:1057
WG	GELI	108.00
WG	H-3	108.00
WG	SR-90 (FAST)	140.00
WG-BYN-042706-KD-28	L28431-16	04/27/06:1225

Page 2

Client ID/ Station	Laboratory ID Analysis	Vol/Units Price	Start Collect End Collect Date/Time Date/Time
WG WG	GELI H-3	108.00 108.00	
WG	SR-90 (FAST)	140.00	
WG-BYN-042706-KD-30	L28431-17		04/27/06:1405
WG WG	GELI H-3	108.00 108.00	
WG	SR-90 (FAST)	140.00	
WG-BYN-042706-KD-32	L28431-18		04/27/06:1600
WG	GELI	108.00	
WG WG	H-3 SR-90 (FAST)	108.00 140.00	
WG-BYN-042706-KD-45	L28431-19		04/27/06:1730
WG	GELI	108.00	
WG WG	H-3 SR-90 (FAST)	108.00 140.00	
WG-BYN-042706-KD-46	L28431-20		04/27/06:1740
WG	GELI	108.00	
WG	H-3	108.00	
WG	SR-90 (FAST)	140.00	

End of document

Charles, Rebecca

From: Charles, Rebecca

Sent: Friday, April 28, 2006 4:27 PM

To: 'Shaw, Kathy'; Julie Czech (jczech@craworld.com); 'edward.steinke@exeloncorp.com'

Subject: Acknowledgment H-3 project

Variance attached.

Rebecca Charles Teledyne Brown Engineering Project Manager (865) 934-0379 (865) 934-0396 (fax)

This email and any of its attachments may contain Teledyne Brown Engineering proprietary information, which is privileged, confidential, or subject to copyright belong to Teledyne Brown Engineering. This e-mail is intended solely for the use of the individual or entity to which it is addressed. If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents and attachments to this e-mail is strictly prohibited and may be unlawful. If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy and printout of this e-mail. Thank You

Internal Chain of Custody

Internal Chain of Custody ****************** Sample # L28431-1 Containernum 1 Analyst Prod H-3EJ Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 05/01/2006 15:12 099999 Sample Custodian 029964 Erin Jenkins Erin Jenkins 05/02/2006 14:11 099999 029964 Sample Custodian ******************* Sample # L28431-2 Containernum 1 Analyst Prod H-3 ЕJ Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 05/01/2006 15:12 099999 Sample Custodian 029964 Erin Jenkins 05/02/2006 14:11 029964 Erin Jenkins 099999 Sample Custodian *********************** Sample # L28431-3 Containernum 1 Prod Analyst H-3Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian Sample Custodian 05/01/2006 15:12 099999 029964 Erin Jenkins 05/02/2006 14:11 029964 Erin Jenkins 099999 Sample Custodian ************************* Sample # L28431-4 Containernum 1 Prod Analyst H-3EJ Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 05/01/2006 15:12 Sample Custodian 099999 029964 Erin Jenkins 05/02/2006 14:11 Erin Jenkins 029964 099999 Sample Custodian ********************* Sample # L28431-5 Containernum 1 Prod Analyst H-3 ΕJ GELI DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 05/01/2006 15:12 Sample Custodian 099999 029964 Erin Jenkins 05/02/2006 14:11 029964 Erin Jenkins 099999 Sample Custodian ***************** Sample # L28431-5 Containernum 2 Prod Analyst H-3 ΕJ

GELI

SR-90 (FAST)

DW

GK

Teledyne Brown Engineering
Internal Chain of Custody

**************************************	*****	**************************************	******	****
Relinquish Date Rel	inquish	Ву	Received By	
04/28/2006 00:00			099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************	****	**************************************	*******	****
Prod H-3		Analyst EJ		
GELI		DW		
SR-90 (FAST)		GK		
Relinquish Date Reli	inquish :	Ву	Received By	
04/28/2006 00:00			099999	Sample Custodian
05/01/2006 15:12	099999	Sample Custodian	029964	Erin Jenkins
05/02/2006 14:11	029964	Erin Jenkins	099999	Sample Custodian
**************************************	*****	**************************************	******	****
Prod H-3		Analyst EJ		
GELI		DW		
SR-90 (FAST)		GK		
Relinquish Date Reli	nquish l	Зу	Received By	
04/28/2006 00:00			099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************	*****	**************************************	******	****
Prod H-3		Analyst EJ		
GELI		DW		
SR-90 (FAST)		GK		
Relinquish Date Reli	nquish E	³ Y	Received By	
04/28/2006 00:00			099999	Sample Custodian
05/01/2006 15:12	099999	Sample Custodian	029964	Erin Jenkins
05/02/2006 14:11	029964	Erin Jenkins	099999	Sample Custodian
**************************************	*****	**************************************	*******	****
Prod H-3		Analyst EJ		
GELI		DW		

Teledyne Brown Engineering
Internal Chain of Custody

		Internal Chain of Custoo	ły	
**************************************	******	**************************************	******	*****
SR-90 (FAST)	GK			
Relinquish Date Re	linquish By		Received By	7
04/28/2006 00:00			099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************	******	**************************************	*****	*****
Prod H-3		lyst		
H-3 GELI	EJ			
SR-90 (FAST)	DW			
	GK			
Relinquish Date Rel 04/28/2006 00:00	rindnisu BA		Received By 099999	Sample Custodian
05/01/2006 15:12	099999	Sample Custodian	029964	Erin Jenkins
05/02/2006 14:11	029964	Erin Jenkins	099999	Sample Custodian
******		******		•
Sample # L28431-8		Containernum 2		
Prod H-3	Ana: EJ	lyst		
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Rel	inquish By		Received By	
04/28/2006 00:00			099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************	*****	**************************************	*******	****
Prod H-3	Anal EJ	Lyst		
GELI	D W			
SR-90 (FAST)	GK			
Relinquish Date Rel	inquish By		Received By	
04/28/2006 00:00			099999	Sample Custodian
05/01/2006 15:12	099999	Sample Custodian	029964	Erin Jenkins
05/02/2006 14:11	029964	Erin Jenkins	099999	Sample Custodian
******	****	****		

ample # L28431-9 Containernum 2
Prod Analyst

Internal Chain of Custody

**************************************	******	**************************************	********	*****
н-3	ЕJ			
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Rel	inquish By		Received By	
04/28/2006 00:00	-		099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************	******	**************************************	*******	****
Prod H-3	Anal EJ	yst		
GELI	D W			
SR-90 (FAST)	GK			
Relinquish Date Rel:	inquish By		Received By	
04/28/2006 00:00			099999	Sample Custodian
05/01/2006 15:12	099999	Sample Custodian	029964	Erin Jenkins
05/02/2006 14:11	029964	Erin Jenkins	099999	Sample Custodian
**************************************	******	************* Containernum 2	*****	****
Prod	Anal			
н-3	ЕJ			
GELI	DW			
SR-90 (FAST)				
	GK			
Relinquish Date Reli			Received By	
Relinquish Date Reli 04/28/2006 00:00			Received By 099999	Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06		Sample Custodian	-	Sample Custodian Donna Webb
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07	inquish By	Sample Custodian Donna Webb	099999	
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19	inquish By		099999 030854	Donna Webb
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00	ogeneer of the second s	Donna Webb	099999 030854 029965	Donna Webb Kelly Wright
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00	099999 030854 029965 030591 030854	Donna Webb Kelly Wright Greg Kinard Donna Webb	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00	099999 030854 029965 030591 030854	Donna Webb Kelly Wright Greg Kinard	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Relinquish Date Relinquish 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	099999 030854 029965 030591 030854	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Relinquish Date Relinquish 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	O99999 030854 029965 030591 030854 ***************	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	O99999 030854 029965 030591 030854 ************************************	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	O999999 030854 029965 030591 030854 ***********************************	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	O999999 030854 029965 030591 030854 ***********************************	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	O999999 030854 029965 030591 030854 ***********************************	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999 *********	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:00 05/01/2006 17:01 ************************************	099999 030854 029965 030591 030854 ************ Analy EJ DW GK nquish By	Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999 *******************************	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian *****

Internal Chain of Custody

**************************************	*****	**************************************	************	****
Prod H-3	Ana EJ	lyst		
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Rel:	inquish By		Received By	
04/28/2006 00:00			099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************	*****	**************************************	*****	****
Prod H-3		lyst		
GELI	DW			
SR-90 (FAST)	DW GK			
Relinquish Date Reli				
04/28/2006 00:00	rudursu pa		Received By 099999	Sample Custodian
	*****	**************************************		-
		_		
Prod	Ana	lyst		
Prod H-3	Ana: DW	lyst		
		lyst		
н-3	DW	lyst		
H-3 GELI SR-90 (FAST) Relinquish Date Reli	DW DW GK	lyst	Received By	
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00	DW DW GK Inquish By		099999	Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06	DW DW GK Inquish By	Sample Custodian	-	Sample Custodian Donna Webb
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07	DW DW GK Inquish By	Sample Custodian Donna Webb	099999	
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19	DW DW GK Inquish By	Sample Custodian Donna Webb Kelly Wright	099999 030854	Donna Webb
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01	DW DW GK Inquish By 099999	Sample Custodian Donna Webb	099999 030854 029965	Donna Webb Kelly Wright
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01	DW DW GK Inquish By 099999 030854 029965 030591 030854	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW DW GK Inquish By 099999 030854 029965 030591 030854	Sample Custodian Donna Webb Kelly Wright Greg Kinard	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW DW GK Inquish By 099999 030854 029965 030591 030854	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW DW GK Inquish By 099999 030854 029965 030591 030854 ************************************	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW DW GK Inquish By 099999 030854 029965 030591 030854 ************************************	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:01 05/01/2006 17:04 *************************** Sample # L28431-13 Prod H-3 GELI SR-90 (FAST) Relinquish Date Reli	DW DW GK Inquish By 099999 030854 029965 030591 030854 ************************************	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999 *******************************	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian ******
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb **********************************	099999 030854 029965 030591 030854 099999 *******************************	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian ******
H-3 GELI SR-90 (FAST) Relinquish Date Reli 04/28/2006 00:00 04/28/2006 14:06 04/28/2006 14:07 05/01/2006 16:19 05/01/2006 17:01 05/01/2006 17:04 ************************************	DW	Sample Custodian Donna Webb Kelly Wright Greg Kinard Donna Webb ***********************************	099999 030854 029965 030591 030854 099999 *******************************	Donna Webb Kelly Wright Greg Kinard Donna Webb Sample Custodian ******

GELI

DW

Internal Chain of Custody

*********************** Sample # L28431-13 Containernum SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 04/28/2006 14:06 Sample Custodian 099999 030854 Donna Webb 04/28/2006 14:07 030854 Donna Webb Kelly Wright 029965 05/01/2006 16:19 Kelly Wright 029965 030591 Greg Kinard 05/01/2006 17:00 Greg Kinard 030591 030854 Donna Webb 05/01/2006 17:01 Donna Webb 030854 099999 Sample Custodian *********************** Sample # L28431-14 Containernum 1 Prod Analyst H-3 DW GELI DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian *********************** Sample # L28431-14 Containernum 2 Prod Analyst H-3 DW GELI DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 04/28/2006 14:06 Sample Custodian 099999 030854 Donna Webb 04/28/2006 14:07 Donna Webb 030854 029965 Kelly Wright 05/01/2006 16:19 Kelly Wright 029965 030591 Greg Kinard 05/01/2006 17:00 Greg Kinard 030591 030854 Donna Webb 05/01/2006 17:01 Donna Webb 030854 099999 Sample Custodian ************************ Sample # L28431-15 Containernum 1 Prod Analyst H-3 DW **GELI** DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian ***************** Sample # L28431-15 Containernum 2 Prod Analyst H-3 DW GELI DW

Relinquish Date Relinquish By

GK

SR-90 (FAST)

Received By

Teledyne Brown Engineering Internal Chain of Custody

**************************************	******	**************************************	******	*****
Relinquish Date			Received By	
04/28/2006 00:00			099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
**************************************		**************************************	*******	****
Prod H-3	Anal <u>y</u> DW	rst		
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Reli	inquish By		Received By	
04/28/2006 00:00			099999	Sample Custodian
**************************************		**************************************	******	****
Prod H-3	Analy DW	rst		
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Reli				
04/28/2006 00:00	induran pa		Received By 099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb
05/01/2006 17:01	030854	Donna Webb	099999	Sample Custodian
******	*****	********		-
Sample # L28431-17	(Containernum 1		
Prod H-3	Analy DW	st		
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Reli	nquish By		Received By	
04/28/2006 00:00			099999	Sample Custodian
**************************************		************* Containernum 2	******	****
Prod	Analy	st		
H-3	DW			
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Reli 04/28/2006 00:00	nquish By		Received By 099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb

L28431 21 of 147 Page: 8 of 9

05/01/2006 16:19

029965

Kelly Wright

030591

Greg Kinard

Teledyne Brown Engineering

Internal Chain of Custody ****************** Sample # L28431-17 Containernum 2 Relinquish Date Received By 04/28/2006 14:07 Donna Webb 030854 029965 Kelly Wright 05/01/2006 16:19 Kelly Wright 029965 030591 Greg Kinard 05/01/2006 17:00 030591 Greg Kinard 030854 Donna Webb 05/01/2006 17:01 030854 Donna Webb 099999 Sample Custodian ************************ Sample # L28431-18 Containernum 1 Prod Analyst H-3 DW GELI DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian *********************** Sample # L28431-18 Containernum 2 Prod Analyst H-3 DW **GELI** DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 04/28/2006 14:06 099999 Sample Custodian 030854 Donna Webb 04/28/2006 14:07 Donna Webb 030854 029965 Kelly Wright 05/01/2006 16:19 Kelly Wright 029965 030591 Greg Kinard 05/01/2006 17:00 Greg Kinard 030591 030854 Donna Webb 05/01/2006 17:01 030854 Donna Webb 099999 Sample Custodian *********************** Sample # L28431-19 Containernum Prod Analyst H-3DW GELI DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian *********************** Sample # L28431-19 Containernum 2 Prod Analyst H-3 DW GELI DW SR-90 (FAST) GK Relinquish Date Relinquish By Received By 04/28/2006 00:00 099999 Sample Custodian 04/28/2006 14:06 099999 Sample Custodian 030854 Donna Webb 04/28/2006 14:07 Donna Webb 030854 029965 Kelly Wright

Teledyne Brown Engineering
Internal Chain of Custody

L28431 22 of 147 Page: 9 of 9

Sample # L28431-19 Containernum 2

Relinquish Date Received By

05/01/2006 17:00 030591 Greg Kinard 030854 Donna Webb

05/01/2006 17:01 030854 Donna Webb 099999 Sample Custodian

Sample # L28431-20 Containernum 1

Prod Analyst
H-3 DW

GELI DW

SR-90 (FAST) GK

Relinquish Date Relinquish By Received By

04/28/2006 00:00 099999 Sample Custodian

Donna Webb

Sample # L28431-20 Containernum 2

030854

Prod Analyst
H-3 DW

GELI DW

SR-90 (FAST) GK

05/01/2006 17:01

Relinquish Date	Relinquish By		Received By	
04/28/2006 00:00)		099999	Sample Custodian
04/28/2006 14:06	099999	Sample Custodian	030854	Donna Webb
04/28/2006 14:07	030854	Donna Webb	029965	Kelly Wright
05/01/2006 16:19	029965	Kelly Wright	030591	Greg Kinard
05/01/2006 17:00	030591	Greg Kinard	030854	Donna Webb

099999

Sample Custodian

Page 1 of 4

		L28431		
	****			*********
L28431-1	WG	WG-BYN-042606-SS-29	9	
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/28/06
Aliquot	H-3		EJ	05/02/06
Count Room	H-3		KOJ	05/03/06
*******	*****	********	******	********
L28431-2	WG	WG-BYN-042606-SS-31	<u>l</u>	
Process step	Prod		<u>Analyst</u>	Date
Login			RCHARLES	04/28/06
Aliquot	H-3		EJ	05/02/06
Count Room	H-3		КОЈ	05/03/06
*****	*****	*******	*****	******
L28431-3	WG	WG-BYN-042606-SS-33	}	
Process step	Prod		Analyst	Date
Login			RCHARLES	04/28/06
Aliquot	H-3		EJ	05/02/06
Count Room	H-3		KOJ	05/03/06
*******	*****	********	*****	******
L28431-4	WG	WG-BYN-042706-SS-34		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/28/06
Aliquot	H-3		EJ	05/02/06
Count Room	H-3		KOJ	05/03/06
*******	*****	*********	******	******
L28431-5	WG	WG-BYN-042706-SS-35		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/28/06
Aliquot	GELI		D₩	04/28/06
Aliquot	H-3		EJ	05/02/06
Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		KOJ	04/28/06
Count Room	H-3		KOJ	05/03/06
Count Room	SR-90	(FAST)	KOJ	05/05/06
*****	*****	*******	******	*****
L28431-6	WG	WG-BYN-042706-SS-36		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/28/06
Aliquot	GELI		DW	04/28/06
Aliquot	H-3		EJ	05/02/06
Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		KOJ	04/28/06
Count Room	Н-3		KOJ	05/03/06
Count Room	SR-90	(FAST)	KOJ	05/04/06
******	*****	*****	*****	*******
L28431-7	WG	WG-BYN-042706-SS-37		
_				
Process step	Prod		Analyst	Date
<u>Process step</u> Login			<u>Analyst</u> RCHARLES	<u>Date</u> 04/28/06

Page 2 of 4

L28431-7	WG	WG-BYN-042706-SS-37		
Aliquot	GELI		DW	04/28/06
Aliquot	H-3		EJ	05/02/06
Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		KOJ	04/28/06
Count Room	H-3		KOJ	05/04/06
Count Room	SR-90	(FAST)	KOJ	05/04/06
*******	****	********	*******	********
L28431-8	WG	WG-BYN-042706-SS-38		
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	04/28/06
Aliquot	GELI		DW	04/28/06
Aliquot	H-3		EJ	05/02/06
Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		KOJ	04/28/06
Count Room	H-3		KOJ	05/04/06
Count Room	SR-90	(FAST)	KOJ	05/04/06
			*****	*******
L28431-9	WG	WG-BYN-042706-SS-39		
Process step	<u>Prod</u>		Analyst	Date
Login	ODIT		RCHARLES	04/28/06
Aliquot	GELI		DW	04/28/06
Aliquot	H-3	(DT GT)	EJ	05/02/06
Aliquot Count Room	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		КОЈ	04/28/06
Count Room	H-3	(Fin cm)	КОЈ	05/04/06
	SR-90	(FAST)	КОЈ	05/04/06
L28431-10	WG	WG-BYN-042706-SS-40	**********	********
Process step	Prod	WG-DIN-042/00-55-40	Analyst	Date
Login			RCHARLES	<u>Date</u> 04/28/06
Aliquot	GELI		DW	04/28/06
Aliquot			DVV	U4/20/UD
Aliquot	H-3		F.T	
	H-3 SR-90	(FAST)	EJ	05/02/06
-	SR-90	(FAST)	GK	05/02/06 05/04/06
Count Room	SR-90 GELI	(FAST)	GK KOJ	05/02/06 05/04/06 04/28/06
Count Room Count Room	SR-90 GELI H-3		GK KOJ KOJ	05/02/06 05/04/06 04/28/06 05/04/06
Count Room Count Room Count Room	SR-90 GELI H-3 SR-90	(FAST)	GK KOJ KOJ KOJ	05/02/06 05/04/06 04/28/06 05/04/06 05/04/06
Count Room Count Room Count Room	SR-90 GELI H-3 SR-90	(FAST) *********	GK KOJ KOJ KOJ	05/02/06 05/04/06 04/28/06 05/04/06
Count Room Count Room Count Room ***********	SR-90 GELI H-3 SR-90	(FAST)	GK KOJ KOJ KOJ	05/02/06 05/04/06 04/28/06 05/04/06 05/04/06
Count Room Count Room Count Room ***********************************	SR-90 GELI H-3 SR-90 *****	(FAST) *********	GK KOJ KOJ KOJ	05/02/06 05/04/06 04/28/06 05/04/06 05/04/06 ************************************
Count Room Count Room Count Room ********* L28431-11 Process step	SR-90 GELI H-3 SR-90 *****	(FAST) *********	GK KOJ KOJ ******************************	05/02/06 05/04/06 04/28/06 05/04/06 05/04/06 ************************************
Count Room Count Room Count Room ******** L28431-11 Process step Login	SR-90 GELI H-3 SR-90 ******* WG Prod	(FAST) *********	GK KOJ KOJ KOJ **************************	05/02/06 05/04/06 04/28/06 05/04/06 ************************************
Count Room Count Room ******** L28431-11 Process step Login Aliquot	SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3	(FAST) *********	GK KOJ KOJ ********* Analyst RCHARLES DW	05/02/06 05/04/06 04/28/06 05/04/06 ************************************
Count Room Count Room ******** L28431-11 Process step Login Aliquot Aliquot	SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3	(FAST) ************************************	GK KOJ KOJ KOJ ********* Analyst RCHARLES DW EJ	05/02/06 05/04/06 04/28/06 05/04/06 05/04/06 ************************************
Count Room Count Room Count Room ******** L28431-11 Process step Login Aliquot Aliquot Aliquot	SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90	(FAST) ************************************	GK KOJ KOJ KOJ ************* Analyst RCHARLES DW EJ GK	05/02/06 05/04/06 04/28/06 05/04/06 ************************************
Count Room Count Room Count Room ******** L28431-11 Process step Login Aliquot Aliquot Aliquot Count Room	SR-90 GELI H-3 SR-90 ****** WG Prod GELI H-3 SR-90 GELI	(FAST) ************************************	GK KOJ KOJ KOJ *************** Analyst RCHARLES DW EJ GK KOJ	05/02/06 05/04/06 04/28/06 05/04/06 05/04/06 ************************************

Page 3 of 4

Process step Process Process step Process	*******	****	*******	****	******
RCHARLES	Process step	Prod		Analyst	Date
Aliquot	Login				
Aliquot SR-90 FAST)	Aliquot	GELI		DW	04/28/06
Count Room	Aliquot	H-3		DW	05/03/06
Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Login WG-BYN-042706-SS-43 THE PROCESS STEP PTO RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 04/28/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Login WG-BYN-042706-SS-44 THE Date Login WG-BYN-042706-SS-44 THE Date Login RCHARLES 04/28/06 04/28/06 Aliquot SR-90 (FAST) GK 05/04/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room <t< td=""><td>Aliquot</td><td>SR-90</td><td>(FAST)</td><td>GK</td><td></td></t<>	Aliquot	SR-90	(FAST)	GK	
Count Room SR-90 FAST KOJ OS/OS/OG	Count Room	GELI		KPW	
Note	Count Room	H-3		KOJ	05/04/06
Process step	Count Room	SR-90	(FAST)	KOJ	05/05/06
Process step Prod Analyst Date Login RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room H-3 KOJ 05/05/06 Count Room H-3 KOJ 05/04/06 Count Room H-3 KOJ 05/05/06 L28431-14 WG WG-BYN-042706-SS-44 WG MC128/06 Process step GELI DW 04/28/06 Aliquot H-3 Analyst 04/28/06 Aliquot H-3 KPW 04/28/06 Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room H-3 KOJ 05/04/06 Login KPW 04/28/06 Aliquot GELI KD	******	*****	*******	*****	*******
	L28431-13	WG	WG-BYN-042706-SS-43		
Aliquot	Process step	<u>Prod</u>		<u>Analyst</u>	<u>Date</u>
Aliquot	-			RCHARLES	04/28/06
Aliquot		GELI		DW	04/28/06
Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/05/06 Login Analyst Date Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room BR-3 KOJ 05/04/06 Aliquot GELI ROJ 05/04/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) KOJ 05/03/06 Count Room GELI KPW 04/28/06	=	H-3		DW	05/03/06
Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/05/06 ***********************************	Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room SR - 90 (FAST) KOJ 05/05/06	Count Room	GELI		KPW	04/28/06
Note	Count Room	H-3		KOJ	05/04/06
Process step			· ·		
Process step Prod Analyst Date Login RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 L28431-15 WG WG-BYN-042706-KD-26 WCHARLES 04/28/06 Aliquot H-3 DW 04/28/06 Aliquot SR-90 (FAST) GK 05/03/06 Aliquot SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ		*****	**********	*****	*******
RCHARLES		WG	WG-BYN-042706-SS-44		
Aliquot H-3		<u>Prod</u>		Analyst	Date
Aliquot	-			RCHARLES	04/28/06
Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************				DW	04/28/06
Count Room GELI KFW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************	-	H-3		DW	05/03/06
Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************	-		(FAST)	GK	05/04/06
Count Room SR-90 (FAST) KOJ 05/04/06 ************************************				KPW	04/28/06
No.				KOJ	05/04/06
L28431-15 WG WG-BYN-042706-KD-26 Analyst Date Login RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ************************************			•		
Process step Prod Analyst Date Login RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ************************************			******	******	********
RCHARLES			WG-BYN-042706-KD-26		
Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room SR-90 (FAST) KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************		<u>Prod</u>		<u>Analyst</u>	
Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************	_			RCHARLES	04/28/06
Aliquot SR-90 (FAST) GK 05/04/06 Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************	-			DW	04/28/06
Count Room GELI KPW 04/28/06 Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************	-			DW	05/03/06
Count Room H-3 KOJ 05/04/06 Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************			(FAST)		
Count Room SR-90 (FAST) KOJ 05/04/06 ***********************************					

L28431-16 WG WG-BYN-042706-KD-28 Process step Prod Analyst Date RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06			•		
Process step Prod Analyst Date Login RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06				*****	*********
Login RCHARLES 04/28/06 Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06			WG-BYN-042706-KD-28		
Aliquot GELI DW 04/28/06 Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06		Prod			
Aliquot H-3 DW 05/03/06 Aliquot SR-90 (FAST) GK 05/04/06	=	ar-			
Aliquot SR-90 (FAST) GK 05/04/06	-				
	-		(T. C. C. C. C. C. C. C. C. C. C. C. C. C.		
COURT KOOM GELI KPW 04/28/06			(FAST)		
	MOON TIMOO	GETT		KPW	04/28/06

Page 4 of 4

L28431-16	WG	WG-BYN-042706-KD-28		
Count Room	H-3		КОЈ	05/04/06
Count Room	SR-90	(FAST)	KOJ	05/04/06
********	*****	********	*****	*******
L28431-17	WG	WG-BYN-042706-KD-30		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/28/06
Aliquot	GELI		DW	04/28/06
Aliquot	H-3		DW	05/03/06
Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		KPW	04/29/06
Count Room	H-3		KOJ	05/04/06
Count Room		(FAST)	KOJ	05/04/06
********	*****	******	*****	*********
L28431-18	WG	WG-BYN-042706-KD-32		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/28/06
Aliquot	GELI		DW	04/28/06
Aliquot	H-3		DW	05/03/06
Aliquot	SR-90	(FAST)	GK	05/04/06
Count Room	GELI		K[P	04/28/06
Count Room	H-3		KOJ	05/04/06
				,,
Count Room	SR-90	(FAST)	KOJ	05/04/06
*****		·	KOJ	
************** L28431-19	***** WG	·	KOJ	05/04/06
**************************************	*****	*******	KOJ	05/04/06
**************************************	***** WG	*******	KOJ ***********	05/04/06
**************************************	***** WG	*******	KOJ ************************************	05/04/06 ************ Date
*********** L28431-19 Process step Login Aliquot Aliquot	***** WG <u>Prod</u>	*******	KOJ ********* Analyst RCHARLES	05/04/06 ************ Date 04/28/06
********** L28431-19 Process step Login Aliquot Aliquot Aliquot	WG Prod GELI H-3 SR-90	*******	KOJ ********* Analyst RCHARLES DW	05/04/06 ************ Date 04/28/06 04/28/06
********** L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room	****** WG Prod GELI H-3	**************************************	KOJ ******** Analyst RCHARLES DW DW	05/04/06 ************* Date 04/28/06 04/28/06 05/03/06
********** L28431-19 Process step Login Aliquot Aliquot Aliquot	WG Prod GELI H-3 SR-90	**************************************	KOJ ********* Analyst RCHARLES DW DW GK	05/04/06 *************** Date 04/28/06 04/28/06 05/03/06 05/03/06
********** L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room	WG Prod GELI H-3 SR-90 GELI H-3 SR-90	**************************************	KOJ ********* Analyst RCHARLES DW DW GK KPW KOJ KOJ	05/04/06 ***************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 05/04/06
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ***********************************	WG Prod GELI H-3 SR-90 GELI H-3 SR-90	**************************************	KOJ ********* Analyst RCHARLES DW DW GK KPW KOJ KOJ	05/04/06 **************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room **********************************	WG Prod GELI H-3 SR-90 GELI H-3 SR-90	**************************************	KOJ ********* Analyst RCHARLES DW DW GK KPW KOJ KOJ	05/04/06 ***************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 05/04/06
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ************* L28431-20 Process step	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ******	**************************************	KOJ ********** Analyst RCHARLES DW DW GK KPW KOJ KOJ ******************************	05/04/06 ***************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 05/04/06
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ************ L28431-20 Process step Login	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 *******	**************************************	KOJ ********** Analyst RCHARLES DW DW GK KPW KOJ KOJ	05/04/06 ****************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 05/04/06 ************************************
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ********** L28431-20 Process step Login Aliquot	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ****** WG Prod GELI	**************************************	KOJ ********** Analyst RCHARLES DW DW GK KPW KOJ KOJ ******************************	05/04/06 ****************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 05/04/06 ************************************
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ********** L28431-20 Process step Login Aliquot Aliquot	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ***** WG Prod GELI H-3	**************************************	KOJ ********** Analyst RCHARLES DW DW GK KPW KOJ KOJ *************** Analyst RCHARLES	05/04/06 ****************** Date 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 ************************************
********* L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room *********** L28431-20 Process step Login Aliquot Aliquot Aliquot	****** WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ***** WG Prod GELI H-3 SR-90	**************************************	KOJ ************ Analyst RCHARLES DW DW GK KPW KOJ KOJ ************ Analyst RCHARLES	Date 04/28/06 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 ************************************
********** L28431-19 Process step Login Aliquot Aliquot Count Room Count Room Count Room ********** L28431-20 Process step Login Aliquot Aliquot Aliquot Count C	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ***** WG Prod GELI H-3 SR-90 GELI H-3 GELI H-3 GELI	**************************************	KOJ *********** Analyst RCHARLES DW DW GK KPW KOJ KOJ ************ Analyst RCHARLES DW DW	Date 04/28/06 04/28/06 04/28/06 05/03/06 05/04/06 04/28/06 05/04/06 05/04/06 05/04/06 ************************************
********** L28431-19 Process step Login Aliquot Aliquot Aliquot Count Room Count Room Count Room ********* L28431-20 Process step Login Aliquot Aliquot Aliquot Count Room Count Room	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ***** WG Prod GELI H-3 SR-90 GELI H-3 GELI H-3	**************************************	KOJ ********** Analyst RCHARLES DW DW GK KPW KOJ KOJ ********** Analyst RCHARLES DW DW GK	05/04/06 ******************** Date 04/28/06 04/28/06 05/03/06 05/04/06 05/04/06 05/04/06 ******************** Date 04/28/06 05/04/06 05/04/06 05/04/06 05/04/06 05/04/06
********** L28431-19 Process step Login Aliquot Aliquot Count Room Count Room Count Room ********** L28431-20 Process step Login Aliquot Aliquot Aliquot Count C	WG Prod GELI H-3 SR-90 GELI H-3 SR-90 ***** WG Prod GELI H-3 GELI H-3 GELI H-3	**************************************	KOJ ************ Analyst RCHARLES DW DW GK KPW KOJ ********** Analyst RCHARLES DW DW GK KPW KOJ	Date 04/28/06 04/28/06 04/28/06 05/03/06 05/04/06 05/04/06 05/04/06 ************************************

Analytical Results Summary

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(MG) (MG) (MG) (MG) Flag Values Flag Values Flag Values Flag Values \supset Units Units Count Units Count Units Count Count Σ \mathbf{Z} Σ Ground Water Matrix: Ground Water Matrix: Ground Water Ground Water Count Time Time Count Time Count Time Count 9 9 9 02/03/06 05/03/06 05/03/06 Count Count Count Date Count Date Date Date Matrix: Matrix: Volume: % Moisture: Volume: % Moisture: Volume: Volume % Moisture: % Moisture: Reference Reference Reference Reference Date Date Date Date Aliquot Units Aliquot Units Aliquot Aliquot Units Units E Ξ E Collect Start: 04/26/2006 18:10 Collect Start: 04/27/2006 08:35 Collect Start: 04/26/2006 19:05 Collect Start: 04/26/2006 16:50 Aliquot Volume Aliquot Volume Aliquot Volume Volume Aliquot Receive Date: 04/28/2006 Receive Date: 04/28/2006 Receive Date: 04/28/2006 Receive Date: 04/28/2006 Collect Stop: Collect Stop: Collect Stop: Collect Stop: Run # Run Run Run # # Units Units Units Units pCi/L pCi/L pCi/L 1.58E+02 1.58E+02 1.58E+02 MDC MDC MDC MDC Uncertainty Uncertainty Uncertainty Uncertainty 9.50E+01 9.69E+01 9.80E+01 2 Sigma 2 Sigma 2.71E+01 -8.31E+00 1.04E+01 Activity Activity Conc Activity Conc Activity Conc Conc WG-BYN-042606-SS-33 WG-BYN-042706-SS-34 WG-BYN-042606-SS-29 Sample ID: WG-BYN-042606-SS-31 2010 SOP# SOP# #dos SOP# L28431-2 L28431-3 L28431-4 L28431-1 Sample ID: Sample ID: Sample ID: LIMS Number: LIMS Number: LIMS Number: LIMS Number: Station: Description: Station: Description: Station: Description: Station: Description: Radionuclide Radionuclide Radionuclide Radionuclide Kathy Shaw H-3 H-3 H-3

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

 \supset

Σ

9

05/03/06

Ē

10

pCi/L

1.57E+02

9.07E+01

-6.43E+01

2010

MDC - Minimum Detectable Concentration

17

Page 1 of

Low recovery High recovery High Spec

Activity concentration exceeds MDC and 3 sigmä, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Station: Collect Stop: Description: Activity Uncertainty MDC Units Run Aliquol adionuclide SOP# Conc 2 Sigma MDC Units # Volum 3 2010 6.72E+01 1.01E+02 1.59E+02 pCi/L 450 V-54 2007 4.88E-01 1.80E+00 pCi/L 3.03E+00 V-58 2007 4.88E-01 1.80E+00 pCi/L 3525.73 J-58 2007 1.30E+00 3.03E+00 pCi/L 3525.73 J-58 2007 1.30E+00 3.05E+00 pCi/L 3525.73 J-58 2007 1.30E+00 3.05E+00 pCi/L 3525.73 J-60 2007 1.24E+00 3.05E+00 pCi/L 3525.73 J-58 2007 1.44E+00 3.12E+00 pCi/L 3525.73 J-59 2007 1.44E+00 3.04E+00 pCi/L 3525.73 J-134 2007	Collect Start: 04/27/2006 09:00	,		Ground Water	ĸ		(MC)
Activity Uncertainty MDC I 20P# Conc 2 Sigma MDC I 2010 6.72E+01 1.01E+02 1.59E+02 pC 2018 3.63E-02 6.78E-01 1.19E+00 pC 2007 4.88E-01 1.80E+00 pC 2007 -1.88E+00 1.82E+00 2.80E+00 pC 2007 1.30E+00 3.40E+00 pC pC 2007 1.24E+00 3.6E+00 pC 2007 -1.24E+00 3.12E+00 pC 2007 1.44E+00 3.12E+00 5.21E+00 pC 2007 1.44E+00 3.04E+00 pC 2007 7.01E-01 1.81E+00 3.06E+00 pC 2007 2.55E+00 6.53E+00 1.06E+01 pC	9000/80/	W %	Volume: % Moisture:				
Activity Uncertainty MDC Units 2010 6.72E+01 1.01E+02 1.59E+02 pCi/L 2010 6.72E+01 1.01E+02 1.59E+02 pCi/L 2007 4.88E-01 1.80E+00 3.03E+00 pCi/L 2007 -1.88E+00 1.82E+00 2.80E+00 pCi/L 2007 1.30E+00 3.40E+00 pCi/L 2007 1.30E+00 3.40E+00 pCi/L 2007 -1.24E+00 3.05E+00 pCi/L 2007 -1.24E+00 3.12E+00 2.78E+00 pCi/L 2007 -1.24E+00 3.12E+00 2.78E+00 pCi/L 2007 -1.34E+00 3.12E+00 pCi/L 2007 1.4E+00 3.05E+00 pCi/L 2007 2.54E-01 3.04E+00 pCi/L 2007 2.55E+00 6.53E+00 pCi/L							
Conc 2 Sigma MDC Units 6.72E+01 1.01E+02 1.59E+02 pCi/L 3.63E-02 6.78E-01 1.19E+00 pCi/L 4.88E-01 1.80E+00 3.03E+00 pCi/L -1.88E+00 1.82E+00 2.80E+00 pCi/L 1.30E+00 3.40E+00 pCi/L pCi/L 9.42E-01 1.79E+00 3.05E+00 pCi/L -1.24E+00 3.81E+00 6.18E+00 pCi/L -2.94E-01 1.72E+00 2.78E+00 pCi/L 6.13E-01 3.04E+00 pCi/L 7.01E-01 1.81E+00 3.03E+00 pCi/L 7.01E-01 1.81E+00 3.06E+00 pCi/L -2.55E+00 6.53E+00 1.06E+01 pCi/L	Aliquot Aliquot	Reference	Count	Count	Count		
6.72E+01 1.01E+02 1.59E+02 3.63E-02 6.78E-01 1.19E+00 4.88E-01 1.80E+00 3.03E+00 -1.88E+00 1.82E+00 2.80E+00 1.30E+00 3.40E+00 5.74E+00 9.42E-01 1.79E+00 3.05E+00 -1.24E+00 3.81E+00 6.18E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01		Date	Date	Time	Units	Flag Values	sər
3.63E-02 6.78E-01 1.19E+00 4.88E-01 1.80E+00 3.03E+00 -1.88E+00 1.82E+00 2.80E+00 1.30E+00 3.40E+00 5.74E+00 9.42E-01 1.79E+00 3.05E+00 -1.24E+00 3.81E+00 6.18E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.05E+00 7.01E-01 1.81E+00 3.06E+01 -2.55E+00 6.53E+00 1.06E+01	10 ml		05/03/06	09	Σ	Ω	
4.88E-01 1.80E+00 3.03E+00 -1.88E+00 1.82E+00 2.80E+00 1.30E+00 3.40E+00 5.74E+00 9.42E-01 1.79E+00 3.05E+00 -1.24E+00 3.81E+00 2.78E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 3.03E+00 6.13E-01 3.04E+00 3.06E+00 7.01E-01 1.81E+00 3.06E+01	450 ml	04/27/06 09:00	90/50/50	300	M	D	
-1.88E+00 1.82E+00 2.80E+00 1.30E+00 3.40E+00 5.74E+00 9.42E-01 1.79E+00 3.05E+00 -1.24E+00 3.81E+00 6.18E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.05E+00 7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	ם	No
1.30E+00 3.40E+00 5.74E+00 9.42E-01 1.79E+00 3.05E+00 -1.24E+00 3.81E+00 6.18E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	n	No
9.42E-01 1.79E+00 3.05E+00 -1.24E+00 3.81E+00 6.18E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+01 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	Ω	No
-1.24E+00 3.81E+00 6.18E+00 -2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+01 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	n	No
-2.94E-01 1.72E+00 2.78E+00 1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	Ω	No
1.44E+00 3.12E+00 5.21E+00 6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	n	No
6.13E-01 3.04E+00 3.03E+00 7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00	04/28/06	23400	Sec	D	No No
7.01E-01 1.81E+00 3.06E+00 -2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	D	No
-2.55E+00 6.53E+00 1.06E+01	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	ם	οN
	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	'n	No
2007 2.63E+00 2.18E+00 3.89E+00 pCi/L	3525.73 ml	04/27/06 09:00 04/28/06	04/28/06	23400	Sec	Ŋ	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17 Jo

Page 2

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification Low recovery High recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Station: Description: Activity Uncertainty Radionuclide SOP# Conc 2 Sigma H-3 2010 6.71E+01 9.83E+01 FOTAL SR 2018 1.02E+00 9.16E-01 MN-54 2007 6.40E-01 2.02E+00 CO-58 2007 1.08E+00 1.96E+00 FE-59 2007 1.33E+01 5.0E+00 ZN-65 2007 1.33E+01 5.50E+00 ZN-65 2007 1.33E+01 5.50E+00 ZR-95 2007 -9.12E-02 3.82E+00 ZR-95 2007 -9.12E-02 3.82E+00 CS-134 2007 -1.18E-01 2.30E+00 CS-137 2007 -1.18E-01 2.30E+00 CS-137 2007 -1.18E-01 2.30E+00 CS-137 2007 -1.88E-01 2.30E+00 CS-137 2007 -1.88E-01 2.30E+00 CS-137 2007 -1.88E-01 2.30E+00			Collect State. 04/2/12/00 10:13	7		Matila. Olduna water	טחוום יי מני	τ.		
Bescription: S Number: L28431-6 Solution SOP# Conc 2 L SR Conc 2 L SR Coll 6.71E+01 L SR 2018 1.02E+00 L SR 2007 6.40E-01 2007 1.08E+00 2007 1.08E+00 2007 1.33E+01 2007 2007 1.34E+01 2007 2007 1.14E+01 2007 2007 1.14E+01 2007 1.14E+01 2007 1.18E-01		Collect Stop:				Volume:				
Number: L28431-6		Receive Date: 04/28/2006	04/28/2006		W%	% Moisture:				
Activity Un										
L. SR 2010 6.71E+01 L. SR 2018 1.02E+00 2007 6.40E-01 2007 1.08E+00 2007 2.35E+00 2007 1.38E+00 2007 1.33E+01 2007 2.007 1.32E+01 2007 2.007 2.00E+00 2007 2.007 1.14E+01 2007 2.007 1.14E+01 2007 2.007 3.43E+00	Uncertainty MDC	Run Units #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values	nes
L SR 2010 0.71E+01 2018 1.02E+00 2007 6.40E-01 2007 1.08E+00 2007 2.35E+00 2007 1.48E+00 2007 1.33E+01 2007 2.90E+00 2007 1.3E+01 2007 2.007 2.00F+00 2007 2.007 2.00F+00 2007 2.007 2.00F+00 2007 2.007 3.43E+01	0.02E+01 1.54E+03	T/i/I	10	m.		05/03/06	09	×	n	
2007 6.40E-01 2007 6.40E-01 2007 1.08E+00 2007 2.35E+00 2007 1.48E+00 2007 1.33E+01 2007 5.90E+00 2007 5.90E+00 2007 5.90E+00 2007 1.14E+01 2007 1.14E+01 2007 2.35E+00 2007 2.35E+00 2007 2.35E+00 2007 3.43E+00	- -	pCi/I	450	I I	04/27/06 10:15	05/04/06	100	Σ	Ω	
2007 0.401-01 2007 1.08E+00 2007 1.38E+01 2007 1.33E+01 2007 1.33E+01 2007 5.90E+00 2007 -9.12E-02 4 2007 -1.4E+01 7 2007 -1.88E-01 0 2007 3.43E+00		pCi/L	3585.9	m m	04/27/06 10:15	04/28/06	23530	Sec	<u> </u>	No
2007 2.35E+00 2007 1.48E+00 2007 1.33E+01 2007 1.33E+01 2007 5.90E+00 2007 -9.12E-02 4 2007 -1.4E+01 7 2007 -1.88E-01 0 2007 3.43E+00	-	pCi/L	3585.9	lm	04/27/06 10:15 04/28/06	04/28/06	23530	Sec	n	No
2007 1.48E+00 2007 1.33E+01 2007 1.33E+01 2007 5.90E+00 2007 -9.12E-02 4 2007 -1.4E+01 7 2007 -1.88E-01 0 2007 3.43E+00	-	pCi/L	3585.9	Ħ	04/27/06 10:15	04/28/06	23530	Sec	Ω	No
2007 1.33E+01 2007 1.33E+01 2007 5.90E+00 2007 -9.12E-02 2007 1.14E+01 7 2007 1.48E-01	-	pCi/L	3585.9	lm	04/27/06 10:15	04/28/06	23530	Sec	n	No
1007 5.90E+00 2007 5.90E+00 2007 -9.12E-02 2007 1.14E+01 2007 1.88E-01 2007 3.43E+00	-	pCi/L	3585.9	lm	04/27/06 10:15	04/28/06	23530	Sec	*N	No
2007 -9.12E-02 2007 -9.12E-02 7 2007 1.14E+01 2007 -1.88E-01 0 2007 3.43E+00	-	pCi/L	3585.9	Im	04/27/06 10:15	04/28/06	23530	Sec	*n	No
7 2007 1.14E+01 7 2007 -1.88E-01 0 2007 3.43E+00	:	pCi/L	3585.9	lm	04/27/06 10:15	04/28/06	23530	Sec	Ŋ	No
2007 -1.88E-01 2007 3.43E+00	-	pCi/L	3585.9	lm	04/27/06 10:15	04/28/06	23530	Sec	*N	No
2007 3.43E+00	-	pCi/L	3585.9	ш	04/27/06 10:15	04/28/06	23530	Sec	ם	No
	-	pCi/L	3585.9	mi	04/27/06 10:15	04/28/06	23530	Sec	n	No
1 A-140 2.56E+00	-	pCi/L	3585.9	m]	04/27/06 10:15	04/28/06	23530	Sec	D.	No
2007	3.57E+00 6.06E+00	pCi/L	3585.9	m	04/27/06 10:15	04/28/06	23530	Sec	+	Yes

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17 Jo

Page 3

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Low recovery High recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Collect Start: 04/27/2006 11:20 WG-BYN-042706-SS-37 Sample ID:

Kathy Shaw

Volume: % Moisture:

(MG)

Ground Water

Matrix:

å å S_N å å å S_N S ^oZ å Flag Values * * * \supset \supset \Box \supset \Box \supset \supset Units Count Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Sec Σ 76936 76936 76936 76936 Count 76936 76936 76936 76936 76936 76936 Time 76936 100 9 04/28/06 04/28/06 04/28/06 04/28/06 04/28/06 05/04/06 04/28/06 04/28/06 04/28/06 04/28/06 04/28/06 04/28/06 05/04/06 Count Date 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 04/27/06 11:20 Reference Date Aliquot Units E ᄪ ш Ξ Ξ ᄪ 핕 E Ξ Ш 핕 Volume 3576.52 3576.52 3576.52 3576.52 3576.52 Aliquot 3576.52 3576.52 3576.52 Receive Date: 04/28/2006 3576.52 3576.52 450 Collect Stop: Run # Units pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L 1.53E+02 2.67E+00 5.08E+00 2.67E+00 9.81E+00 3.24E+00 4.52E+00 5.84E+00 3.04E+00 2.65E+00 1.03E+01 1.44E+00 MDC 2.99E+00 1.66E+00 1.75E+00 3.87E+00 6.20E+00 1.60E+00 1.83E+00 5.27E+00 2.99E+00 2.24E+00 Uncertainty 9.87E+01 8.25E-01 3.65E+00 1.02E+00 2.51E+00 7.62E+01 1.27E+01 1.64E+00 9.61E+01 2.97E+00 4.69E+00 -8.47E-01 -6.40E-01 Activity Conc 2007 2007 2007 2007 2007 2007 2007 2007 2007 L28431-7 LIMS Number: Station: Description: Radionuclide TOTAL SR CS-134 CS-137 BA-140 59-NZ NB-95 ZR-95 MN-54 CO-58 CO-60 FE-59

3576.52

pCi/L

3.39E+00

2.03E+00

1.19E+00

LA-140

**** Results are reported on an as received basis No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

17 Jo

Page 4

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

Bolded text indicates reportable value. High recovery

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

(MG) Matrix: Ground Water Volume: % Moisture: Collect Start: 04/27/2006 12:35 Receive Date: 04/28/2006 Collect Stop: Sample ID: WG-BYN-042706-SS-38 LIMS Number: L28431-8 Station: Description:

	man to deliver	Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	i	ali prilonji na seleji on
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	
H-3	2010	9.62E+01	1.03E+02	1.59E+02	pCi/L		10	m		05/04/06	09	M	n	acra otenore d
TOTALSR	2018	3.11E-02		1.31E+00	pCi/L		450	m	04/27/06 12:35	05/04/06	100	M	n	
MN-54	2007	2.26E+00	3.26E+00	5.55E+00	pCi/L		3568.1	ш	04/27/06 12:35	04/28/06	23736	Sec	No No	
CO-58	2007	1.01E+00	1	5.21E+00	pCi/L		3568.1	m	04/27/06 12:35	04/28/06	23736	Sec	No No	ĺ
FE-59	2007	6.76E+00	5.92E+00	1.02E+01	pCi/L		3568.1	ш	04/27/06 12:35	04/28/06	23736	Sec	No No	
09-00	2007	8.00E-02		5.57E+00	pCi/L		3568.1	m	04/27/06 12:35	04/28/06	23736	Sec	U No	
2N-V2	2007	6.21E+01	1.04E+01	1.88E+01	pCi/L		3568.1	m	04/27/06 12:35	04/28/06	23736	Sec	U* No	
NR-95	2007	1.47E+01		6.77E+00	pCi/L		3568.1	m	04/27/06 12:35	04/28/06	23736	Sec	U* No	
ZR-95	2007	8.15E-01	5.95E+00	9.10E+00	pCi/L		3568.1	ш	04/27/06 12:35	04/28/06	23736	Sec	U	
CS-134	2007	5.69E+01	7.58E+00	9.63E+00	pCi/L		3568.1	m	04/27/06 12:35	04/28/06	23736	Sec	U*	Constitute of
CS-137	2007	3.65E+00		5.96E+00	pCi/L		3568.1	III	04/27/06 12:35	04/28/06	23736	Sec	U No	
BA-140	2007	4.96E+00	1.20E+01	2.02E+01	pCi/L		3568.1	m	04/27/06 12:35	04/28/06	23736	Sec	No No	
LA-140	2007	1.89E+00	3.70E+00	6.36E+00	pCi/L		3568.1	lm	04/27/06 12:35	04/28/06	23736	Sec	U No	

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

17 Jo

Page

Flag Values

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

High Spec

High recovery Low recovery

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Sample ID: WG-BYN-042706-SS-39	-BYN-042700	6-SS-39			Collect	Start: 0	Collect Start: 04/27/2006 13:35	35	·	Matrix: Ground Water	onnd Wat	b		§ (×
Station:					Collect Stop:	t Stop:				Volume:				
Description:					Receive	Date: 0	Receive Date: 04/28/2006		N %	% Moisture:				
LIMS Number: L28431-9	431-9													
Radionuclide	#dos	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values	ø
11.2	2010	7.24E±01	1 00E+02	1.57E+02	nCi/L		10	lm		05/04/06	09	Σ	Ω	
TOTAL SP	2010	-3 39F-02	_	1.54E+00	pCi/L		450	m	04/27/06 13:35	05/04/06	100	Σ	U	
NOTAL ON	2002	-4 90E-01	1 98E+00	3.39E+00	pCi/L		3591.79	Im.	04/27/06 13:35 04/28/06	04/28/06	23840	Sec	n	No
MIN-3+	2007	3 94E-01	2.01E+00	3.43E+00	pCi/L		3591.79	m	04/27/06 13:35 04/28/06	04/28/06	23840	Sec	N D	No
EE_50	2007	-5.18E-01	3.58E+00	6.06E+00	pCi/L		3591.79	핕	04/27/06 13:35	04/28/06	23840	Sec	N D	% %
09-00	2007	-2 86E-01	1.82E+00	3.15E+00	pCi/L		3591.79	lm	04/27/06 13:35	04/28/06	23840	Sec	2	9 8
7N-65	2007	2 16E+01	\$ 74E+00	1.01E+01	pCi/L		3591.79	m	04/27/06 13:35	04/28/06	23840	Sec	*1	S S
NB-95	2007	6.82E+00	2.46E+00	4.08E+00	pCi/L		3591.79	m	04/27/06 13:35	04/28/06	23840	Sec	*5	% No
ZR-95	2007	-4.90E-01		5.65E+00	pCi/L		3591.79	m	04/27/06 13:35	04/28/06	23840	Sec		9 2
CS-134	2007	1.98E+01	3.48E+00	5.30E+00	pCi/L		3591.79	ш	04/27/06 13:35	04/28/06	23840	Sec	*b	_S
CS-137	2007	1.11E+00	2.15E+00	3.73E+00	pCi/L		3591.79	m	04/27/06 13:35	04/28/06	23840	Sec	Z D	2 2
BA-140	2007	8.18E+00	7.18E+00	1.29E+01	pCi/L		3591.79	lm	04/27/06 13:35	04/28/06	23840	Sec		0N
1 A 140	2000	2 73E-01	L	4.0117.+00	nCi/I		3591.79	Ē	04/27/06 13:35	04/28/06	23840	Sec		°N

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17

Page 6 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values U =

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(WG) Matrix: Ground Water Volume: % Moisture: Collect Start: 04/27/2006 13:35 Receive Date: 04/28/2006 Collect Stop: WG-BYN-042706-SS-40 LIMS Number: L28431-10 Sample ID: Description: Station: Kathy Shaw

							-			7		7	
	- salain in	Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Keterence	Count			Flag Value
Radionuclide	#dOS	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Ime	Units	riag values
T. 3	2010	2.01E+02	1.10E+02	1.59E+02	pCi/L		10	Ħ		05/04/06	09	Σ	+ High
TOTAL SB	2018	2 02E-01		1.45E+00	pCi/L		450	III	04/27/06 13:35	05/04/06	100	M	n
MAI SA	2002	7 56F-01	1	3.96E+00	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	No U
CO-58	2007	2.23E+00		4.11E+00	pCi/L		3570.94	lm.	04/27/06 13:35	04/28/06	23958	Sec	U No
FE-50	2007	-4.15E+00		7.28E+00	pCi/L		3570.94	ш	04/27/06 13:35	04/28/06	23958	Sec	No
(C-1)	2007	6.64E-01		4.17E+00	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	U No
7N 65	2007	1 94F+01		1.16E+01	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	U* No
SO-NZ	2007	6.05E+00		4.55E+00	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	U* No
7P-05	2007	-2 34E-01		6.81E+00	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	U No
CS-134	2007	2 33E+01		6.23E+00	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	U* No
CS-137	2007	4.74E-01		4.24E+00	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	
BA-140	2007	1.65E-01	9.06E+00	1.48E+01	pCi/L		3570.94	m	04/27/06 13:35	04/28/06	23958	Sec	
I.A.140	2007	2.14E+00	2.91E+00	5.06E+00	pCi/L		3570.94	ml	04/27/06 13:35	04/28/06	23958	Sec	No I

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

17 oę

Page 7

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Collect Start: 04/27/2006 14:55

Sample ID: WG-BYN-042706-SS-41

Kathy Shaw

Matrix: Ground Water

(WG)

Description:										.01.1.0.0				
					Receive	5 Date: 04.	Receive Date: 04/28/2006		% Moisture:	oistuic.				
LIMS Number: L28431-11	-11													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag	Flag Values
	2010	7 29F±01	9.84E+01	1.53E+02	pCi/L		10	m		05/04/06	09	M	Ŋ	
TOTAL SP	2018	-1 90E-02		1.74E+00	pCi/L		450	ᄪ	04/27/06 14:55	90/50/50	300	M	ם	
NO.	2007	2.40E+00		4.08E+00	pCi/L		3589.77	lm	04/27/06 14:55		24040	Sec	n	% ;
	2007	-2.67E+00	2.45E+00	3.78E+00	pCi/L		3589.77	ml	04/27/06 14:55		24040	Sec	n :	No :
	2007	3.31E+00	4.58E+00	7.81E+00	pCi/L		3589.77	ш	04/27/06 14:55	- 1	24040	Sec))	N0 .7
	2007	8.40E-01	2.44E+00	4.13E+00	pCi/L		3589.77	ш	04/27/06 14:55	04/28/06	24040	Sec		0N .
	2007	2.57E+01		1.18E+01	pCi/L		3589.77	lm	04/27/06 14:55 04/28/06	04/28/06	24040	Sec	*	0N
	2007	6.16E+00		4.56E+00	pCi/L		3589.77	m	04/27/06 14:55		24040	Sec	*0	oN ;
	2007	1.40E+00	4.51E+00	6.83E+00	pCi/L		3589.77	m	04/27/06 14:55	04/28/06	24040	Sec	D	oN N
	2007	3.36E+01		6.91E+00	pCi/L		3589.77	m	04/27/06 14:55	04/28/06	24040	Sec	*	oN.
	2007	3.20E+00		4.57E+00	pCi/L		3589.77	m	04/27/06 14:55	04/28/06	24040	Sec	n	No No
	2007	-8.32E-01		1.40E+01	pCi/L		3589.77	ш	04/27/06 14:55 04/28/06	04/28/06	24040	Sec	n ;	°N ;
And the second s	2007	1.65E+00	2.81E+00	4.78E+00	pCi/L		3589.77	ml	04/27/06 14:55	04/28/06	24040	Sec	0	No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17 oę

Page 8

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification
Low recovery
High recovery 11 11 High Spec L H

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(MG) Flag Values \Box Count Units Ground Water Count Time 51695 9 04/28/06 05/04/06 02/02/06 Count Date Matrix: Volume: % Moisture: 04/27/06 16:00 04/27/06 16:00 Reference Date Aliquot Units Ē Ē 핍 Collect Start: 04/27/2006 16:00 Volume Aliquot 3579.43 Receive Date: 04/28/2006 450 Collect Stop: Run # Units pCi/L pCi/L 1.18E+00 2.22E+00 MDC 1.33E+00 Uncertainty 9.76E+01 6.82E-01 2.67E-01 8.01E+01 Activity Conc WG-BYN-042706-SS-42 L28431-12 Sample ID: LIMS Number: Station: Description: Radionuclide Kathy Shaw TOTAL SR

Yes

ž

 \supset \supset

51695

04/28/06

04/27/06 16:00 04/27/06 16:00

3579.43 3579.43 3579.43 3579.43 3579.43 3579.43

pCi/L

4.36E+00 2.27E+00

2.51E+00 .80E+00

3.00E+00

7.71E-01

1.32E+00

3.08E-01 2.81E-01

2007 2007 2007 2007 2007 2007 2007 2007 2007

MN-54

CO-58 FE-59 09-00

2.21E+00

pCi/L

DCi/L

pCi/L pCi/L pCi/L

5.77E+00

2.28E+00

1.33E+00 2.29E+00 2.06E+00 1.46E+00

2.03E+00

3.64E+00

9.23E+00

SN-65 NB-95 ZR-95

3.72E+00

04/27/06 16:00

E E

3579.43

Sec Sec Sec

51695

04/28/06

8 N N_o

> \supset \supset

Sec

51695

04/28/06 04/28/06 04/28/06

04/27/06 16:00 04/27/06 16:00 04/27/06 16:00

04/27/06 16:00

Ē 핕 Ξ Έ E 핔 표

Sec

51695

Š

*

Sec

51695

04/28/06

51695

04/28/06

S N å Š

*

Sec Sec Sec

51695

 \Box \supset \supset

51695

04/28/06

04/27/06 16:00 04/27/06 16:00

3579.43

pCi/L pCi/L pCi/L pCi/L

2.82E+00 2.48E+00 3579.43 3579.43 3579.43

51695 51695 51695

04/28/06 04/28/06 04/28/06

> 04/27/06 16:00 04/27/06 16:00

E E

pCi/L

2.76E+00

1.68E+00

5.02E+00

4.32E-01

1.64E+00

6.77E+00

CS-134 CS-137

1.12E-01

3.68E+00

2.55E+00

5.12E+00

1.94E-01

LA-140 BA-140

TH-228

8.15E+00

Yes

Sec

Sec

**** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum Yes = Peak identified in gamma spectrum

MDC - Minimum Detectable Concentration

17 oę

Page 9

Activity concentration exceeds MDC and 3 sigma; peak identified (gamma only) High Spec

Flag Values

Bolded text indicates reportable value.

High recovery Low recovery

Compound/Analyte not detected or less than 3 sigma

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Station: Description: LIMS Number: L28431-13	3431-13)))			Collec	Collect Stop:	Collect Stop:		•	Volume:				
Description: LIMS Number: L28	3431-13													
LIMS Number: L28	3431-13				Receiv	e Date: 0.	Receive Date: 04/28/2006		% W	% Moisture:				
;		Activity	Uncertainty	Jun Jun	I Inite	Run "	Aliquot	Aliquot	Reference Date	Count	Count	Count Units	Flag	Flag Values
Radionuclide	#AOS	Conc	2 Sigma	MIDC	CIIIIS	ŧ	A OIMING	OIIIIS	Date	Date			- 11	
H_3	2010	2.69E+01	9.44E+01	1.52E+02	pCi/L		10	ם		05/04/06	09	Σ	n	
TOTAL SR	2018	1.33E-02	7.13E-01	1.25E+00	pCi/L		450	m	04/27/06 16:15	90/50/50	300	Σ	n	
MN-54	2007	7.08E-01	1.17E+00	1.98E+00	pCi/L		3596.76	П	04/27/06 16:15	04/28/06	51817	Sec	ח	% %
CO-58	2007	-1.12E-01	1.17E+00	1.89E+00	pCi/L		3596.76	m	04/27/06 16:15	04/28/06	51817	Sec	n	No
FE_50	2007	4.21E+00	2.28E+00	4.01E+00	pCi/L		3596.76	ш	04/27/06 16:15	04/28/06	51817	Sec	* 5	No
09-00	2007	5 54E-02	1.23E+00	2.04E+00	pCi/L		3596.76	ш	04/27/06 16:15	04/28/06	51817	Sec	n	No
59-NZ	2007	5.28E+00	2.55E+00	4.51E+00	pCi/L		3596.76	ш	04/27/06 16:15	04/28/06	51817	Sec	*h	No No
NR-95	2007	9.70E-01	1.14E+00	1.92E+00	pCi/L		3596.76	m	04/27/06 16:15	04/28/06	51817	Sec	n	%
ZR-95	2007	-1.76E+00	2.02E+00	3.21E+00	pCi/L		3596.76	ml	04/27/06 16:15		51817	Sec	n	No.
CS-134	2007	3.71E+00	2.50E+00	2.09E+00	pCi/L		3596.76	ш	04/27/06 16:15	04/28/06	51817	Sec	n	No No
CS-137	2007	1.17E+00		2.14E+00	pCi/L		3596.76	III	04/27/06 16:15	04/28/06	51817	Sec	n	No
BA-140	2007	2.12E-01	4.24E+00	6.99E+00	pCi/L		3596.76	m	04/27/06 16:15	04/28/06	51817	Sec	n	No
L.A-140	2007	5.51E-02	1.51E+00	2.49E+00	pCi/L		3596.76	m	04/27/06 16:15	04/28/06	51817	Sec	Ω	No
TH-228	2007	3.68E+00	2.36E+00	3.19E+00	pCi/L		3596.76	m	04/27/06 16:15	04/28/06	51817	Sec	+	Yes

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

17

Page 10 of

Low recovery High recovery

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

High Spec

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(MG) Matrix: Ground Water Volume: % Moisture: Collect Start: 04/27/2006 17:45 Receive Date: 04/28/2006 Collect Stop: WG-BYN-042706-SS-44 LIMS Number: L28431-14 Sample ID: Station: Description: Kathy Shaw

							ŀ				,	,		
		Activity	Activity Uncertainty			Run		Aliquot	×	Count		Count	Tolan Wolling	
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	riag vaines	
ПЗ	2010	3.26E±03	3.67E+02	2.40E+02	pCi/L		10	lm		05/04/06	20.88	Σ	+ High	
TOTAL SR	2018	5.56E-01		1.12E+00	pCi/L		450	lm	04/27/06 17:45	05/04/06	100	Σ	U	COLUMN TO 1444 200
MN-54	2007	1.94E-01		2.53E+00	pCi/L		3588.92	m	04/27/06 17:45	04/28/06	51909	Sec	No U	0
CO58	2007	-1.77E-01		2.59E+00	pCi/L		3588.92	m	04/27/06 17:45	04/28/06	51909	Sec	No No	0
FE-59	2007	2.66E+00		4.97E+00	pCi/L		3588.92	m	04/27/06 17:45	04/28/06	51909	Sec		0
09-00	2007	-6.04E-01		2.52E+00	pCi/L		3588.92	lm	04/27/06 17:45	04/28/06	51909	Sec		No
20 00 N-K5	2007	1.28E+01	1		pCi/L		3588.92	m	04/27/06 17:45	04/28/06	51909	Sec	Ž - *5	No
NR-95	2007	2.06E+00			pCi/L		3588.92	THE	04/27/06 17:45	04/28/06	51909	Sec	Ž	So.
ZR-95	2007	-4.29E-01	2.92E+00		pCi/L		3588.92	lm	04/27/06 17:45	04/28/06	51909	Sec		No No
CS-134	2007	9.17E+00		3,35E+00	pCi/L		3588.92	m	04/27/06 17:45	04/28/06	51909	Sec	×5	No
CS-137	2007	3.79E-01			pCi/L		3588.92	m	04/27/06 17:45	04/28/06	51909	Sec	Ż	No
BA-140	2007	-3.57E-03			pCi/L		3588.92	lm	04/27/06 17:45	04/28/06	51909	Sec		No
I A-140	2007	6.36E-01	1.90E+00	3.20E+00	pCi/L		3588.92	ᄪ	04/27/06 17:45	04/28/06	51909	Sec	Ž O	No No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17

Page 11 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

(w.c)	Flag Values	
h	Count Units	05/04/06 60 M U
Matrix: Ground Water Volume: oisture:	Count Count Time Units	09
Matrix: G Volume: % Moisture:	Count Date	05/04/06
. W%	Reference Date	
:57	Aliquot Aliquot Volume Units	m
Collect Start: 04/27/2006 10:57 Collect Stop: Receive Date: 04/28/2006	Aliquot Volume	10
Collect Start: 04 Collect Stop: Seceive Date: 04	Run #	
Collect Collect Receive	Units	nCi/I
	MDC	1 55E+02
	Activity Uncertainty Conc 2 Sigma	8 84F±01 1 01F±02
-KD-26	Activity Ul	8 84F±01
YN-042706	#dos	2010
Sample ID: WG-BYN-042706-KD-26 Station: Description: LIMS Number: L28431-15	Radionuclide	1.1.2

		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count		degrape (Be
Radionuclide	#dos	Сопс	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	Flag Values	
H-3	2010	8.84E+01	1.01E+02	1.55E+02	pCi/L		10	m		05/04/06	09	M	n	
TOTAL SR	2018	2.27E-01	7.14E-01	1.15E+00	pCi/L		450	m	04/27/06 10:57	05/04/06	100	Σ	Ω	
MN-54	2007	1.43E+00	1.57E+00	2.64E+00	pCi/L		3602.28	m	04/27/06 10:57	04/28/06	51987	Sec	No	
CO-58	2007	2.85E-01	1.57E+00	2.58E+00	pCi/L		3602.28	Ш	04/27/06 10:57		51987	Sec	U	
FE-59	2007	8.57E-01	3.02E+00	5.01E+00	pCi/L		3602.28	m	04/27/06 10:57	04/28/06	51987	Sec	U No	
09-03	2007	4.25E-01	1.60E+00	2.67E+00	pCi/L		3602.28	m	04/27/06 10:57	04/28/06	51987	Sec		
ZN-65	2007	1.47E+01	4.26E+00	6.91E+00	pCi/L		3602.28	m	04/27/06 10:57	04/28/06	51987	Sec	U* No	
NB-95	2007	4.37E+00	1.60E+00	2.84E+00	pCi/L		3602.28	m	04/27/06 10:57	04/28/06	51987	Sec	U* No	
ZR-95	2007	4.56E-01	3.02E+00	4.31E+00	pCi/L		3602.28	m	04/27/06 10:57	04/28/06	51987	Sec	U	_
CS-134	2007	1.73E+01	2.76E+00	3.84E+00	pCi/L		3602.28	ml	04/27/06 10:57	04/28/06	51987	Sec	U* No	_
CS-137	2007	3.29E-01	1.71E+00	2.84E+00	pCi/L		3602.28	ш	04/27/06 10:57	04/28/06	51987	Sec	U No	
BA-140	2007	-7.75E-01	6.00E+00	9.75E+00	pCi/L		3602.28	ш	04/27/06 10:57	04/28/06	51987	Sec	U No	
LA-140	2007	6.35E-01	1.92E+00	3.19E+00	pCi/L	-	3602.28	ml	04/27/06 10:57	04/28/06	51987	Sec	No	
The state of the s	Annual Control of the													

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

MDC - Minimum Detectable Concentration

17

Page 12 of

High recovery Low recovery

TELEDYNE
BROWN ENGINEERING, INC.
A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(MG)

Matrix: Ground Water Volume: % Moisture: Collect Start: 04/27/2006 12:25 Receive Date: 04/28/2006 Collect Stop: Sample ID: WG-BYN-042706-KD-28 Station: Description: Kathy Shaw

LIMS Number: L28431-16	431-16													
Radionuclide	SOP#	Activity Conc	Activity Uncertainty Conc 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values	nes
11.3	2010	1 02E±01	9.05E+01	1 50E+02	nCi/I.		10	m		05/04/06	09	M	n	
H-3	2010	7 33E-01		1 07E+00	pCi/I.		450	m	04/27/06 12:25	05/04/06	100	M	Ω	
TOTAL SK	2010	9.04E-01		2.38E+00	pCi/L		3614.31	m	04/27/06 12:25	04/28/06	52085	Sec	ח	No
WIN-54	2007	-1 17F+00		2.28E+00	pCi/L		3614.31	m	04/27/06 12:25	04/28/06	52085	Sec	D	No
EE 50	2007	1 69E+00		4.56E+00	pCi/L		3614.31	m]	04/27/06 12:25	04/28/06	52085	Sec	n	No
CO 60	2007	8 49E-01		_	pCi/L		3614.31	m	04/27/06 12:25	04/28/06	52085	Sec	n	No
7N1 65	2007	2.05.01 2.09E+01		. L	pCi/L		3614.31	Im!	04/27/06 12:25	04/28/06	52085	Sec	*5	No
NB 05	2007	4 40E+00		2.63E+00	pCi/L		3614.31	lm	04/27/06 12:25	04/28/06	52085	Sec	*0	No
ZD 05	2007	2 55E-01		4.03E+00	pCi/L		3614.31	Ш	04/27/06 12:25 04/28/06	04/28/06	52085	Sec	U	% %
CC-134	2007	2.00E+01			pCi/L		3614.31	ml	04/27/06 12:25	04/28/06	52085	Sec	n*	No
CS-134	2007	4.17E-01		-	pCi/L		3614.31	m	04/27/06 12:25	04/28/06	52085	Sec	n	No
RA-140	2007	4.95E+00		1	pCi/L		3614.31	ш	04/27/06 12:25		52085	Sec	n ;	No S
LA-140	2007	-1.60E-01	1.80E+00	2.97E+00	pCi/L		3614.31	III	04/27/06 12:25		52085	Sec	O .	No
TH-228	2007	6.43E+00	2.50E+00	4.24E+00	pCi/L		3614.31	ml	04/27/06 12:25	04/28/06	52085	Sec	+	Yes

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

17

Page 13 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Low recovery High recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

(WG) Ground Water Matrix: Volume: % Moisture: Collect Start: 04/27/2006 14:05 Receive Date: 04/28/2006 Collect Stop: WG-BYN-042706-KD-30 LJMS Number: L28431-17 Sample ID: Description: Station Kathy Shaw

LIMIS INUINDEL: LEGISTELY	/1_1											-	
		Activity	Activity Uncertainty			Run	Aliquot	Aliquot	Reference	Count	Count	Count	FIL 1/0 Long
Radionuclide	SOP#	Conc	2 Sigma	MDC	Units	#	Volume	Units	Date	Date	Time	Units	riag values
H 3	2010	2 66E±01	9.95E+01	1.61E+02	pCi/L		10	m		05/04/06	09	Σ	Þ
TOTAL SR	2018	-2 98E-01		1.58E+00	pCi/L		450	m	04/27/06 14:05	05/04/06	100	M	U
MN-54	2002	8.60E-01		2.16E+00	pCi/L		3585.96	lm	04/27/06 14:05	04/29/06	75844	Sec	U No
CO.58	2007	-1 00E+00		2.13E+00	pCi/L		3585.96	m	04/27/06 14:05	04/29/06	75844	Sec	No
FE-50	2007	2.78E-01	1	4.07E+00	pCi/L		3585.96	lm.	04/27/06 14:05	04/29/06	75844	Sec	U
75-37	2007	5 47E-01		2.28E+00	pCi/L		3585.96	lm.	04/27/06 14:05	04/29/06	75844	Sec	U No
20-00 7N 65	2007	1 88F±01		6.14E+00	pCi/L		3585.96	lm	04/27/06 14:05 04/29/06	04/29/06	75844	Sec	U* No
C0-N12	2007	3 47F+00		2.37E+00	pCi/L		3585.96	TIE I	04/27/06 14:05	04/29/06	75844	Sec	U* No
7D 05	2007	-8 88F-01		3.68E+00	pCi/L		3585.96	lm	04/27/06 14:05	04/29/06	75844	Sec	U No
CC-134	2007	1.75E+01		3.16E+00	pCi/L		3585.96	ml	04/27/06 14:05 04/29/06	04/29/06	75844	Sec	U*
CS-13+	2007	1 49E+00		2.38E+00	pCi/L		3585.96	m	04/27/06 14:05	04/29/06	75844	Sec	U No
C3-137 BA-140	2007	6 90E+00		8.75E+00	pCi/L		3585.96	lm.	04/27/06 14:05	04/29/06	75844	Sec	U No
1.A-140	2007	7.96E-01		2.82E+00	pCi/L		3585.96	ml	04/27/06 14:05	04/29/06	75844	Sec	U

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17 Jo

Page 14

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery

High Spec

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Collect Start: 04/27/2006 16:00 Activity Uncertainty MDC Units Run Aliquot Aliquot Reference Conc 2 Sigma MDC Units # Volume Units Date 1.59E+02 1.08E+02 1.60E+02 pCi/L 10 ml 04/27/06 16:00 -3.39E-02 9.56E-01 1.58E+00 pCi/L 3595.21 ml 04/27/06 16:00 -1.35E+02 1.86E+00 3.12E+00 pCi/L 3595.21 ml 04/27/06 16:00 -1.35E+00 1.87E+00 3.03E+00 pCi/L 3595.21 ml 04/27/06 16:00 -5.39E-01 3.71E+00 6.01E+00 pCi/L 3595.21 ml 04/27/06 16:00 -5.39E-01 3.71E+00 6.01E+00 pCi/L 3595.21 ml 04/27/06 16:00 -5.39E-01 3.53E+00 p.01/L 3595.21 ml 04/27/06 16:00 2.68E+00 3.45E+00 p.01/L 3595.21 ml 04/27/06 16:00 2.	Kathy Shaw					EX0(01-3ESP	EX001-3ESPBYRON-06							
Description: Receive Date: 04/28/2006 IMS Number: L28431-18 Activity Uncertainty MDC Units Run Aliquot Aliquot dionuclide SOP# Conc 2 Sigma MDC Units # Volume Units AL SR 2010 1.59E+02 1.60E+02 pCi/L 10 ml 54 2017 7.08E-01 1.86E+00 9Ci/L 450 ml 54 2007 7.08E-01 1.86E+00 9Ci/L 450 ml 58 2007 7.08E-01 1.86E+00 9Ci/L 3595.21 ml 59 2007 -1.35E+00 1.94E+00 3.27E+00 pCi/L 3595.21 ml 60 2007 1.05E+00 1.94E+00 3.27E+00 pCi/L 3595.21 ml 95 2007 2.68E+00 2.04E+00 2.04E+00 pCi/L 3595.21 ml 95 2007 2.68E+00 2.04E+00 pCi/L	Sample ID: WG-B	XN-04270	6-KD-32			Collec	t Start: 0	4/27/2006 16.	00		Matrix: Ground Water Volume:	ound Wate	L,		(MG)
IMS Number: L28431-18 Activity Uncertainty MDC Units # m Aliquot Aliquot dionuclide SOP# Conc 2 Sigma MDC Units # volume Units AL SR Conc 2 Sigma I.60E+02 pCi/L 10 ml AL SR 2010 1.59E+02 1.08E+02 I.60E+02 pCi/L 450 ml AL SR 2010 1.59E+02 1.08E+01 1.58E+00 pCi/L 450 ml -54 2007 7.08E-01 1.8E+00 3.12E+00 pCi/L 3595.21 ml 58 2007 1.35E+00 1.8T+00 pCi/L 3595.21 ml 60 2007 1.05E+00 1.94E+00 3.27E+00 pCi/L 3595.21 ml 65 2007 1.05E+00 1.94E+00 pCi/L 3595.21 ml 95 2007 4.65E+00 2.04E+00 pCi/L 3595.21 ml 95 200	Description:					Receive	a Date: 0	4/28/2006		W %	% Moisture:				
dionuclide SOP# Activity Uncertainty MDC Units # Volume Aliquot dionuclide 2010 1.59E+02 1.08E+02 1.60E+02 DCi/L 10 ml 7AL SR 2010 1.59E+02 1.08E+02 1.60E+02 DCi/L 450 ml 5AL SR 2018 -3.39E-02 9.56E-01 1.58E+00 DCi/L 450 ml 5A 2007 7.08E-01 1.86E+00 3.12E+00 DCi/L 3595.21 ml 59 2007 -1.35E+00 1.87E+00 DCi/L 3595.21 ml 60 2007 -1.35E+01 3.71E+00 DCi/L 3595.21 ml 65 2007 1.05E+00 1.94E+00 3.27E+00 DCi/L 3595.21 ml 65 2007 4.65E+00 2.04E+00 3.53E+00 DCi/L 3595.21 ml 95 2007 2.68E+00 3.45E+00 DCi/L 3595.21 ml	LIMS Number: L2843	1-18													
7AL SR 2010 1.59E+02 1.08E+02 1.60E+02 pCi/L 10 ml -54 2018 -3.39E-02 9.56E-01 1.58E+00 pCi/L 450 ml -54 2007 7.08E-01 1.86E+00 3.12E+00 pCi/L 3595.21 ml 58 2007 -1.35E+00 1.87E+00 pCi/L 3595.21 ml 59 2007 -5.39E-01 3.71E+00 pCi/L 3595.21 ml 65 2007 -5.39E-01 3.71E+00 pCi/L 3595.21 ml 65 2007 1.05E+00 1.94E+00 3.27E+00 pCi/L 3595.21 ml 95 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 134 2007 2.68E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 134 2007 2.68E+00 2.06E+00 9Ci/L 3595.21 ml 137 2007 2.68E+00 <th>Radionuclide</th> <th>SOP#</th> <th>Activity Conc</th> <th>Uncertainty 2 Sigma</th> <th>MDC</th> <th>Units</th> <th>Run #</th> <th>Aliquot Volume</th> <th>Aliquot Units</th> <th>Reference Date</th> <th>Count Date</th> <th>Count</th> <th>Count Units</th> <th>Flag Values</th> <th>sən</th>	Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values	sən
7AL SR 2018 -3.39E-02 9.56E-01 1.58E+00 pCi/L 450 ml -54 2007 7.08E-01 1.86E+00 3.12E+00 pCi/L 3595.21 ml 58 2007 -1.35E+00 1.87E+00 pCi/L 3595.21 ml 59 2007 -5.39E-01 3.71E+00 pCi/L 3595.21 ml 60 2007 1.05E+00 1.94E+00 3.27E+00 pCi/L 3595.21 ml 65 2007 3.32E+01 5.85E+00 1.01E+01 pCi/L 3595.21 ml 95 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 134 2007 2.68E+00 3.45E+00 pCi/L 3595.21 ml 137 2007 2.68E+00 3.45E+00 pCi/L 3595.21 ml 134 2007 2.68E+00 2.06E+00 pCi/L 3595.21 ml 137 2007 1.55E+00 2.06E+0	H_3	2010	1.59E+02		1.60E+02	pCi/L		10	ml		05/04/06	09	M	n	
2007 7.08E-01 1.86E+00 3.12E+00 pCi/L 3595.21 ml 2007 -1.35E+00 1.87E+00 3.03E+00 pCi/L 3595.21 ml 2007 -5.39E-01 3.71E+00 6.01E+00 pCi/L 3595.21 ml 2007 -5.39E-01 3.71E+00 pCi/L 3595.21 ml 2007 3.32E+01 5.85E+00 1.01E+01 pCi/L 3595.21 ml 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 1 2007 2.68E+00 3.45E+00 pCi/L 3595.21 ml 2 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 7 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 7 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 7 2007 -3.78E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml	TOTAL SR	2018	-3.39E-02	.	1.58E+00	pCi/L		450	m]	04/27/06 16:00	05/04/06	100	Σ	ח	
2007 -1.35E+00 1.87E+00 3.03E+00 pCi/L 3595.21 ml 2007 -5.39E-01 3.71E+00 6.01E+00 pCi/L 3595.21 ml 2007 1.05E+01 1.94E+00 3.27E+00 pCi/L 3595.21 ml 2007 3.32E+01 5.85E+00 1.01E+01 pCi/L 3595.21 ml 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 1 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 2 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 7 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 7 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 9 2007 2.78E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 0 2007 2.78E+00 7.18E+00 1.17E+01 pCi/L	MN-54	2007	7.08E-01	1.86E+00	3.12E+00	pCi/L		3595.21	田	04/27/06 16:00	04/28/06	52192	Sec	U	No
2007 -5.39E-01 3.71E+00 6.01E+00 pCi/L 3595.21 ml 2007 1.05E+00 1.94E+00 3.27E+00 pCi/L 3595.21 ml 2007 3.32E+01 5.85E+00 1.01E+01 pCi/L 3595.21 ml 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 1 2007 2.68E+00 3.45E+00 pCi/L 3595.21 ml 2 2007 2.80E+01 3.38E+00 4.86E+00 pCi/L 3595.21 ml 7 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 0 2007 -3.78E+00 2.06E+00 pCi/L 3595.21 ml 0 2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml	CO-58	2007	-1.35E+00		3.03E+00	pCi/L		3595.21	le l	04/27/06 16:00	04/28/06	52192	Sec	ח	No
2007 1.05E+00 1.94E+00 3.27E+00 PCi/L 3595.21 ml 2007 3.32E+01 5.85E+00 1.01E+01 PCi/L 3595.21 ml 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 4 2007 2.68E+00 3.45E+00 pCi/L 3595.21 ml 5 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 7 2007 2.80E+01 3.38E+00 pCi/L 3595.21 ml 9 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 0 2007 -3.78E+00 7.18E+01 pCi/L 3595.21 ml	FE-59	2007	-5.39E-01	.	6.01E+00	pCi/L		3595.21	m	04/27/06 16:00	04/28/06	52192	Sec	n	S N
2007 3.32E+01 5.85E+00 1.01E+01 pCi/L 3595.21 ml 2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 2007 2.68E+00 3.45E+00 pCi/L 3595.21 ml 2007 2.80E+01 3.45E+00 pCi/L 3595.21 ml 2007 2.80E+01 3.38E+00 4.86E+00 pCi/L 3595.21 ml 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml	09-00	2007	1.05E+00	_	3.27E+00	pCi/L		3595.21	E	04/27/06 16:00	04/28/06	52192	Sec	Ω	No
2007 4.65E+00 2.04E+00 3.53E+00 pCi/L 3595.21 ml 2007 2.68E+00 3.45E+00 5.51E+00 pCi/L 3595.21 ml 2007 2.80E+01 3.38E+00 4.86E+00 pCi/L 3595.21 ml 2007 2.80E+01 3.38E+00 3.45E+00 pCi/L 3595.21 ml 2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml	ZN-65	2007	3.32E+01	_	1.01E+01	pCi/L		3595.21	ш	04/27/06 16:00	04/28/06	52192	Sec	*	No
2007 2.68E+00 3.45E+00 5.51E+00 pCi/L 3595.21 ml 2007 2.80E+01 3.38E+00 4.86E+00 pCi/L 3595.21 ml 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml	NR-95	2007	4.65E+00	2.04E+00	3.53E+00	pCi/L		3595.21	ш	04/27/06 16:00	04/28/06	52192	Sec	n*	S S
2007 2.80E+01 3.38E+00 4.86E+00 pCi/L 3595.21 ml 2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml	78-95	2007	2.68E+00		5.51E+00	pCi/L		3595.21	lm	04/27/06 16:00	04/28/06	52192	Sec	D	No
2007 1.55E+00 2.06E+00 3.45E+00 pCi/L 3595.21 ml 2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml	CS-134	2007	2.80E+01		4.86E+00	pCi/L		3595.21	m	04/27/06 16:00	04/28/06	52192	Sec	N*	No
2007 -3.78E+00 7.18E+00 1.17E+01 pCi/L 3595.21 ml 04/27/06 16:00	CS-137	2007	1.55E+00		3.45E+00	pCi/L		3595.21	ml	04/27/06 16:00	04/28/06	52192	Sec	Ω	% %
00.31 20/20/10 1 10.303.0	BA-140	2007	-3.78E+00		1.17E+01	pCi/L		3595.21	ш	04/27/06 16:00	04/28/06	52192	Sec	n	% %
2.72E-02 2.19E+00 3.64E+00 pCi/L 3595.21 ml 04/27/00 10:00	I A-140	2007	2.72E-02	2.19E+00	3.64E+00	pCi/L	***********	3595.21	lm	04/27/06 16:00	04/28/06	52192	Sec	n	No

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

17

Page 15 of

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification Low recovery High recovery High Spec

Activity concentration exceeds MDC and 3 sigma, peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma

Compound/Analyte not detected or less than 3 sigma

Flag Values

TELEDYNE
BROWN ENGINEERING, INC.
A Taledyne Technologies Company

L28431

Conestoga-Rovers & Associates

EX001-3ESPBYRON-06

Kathy Shaw

Sample ID:	Sample ID: WG-BYN-042706-KD-45	i-KD-45			Collect	t Start: 02	Collect Start: 04/27/2006 17:30	30		Matrix: Ground Water	round Wat	i		S (<u>*</u>
Station:					Collect Stop:	t Stop:				Volume:				
Description:					Receive	Date: 0	Receive Date: 04/28/2006		∑ %	% Moisture:				
LIMS Number: L28431-19	L28431-19													
Radionuclide	#dos	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values	100
H_3	2010	-9 19E+01	9 31E+01	1.64E+02	pCi/L		10	ī		05/04/06	09	Σ	n	
TOTAL SR	2018	00E+00		1.73E+00	pCi/L		450	m	04/27/06 17:30 05/04/06	05/04/06	100	Σ	U	
MN-54	2007	2.73E+00		2.94E+00	pCi/L		3684.69	m	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	N D	No
CO-58	2007	5.84E-01		2.76E+00	pCi/L		3684.69	m/	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	Z D	No
FF_59	2007	3.54E+00	3.10E+00	5.36E+00	pCi/L		3684.69	m	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	Z n	No
09-00	2007	-1.18E+00		2.76E+00	pCi/L		3684.69	E E	04/27/06 17:30	04/28/06	52150	Sec	N N	No
29 22 ZN-65	2007	7.86E+01		1.08E+01	pCi/L		3684.69	軍	04/27/06 17:30	04/28/06	52150	Sec	N#	No
NB-95	2007	1.69E+01	2.18E+00	3.75E+00	pCi/L		3684.69	lm	04/27/06 17:30	04/28/06	52150	Sec	Z *1	- %
ZR-95	2007	-3.55E-01	2.97E+00	4.70E+00	pCi/L		3684.69	ш	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	Z D	% No
CS-134	2007	7.84E+01	3.17E+00	5.96E+00	pCi/L		3684.69	lm.	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	*h	% No
CS-137	2007	4.57E+00	2.12E+00	3.22E+00	pCi/L		3684.69	Гш	04/27/06 17:30	04/28/06	52150	Sec	*5	No No
BA-140	2007	3.08E+00		1.08E+01	pCi/L		3684.69	TEI	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	ם	No
1 4 140	2007	3 57E+00	1.95E+00	3.50E+00	pCi/L		3684.69	m	04/27/06 17:30 04/28/06	04/28/06	52150	Sec	*5	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Page 16 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Low recovery High recovery U* High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values U =

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28431

EX001-3ESPBYRON-06

(MG)

Conestoga-Rovers & Associates

Kathy Shaw

Matrix: Ground Water Volume: % Moisture: Collect Start: 04/27/2006 17:40 Receive Date: 04/28/2006 Collect Stop: WG-BYN-042706-KD-46 1,28431-20 Sample ID: Station: Description:

LIMS Number: L28431-20	31-20													
Radionnelide	SOP#	Activity	Activity Uncertainty	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag Values	
		3 100		00 - CE 011 +	1.0		10	- 4		05/04/06	09	Σ	- [1]	
H-3	2010	7.88E+01	1.025+02	1.59E+02	PCI/L		10	IIII		20110100) 1	
TOTAL SR	2018	1.35E-01	6.96E-01	1.13E+00	pCi/L		450	m	04/27/06 17:40	05/04/06	100	Σ		
MN-54	2007	9.77E-01	1.57E+00	2.23E+00	pCi/L		3582.68	ml	04/27/06 17:40	04/29/06	76164	Sec		oN ;
CO-58	2007	2.51E+00	1.55E+00	2.22E+00	pCi/L		3582.68	m	04/27/06 17:40	04/29/06	76164	Sec		No No
FF_50	2007	2.54E+00	2.49E+00	4.21E+00	pCi/L		3582.68	ш	04/27/06 17:40 04/29/06	04/29/06	76164	Sec	N D	No No
09-00	2007	6.67E-01		2.29E+00	pCi/L		3582.68	ш	04/27/06 17:40 04/29/06	04/29/06	76164	Sec		No
7N-65	2007	8 86E+01		8.92E+00	pCi/L		3582.68	眉	04/27/06 17:40 04/29/06	04/29/06	76164	Sec	Z * 1	No
NR-05	2007	1 53E+01		2.86E+00	pCi/L		3582.68	Ш	04/27/06 17:40	04/29/06	76164	Sec	* 1	No
ZR-95	2007	1.75E+00		3.66E+00	pCi/L		3582.68	ш	04/27/06 17:40	04/29/06	76164	Sec		No
CS-134	2007	7.73E+01		4.69E+00	pCi/L		3582.68	m	04/27/06 17:40 04/29/06	04/29/06	76164	Sec		No
CS-137	2007	5.14E+00	1.63E+00	2.47E+00	pCi/L		3582.68	ш	04/27/06 17:40 04/29/06	04/29/06	76164	Sec	*h	No
BA-140	2007	2.52E+00	5.03E+00	8.35E+00	pCi/L		3582.68	шJ	04/27/06 17:40 04/29/06	04/29/06	76164	Sec		%
LA-140	2007	2.11E+00	1.87E+00	3.00E+00	pCi/L		3582.68	m	04/27/06 17:40 04/29/06	04/29/06	76164	Sec	_ _ D	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Page 17 of

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma
Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification Low recovery High Spec

Compound/Analyte not detected or less than 3 sigma

Flag Values

QC Results Summary

QC Summary Report

L28431

for-

2:34:19PM 5/5/2006

TELEDYNE
BROWN ENGINEERING
A Teledyne Technologies Company

			H-3					
			Method Blank Summary	ımary				
TBE Sample ID Radionuclide WG3918-1 H-3	Matrix WO	Count Date/Time 05/03/2006 5:55		Blank Result < 1.670E+00	Units pCi/Total		<u>Qualifier P/F</u> U P	P P
WG3933-1	WO	05/04/2006 7:33		< 1.460E+00	pCi/Total		Ω	۵.
			LCS Sample Summary	nary				
TBE Sample ID Radionuclide WG3918-2 H-3	<u>Matrix</u> WO	Count Date/Time 05/03/2006 6:59	Spike Value 5.05E+002	LCS Result 5.050E+02	Units pCi/Total	Spike Recovery 100.0	Range Qualifier P/F 70-130 + P	P P
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000 WG3933-2	WO	05/04/2006 8:37	5.05E+002	5.110E+02	pCi/Total	101.2	70-130 +	ď
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000								
			Duplicate Summary	ary				
TBE Sample ID Radionuclide WG3918-3 H-3 L28414-8	<u>Matrix</u> WG	Count Date/Time 05/03/2006 7:09	Original Result 	DUP Result < 1.660E+02	Units pCi/L	RPD	Range Qualifier P/F <30 ** NE	NE NE
WG3933-3 L28431-19	WG	05/04/2006 8:47	< 1.640E+02	< 1.530E+02	pCi/L		<30 **	NE
+ Positive Result U Compound/analyte was analyzed, peak not identified and/or not detected above MDC * < 5 times the MDC are not evaluated ** Nuclide not detected *** Spiking level < 5 times activity P Pass F Fail NOT evaluated	lyzed, peak nevaluated	iot identified and/or n	ot detected above MDC				Page: 1	L28431 46 Of .

2

Page:

NTELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

> WG-BYN-042706-KD-26 WG-BYN-042706-KD-28 WG-BYN-042706-KD-30 WG-BYN-042706-KD-32 WG-BYN-042706-KD-45 WG-BYN-042706-KD-46 WG-BYN-042706-SS-42 WG-BYN-042706-SS-43 WG-BYN-042706-SS-44 WG-BYN-042706-SS-41 CLIENTID WG3933 Associated Samples for SAMPLENUM L28431-18 L28431-15 L28431-19 L28431-12 L28431-13 L28431-14 L28431-16 L28431-17 L28431-20 L28431-11

for-

QC Summary Report

5/5/2006

2:34:19PM

H-3

L28431

+ > * *

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

* * * X

Spiking level < 5 times activity

Fail Not evaluated

Pass

Nuclide not detected

Positive Result

QC Summary Report

5/5/2006

2:34:19PM

L28431

for

SR-90

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

		!		Method Blank Summary	nary			
TBE Sample ID WG3939-1	<u>Radionuclide</u> SR-90	<u>Matrix</u> WO	Count Date/Time 05/05/2006 14:11		Blank Result < 6.230E-01	Units pCi/Total		Oualifier P/F U P
				LCS Sample Summary	ary			
TBE Sample ID WG3939-2	Radionuclide SR-90	Matrix WO	Count Date/Time 05/04/2006 21:40	Spike Value 5.84E+001	LCS Result 5.780E+01	Units pCi/Total	Spike Recovery 99.0	Range Qualifier P/F 70-130 + P
Spike ID: 90SR-011905 Spike conc: 2.34E+002 Spike Vol: 2.50E-001	011905 +002 -001							

Page:

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

Spiking level < 5 times activity Pass Fail Not evaluated

+D* * * a L X

4

Page:

BROWN ENGINEERING
A Teledyne Technologies Company

for

QC Summary Report

2:34:19PM

5/5/2006

WG-BYN-042706-KD-30 WG-BYN-042706-KD-32 WG-BYN-042706-KD-45 WG-BYN-042706-KD-46 WG-BYN-042706-KD-26 WG-BYN-042706-KD-28 WG-BYN-042706-SS-38 WG-BYN-042706-SS-39 WG-BYN-042706-SS-42 WG-BYN-042706-SS-35 WG-BYN-042706-SS-36 WG-BYN-042706-SS-37 WG-BYN-042706-SS-40 WG-BYN-042706-SS-41 WG-BYN-042706-SS-43 WG-BYN-042706-SS-44 CLIENTID WG3939 SR-90 (FAST) Associated Samples for SAMPLENUM .28431-16 .28431-17 28431-18 L28431-19 L28431-10 28431-12 28431-13 .28431-14 28431-15 L28431-20 .28431-11 L28431-5 L28431-6 .28431-8 L28431-9 L28431-7 L28431

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Nuclide not detected

Nuclide not detected Spiking level < 5 times activity

Pass Fail Not evaluated

+ D * * * 4 4 4

2

Page:

QC Summary Report

5/5/2006

2:34:19PM

L28431

for

BROWN ENGINEERING

A Teledyne Technologies Company

TOTAL SR

	Range Qualifier P/F <30 ** NE
	RPD
	Units pCi/L
>	DUP Result < 9.750E-01
Duplicate Summar	Original Result < 1.190E+00
	Count Date/Time 05/05/2006 14:11
	<u>Matrix</u> WG
	<u>Radionuclide</u> TOTAL SR
	TBE Sample ID WG3939-3 L28431-5

SR-90 (FAST)	
L28431	

WG3939	CLIENTID	WG-BYN-042706-SS-35	WG-BYN-042706-SS-36	WG-BYN-042706-SS-37	WG-BYN-042706-SS-38	WG-BYN-042706-SS-39	WG-BYN-042706-SS-40	WG-BYN-042706-SS-41	WG-BYN-042706-SS-42	WG-BYN-042706-SS-43	WG-BYN-042706-SS-44	WG-BYN-042706-KD-26	WG-BYN-042706-KD-28	WG-BYN-042706-KD-30	WG-BYN-042706-KD-32	WG-BYN-042706-KD-45	WG-BYN-042706-KD-46
Associated Samples for	SAMPLENUM	L28431-5	L28431-6	L28431-7	L28431-8	L28431-9	L28431-10	L28431-11	L28431-12	L28431-13	L28431-14	L28431-15	L28431-16	L28431-17	L28431-18	L28431-19	L28431-20

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

Nuclide not detected

Spiking level < 5 times activity Pass Fail Not evaluated +D* * * d L Z

Raw Data

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 21:12:56.78 TBE07 P-10768B HpGe ******* Aquisition Date/Time: 28-APR-2006 14:42:39.21

TBEO/ P-10/68B HpGe ^^^^^ A Aquisicion Dace/Ilme: 28-AFR-2000 14.42.39.21

LIMS No., Customer Name, Client ID: WG L28431-5 EX BYR H-3 SPEC

Sample ID : 07L28431-5 Smple Date: 27-APR-2006 09:00:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
5 6	1 1 1 1	66.32* 139.76* 198.53* 595.99 609.45* 867.90	172 80 159 89 57 74	141 98	1.76 3.61	133.48 280.41 398.00 1193.06 1219.99 1736.90	1.98E+00 9.96E-01 9.80E-01 7.57E-01	3.43E-03 6.80E-03 3.79E-03 2.45E-03 3.15E-03	49.2 34.5 23.5 48.4 31.1	5.75E+00 2.91E+00 4.03E+00 2.64E+00 1.70E+00
7		1464.09	44	-		2929.00		1.87E-03		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID : 07L28431-5

Acquisition date : 28-APR-2006 14:42:39

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 0

**** There are no nuclides meeting summary criteria **** 0.00%

Flags: "K" = Keyline not found
"E" = Manually edited

7

7

"M" = Manually accepted "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 07L28431-5

Page : 3 Acquisition date : 28-APR-2006 14:42:39

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1	66.32 139.76 198.53 595.99 609.45 867.90 1464.09	172 80 159 89 57 74 44	580 447 651 116 141 98	0.96 1.09 1.44 1.65 1.76 3.61	1193.06 1219.99 1736.90	277 391 1190 1214 1730	7 12 8 11 14	7.36E-03 3.43E-03 6.80E-03 3.79E-03 2.45E-03 3.15E-03 1.87E-03	98.4 69.1 47.0 96.7 62.3	7.24E-01 2.09E+00 1.98E+00 9.96E-01 9.80E-01 7.57E-01 5.14E-01	-)) - -

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum Number of unidentified lines 7
Number of lines tentatively identified by NID 0 0.00% **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide		.L. Act error ded	MDA (pCi/L)	MDA error	Act/MDA
BE-7	1.108E+01	1.422E+01	2.432E+01 1.380E+01	0.000E+00 0.000E+00	0.456 -0.597
NA-24	-8.240E+00	8.893E+00 2.815E+01	4.931E+01	0.000E+00	0.175
K-40	8.631E+00	1.488E+01	2.371E+01	0.000E+00	-0.278
CR-51	-6.588E+00 4.882E-01	1.400E+01 1.801E+00	3.027E+00	0.000E+00	0.161
MN-54	4.882E-01 6.937E-03	1.498E+00	2.510E+00	0.000E+00	0.003
CO-57 CO-58	-1.875E+00	1.815E+00	2.800E+00	0.000E+00	-0.670
FE-59	1.299E+00	3.403E+00	5.736E+00	0.000E+00	0.227
CO-60	9.417E-01	1.785E+00	3.051E+00	0.000E+00	0.309
ZN-65	-1.235E+00	3.811E+00	6.177E+00	0.000E+00	-0.200
SE-75	1.011E+00	2.212E+00	3.681E+00	0.000E+00	0.275
SR-85	1.589E+01	2.128E+00	4.184E+00	0.000E+00	3.797
Y-88	-3.601E-01	2.074E+00	3.336E+00	0.000E+00	-0.108
NB-94	-4.065E-01	1.703E+00	2.778E+00	0.000E+00	-0.146
NB-95	-2.944E-01	1.717E+00	2.783E+00	0.000E+00	-0.106
ZR-95	1.443E+00	3.118E+00	5.212E+00	0.000E+00	0.277
MO-99	1.378E+01	1.837E+01	3.117E+01	0.000E+00	0.442
RU-103	2.440E-01	1.727E+00	2.877E+00	0.000E+00	0.085
RU-106	4.390E-01	1.669E+01	2.713E+01	0.000E+00	0.016
AG-110m	-1.684E-01	1.621E+00	2.676E+00	0.000E+00	-0.063
SN-113	-2.645E+00	2.164E+00	3.399E+00	0.000E+00	-0.778

L28431 55 of 147

SB-124	-2.461E+00	4.188E+00	2.740E+00	0.000E+00	-0.898
SB-125	1.553E+00	4.792E+00	7.910E+00	0.000E+00	0.196
TE-129M	3.971E+00	2.034E+01	3.320E+01	0.000E+00	0.120
I-131	4.415E-01	1.918E+00	3.196E+00	0.000E+00	0.138
BA-133	-1.646E-02	2.350E+00	3.892E+00	0.000E+00	-0.004
CS-134	6.132E-01	3.038E+00	3.026E+00	0.000E+00	0.203
CS-136	-6.419E-01	1.811E+00	2.887E+00	0.000E+00	-0.222
CS-137	7.006E-01	1.814E+00	3.057E+00	0.000E+00	0.229
CE-139	7.543E-01	1.571E+00	2.607E+00	0.000E+00	0.289
BA-140	-2.545E+00	6.530E+00	1.058E+01	0.000E+00	-0.241
LA-140	2.634E+00	2.181E+00	3.893E+00	0.000E+00	0.677
CE-141	-7.984E-01	2.990E+00	4.391E+00	0.000E+00	-0.182
CE-144	8.084E-01	1.329E+01	1.987E+01	0.000E+00	0.041
EU-152	-1.213E+01	5.412E+00	8.362E+00	0.000E+00	-1.451
EU-154	-4.334E-01	3.156E+00	5.266E+00	0.000E+00	-0.082
RA-226	5.860E+00	4.218E+01	6.879E+01	0.000E+00	0.085
AC-228	-4.888E+00	6.848E+00	1.109E+01	0.000E+00	-0.441
TH-228	4.789E+00	3.336E+00	5.712E+00	0.000E+00	0.838
TH-232	-4.885E+00	6.845E+00	1.109E+01	0.000E+00	-0.441
U-235	2.525E+00	1.401E+01	1.990E+01	0.000E+00	0.127
U-238	8.229E+01	2.060E+02	3.364E+02	0.000E+00	0.245
AM-241	-3.122E+01	1.419E+01	2.174E+01	0.000E+00	-1.436

```
,04/28/2006 21:12,04/27/2006 09:00,
                                                                 3.526E+00,WG L28431-5 EX
A,07L28431-5
                                             ,06/23/2005 07:26,0735L090904
                     ,LIBD
B,07L28431-5
           ,NO
                                    1.422E+01,
                                                   2.432E+01,,
                                                                    0.456
C, BE-7
                     1.108E+01,
           ,NO
                                                   1.380E+01,,
                                                                   -0.597
C, NA-24
                   -8.240E+00,
                                    8.893E+00,
                                    2.815E+01,
                                                   4.931E+01,,
                                                                    0.175
C, K-40
                     8.631E+00,
           , NO
                                                   2.371E+01,,
C, CR-51
           , NO
                    -6.588E+00,
                                    1.488E+01,
                                                                   -0.278
                                    1.801E+00,
                                                   3.027E+00,,
                                                                    0.161
C, MN-54
                     4.882E-01,
           , NO
                                                   2.510E+00,,
                                    1.498E+00,
                                                                    0.003
C, CO-57
           , NO
                     6.937E-03,
                                                                   -0.670
C, CO-58
                                    1.815E+00,
                                                   2.800E+00,,
           ,NO
                    -1.875E+00,
                                    3.403E+00,
                                                   5.736E+00,,
                                                                    0.227
C, FE-59
                     1.299E+00,
           , NO
                                                   3.051E+00,,
                                                                    0.309
C, CO-60
           , NO
                     9.417E-01,
                                    1.785E+00,
                    -1.235E+00,
                                    3.811E+00,
                                                   6.177E+00,,
                                                                   -0.200
C, ZN-65
           , NO
                                                                    0.275
                                    2.212E+00,
                                                   3.681E+00,,
C, SE-75
           , NO
                     1.011E+00,
                                                   4.184E+00,,
                                                                    3.797
                     1.589E+01,
                                    2.128E+00,
C, SR-85
           , NO
                                                   3.336E+00,,
                                                                   -0.108
                    -3.601E-01,
                                    2.074E+00,
C, Y-88
           , NO
                                                   2.778E+00,,
                                                                   -0.146
                    -4.065E-01,
                                    1.703E+00,
C, NB-94
           , NO
C, NB-95
                                    1.717E+00,
                                                   2.783E+00,,
                                                                   -0.106
                    -2.944E-01,
           , NO
                                                                    0.277
           , NO
                                                   5.212E+00,,
                                    3.118E+00,
C, ZR-95
                     1.443E+00,
                                                   3.117E+01,,
                                                                    0.442
C, MO-99
           , NO
                     1.378E+01,
                                    1.837E+01,
                                    1.727E+00,
                                                   2.877E+00,,
                                                                    0.085
C, RU-103
            , NO
                     2.440E-01,
                                                   2.713E+01,,
                                                                    0.016
                     4.390E-01,
                                    1.669E+01,
C, RU-106
           , NO
                                                   2.676E+00,,
                                                                   -0.063
                    -1.684E-01,
                                    1.621E+00,
C, AG-110m
           , NO
                                                   3.399E+00,,
                                                                   -0.778
                                    2.164E+00,
                    -2.645E+00,
C, SN-113
            , NO
                                                                   -0.898
                                    4.188E+00,
                                                   2.740E+00,,
C,SB-124
            ,NO
                    -2.461E+00,
            , NO
                                                   7.910E+00,,
                                                                    0.196
C,SB-125
                     1.553E+00,
                                    4.792E+00,
           , NO
                     3.971E+00,
                                    2.034E+01,
                                                   3.320E+01,,
                                                                    0.120
C, TE-129M
                                                   3.196E+00,,
                                                                    0.138
            , NO
                                    1.918E+00,
C, I-131
                     4.415E-01,
                                                   3.892E+00,,
                                                                   -0.004
                    -1.646E-02,
                                    2.350E+00,
C, BA-133
            , NO
C, CS-134
                                                   3.026E+00,,
                                                                    0.203
            ,NO
                     6.132E-01,
                                    3.038E+00,
                                                                   -0.222
C, CS-136
            , NO
                    -6.419E-01,
                                    1.811E+00,
                                                   2.887E+00,,
                     7.006E-01,
                                    1.814E+00,
                                                   3.057E+00,,
                                                                    0.229
C, CS-137
            , NO
                                                   2.607E+00,,
                                                                    0.289
            , NO
                     7.543E-01,
                                    1.571E+00,
C, CE-139
                                    6.530E+00,
                                                   1.058E+01,,
                                                                   -0.241
            , NO
                    -2.545E+00,
C, BA-140
                                                   3.893E+00,,
                                                                    0.677
            , NO
C, LA-140
                     2.634E+00,
                                    2.181E+00,
                                                   4.391E+00,,
C, CE-141
                    -7.984E-01,
                                    2.990E+00,
                                                                   -0.182
            , NO
                                                   1.987E+01,,
                                                                    0.041
C, CE-144
                     8.084E-01,
                                    1.329E+01,
            , NO
                                                   8.362E+00,,
                                                                   -1.451
                                    5.412E+00,
C, EU-152
            ,NO
                    -1.213E+01,
                                                                   -0.082
                    -4.334E-01,
                                                   5.266E+00,,
            , NO
                                    3.156E+00,
C, EU-154
                                                   6.879E+01,,
                                                                    0.085
            , NO
                     5.860E+00,
                                    4.218E+01,
C, RA-226
C, AC-228
            , NO
                    -4.888E+00,
                                    6.848E+00,
                                                   1.109E+01,,
                                                                   -0.441
                                                   5.712E+00,,
                                                                    0.838
C, TH-228
                                    3.336E+00,
                     4.789E+00,
            , NO
                                                   1.109E+01,,
                                                                   -0.441
                    -4.885E+00,
                                    6.845E+00,
C, TH-232
            , NO
                                                   1.990E+01,,
                                                                    0.127
                                    1.401E+01,
C, U-235
            , NO
                     2.525E+00,
                                                   3.364E+02,,
                                                                    0.245
                     8.229E+01,
                                    2.060E+02,
C, U-238
            , NO
```

1.419E+01,

C, AM-241

,NO

-3.122E+01,

2.174E+01,,

-1.436

Sec. Review: Analyst: LIMS: _____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 21:15:28.57 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 28-APR-2006 14:42:52.04

TBELS F-10727B lipde liquidition bace, 11me. 20 lilli 2000 21012001

LIMS No., Customer Name, Client ID: WG L28431-6 EX BYR H-3 SPEC

Sample ID : 13L28431-6 Smple Date: 27-APR-2006 10:15:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	63.29*	120	1578	1.78	126.55	6.20E-01	5.08E-03	65.9	4.67E+00
2	1	77.17*	239	724	0.89	154.28	1.09E+00	1.02E-02	20.1	1.79E+00
3	5	87.40*	32	602	0.84	174.71	1.39E+00	1.36E-03	121.5	9.32E-01
4	1	139.82*	189	958	0.98	279.47	2.02E+00	8.02E-03	31.0	1.93E-01
5	1	185.81*	8	849	1.03	371.39	1.95E+00	3.53E-046	584.8	1.00E+00
6	1	198.46*	199	810	1.21	396.67	1.90E+00	8.47E-03	28.6	5.72E-01
7	2	238.60*	147	508	1.09	476.89	1.73E+00	6.26E-03	29.2	1.97E+00
8	2	241.87	232	561	1.27	483.42	1.72E+00	9.86E-03	18.9	
9	1	295.18*	605	563	1.36	589.99	1.52E+00	2.57E-02		4.95E+00
10	1	351.87*	953	494	1.13	703.29	1.34E+00	4.05E-02	6.1	1.40E+00
11	1	582.90*	15	277	1.71	1165.18	9.26E-01	6.37E-042	253.4	1.12E+00
12	1	595.45	93	195	1.96	1190.27	9.12E-01	3.96E-03	29.4	3.05E+00
13	1	609.23*	651	268	1.28	1217.83	8.96E-01	2.77E-02	6.6	2.31E+00
14	1	768.08	66	230	2.76	1535.47	7.54E-01	2.79E-03		1.80E+00
15	1	933.81	62	88	2.79	1866.97	6.52E-01	2.65E-03	31.9	1.51E+00
16	1	1120.63*	150	128	2.00	2240.71	5.69E-01	6.37E-03	19.9	1.95E+00
17	1	1238.32*	45	91	1.45	2476.19	5.29E-01	1.92E-03	50.3	1.85E+00
18	1	1378.05*	61	72	3.35	2755.82	4.89E-01	2.61E-03	36.4	
19	1	1729.70	38	27	1.97	3459.75	4.17E-01	1.62E-03	31.9	4.25E-01
20	1	1764.92*	125	48	1.95	3530.27	4.11E-01	5.32E-03	17.4	8.85E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
RA-226	186.21	8	3.28*	1.946E+00	4.163E+00	4.163E+00	1369.62
TH-228	238.63	147	44.60*	1.733E+00	6.105E+00	6.113E+00	58.38
	240.98	232	3.95	1.719E+00	1.094E+02	1.095E+02	37.75
U-235	143.76		10.50*	2.023E+00	Li	ne Not Found	
	163.35		4.70	2.011E+00	Li	ne Not Found	
	185.71	8	54.00	1.946E+00	2.529E-01	2.529E-01	1369.62
	205.31		4.70	1.871E+00	Li:	ne Not Found	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Sample ID: 13L28431-6 Acquisition date: 28-APR-2006 14:42:52

20

Total number of lines in spectrum

Number of unidentified lines 16

Number of lines tentatively identified by NID 4 20.00%

Nuclide Type : natural

			Uncorrected		Decay Corr		
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	4.163E+00	4.163E+00	57.02E+00		
TH-228	1.91Y	1.00	6.105E+00	6.113E+00	3.568E+00	58.38	
U-235	7.04E+08Y	1.00	2.529E-01	2.529E-01	34.63E-01	1369.62	K

Total Activity : 1.052E+01 1.053E+01

Grand Total Activity: 1.052E+01 1.053E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID: 13L28431-6

Acquisition date : 28-APR-2006 14:42:52

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	63.29	120	1578	1.78	126.55	123	11	5.08E-03	***	6.20E-01	
1	77.17	239	724	0.89	154.28	153	6	1.02E-02	40.3	1.09E+00	
5	87.40	32	602	0.84	174.71	164	15	1.36E-03	****	1.39E+00	
1	139.82	189	958	0.98	279.47	275	9	8.02E-03	61.9	2.02E+00	
1	198.46	199	810	1.21	396.67	392	10	8.47E-03	57.2	1.90E+00	
1	295.18	605	563	1.36	589.99	585	12	2.57E-02	18.0	1.52E+00	
1	351.87	953	494	1.13	703.29	696	14	4.05E-02	12.3	1.34E+00	
1	582.90	15	277	1.71	1165.18	1157	14	6.37E-04	****	9.26E-01	${f T}$
1	595.45	93	195	1.96	1190.27	1186	10	3.96E-03	58.9	9.12E-01	
1	609.23	651	268	1.28	1217.83	1213	11	2.77E-02	13.1	8.96E-01	
1	768.08	66	230	2.76	1535.47	1528	15	2.79E-03	****	7.54E-01	
1	933.81	62	88	2.79	1866.97	1862	11	2.65E-03	63.9	6.52E-01	
1	1120.63	150	128	2.00	2240.71	2234	16	6.37E-03	39.9	5.69E-01	
1	1238.32	45	91	1.45	2476.19	2467	14	1.92E-03	****	5.29E-01	
1	1378.05	61	72	3.35	2755.82	2750	18	2.61E-03	72.8	4.89E-01	
1	1729.70	38	27	1.97	3459.75	3453	12	1.62E-03	63.8	4.17E-01	
1	1764.92	125	48	1.95	3530.27	3521	19	5.32E-03	34.9	4.11E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 20
Number of unidentified lines 16
Number of lines tentatively identified by NTD 4

Number of lines tentatively identified by NID 4 20.00%

Nuclide Type : natural

Nucliuc	Type . Hack	<i>1</i>	Wtd Mean	Wtd Mean			
			Uncorrected		Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Erro	r %Error	Flags
RA-226	1600.00Y	1.00	4.163E+00	4.163E+00	57.02E+00	1369.62	
TH-228	1.91Y	1.00	6.105E+00	6.113E+00	3.568E+00	58.38	
	Total Act:	ivity :	1.027E+01	1.028E+01			

Grand Total Activity: 1.027E+01 1.028E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
RA-226	4.163E+00	5.702E+01	7.914E+01	0.000E+00	0.053

TH-228 6.113E+00 3.568E+00 6.060E+00 0.000E+00 1.009

---- Non-Identified Nuclides ----

	Key-Line			MD	7 / 1/17/7
Nuclide	Activity K.I (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA
BE-7	3.232E+00	1.707E+01	2.804E+01	0.000E+00	0.115
NA-24	-6.033E+00	1.128E+01	1.482E+01	0.000E+00	-0.407
K-40	1.228E+01	2.965E+01	5.687E+01	0.000E+00	0.216
CR-51	-5.944E+00	1.783E+01	2.874E+01	0.000E+00	-0.207
MN-54	6.404E-01	2.018E+00	3.369E+00	0.000E+00	0.190
CO-57	-4.727E-01	1.913E+00	3.176E+00	0.000E+00	-0.149
CO-58	1.082E+00	1.963E+00	3.320E+00	0.000E+00	0.326
FE-59	2.347E+00	3.809E+00	6.469E+00	0.000E+00	0.363
CO-60	1.475E+00	2.077E+00	3.575E+00	0.000E+00	0.413
ZN-65	1.334E+01	5.500E+00	8.854E+00	0.000E+00	1.507
SE-75	-2.617E+00	2.654E+00	4.271E+00	0.000E+00	-0.613
SR-85	1.539E+01	2.444E+00	4.605E+00	0.000E+00	3.341
Y-88	-2.980E+00	2.323E+00	3.434E+00	0.000E+00	-0.868
NB-94	-1.017E+00	2.035E+00	3.244E+00	0.000E+00	-0.313
NB-95	5.898E+00	2.411E+00	3.862E+00	0.000E+00	1.527
ZR-95	-9.121E-02	3.820E+00	5.874E+00	0.000E+00	-0.016
MO-99	-1.504E+01	2.112E+01	3.410E+01	0.000E+00	-0.441
RU-103	2.134E+00	2.082E+00	3.507E+00	0.000E+00	0.609
RU-106	-7.994E-01	1.875E+01	3.079E+01	0.000E+00	-0.026
AG-110m	-6.089E-01	1.977E+00	3.195E+00	0.000E+00 0.000E+00	-0.191 -0.049
SN-113	-2.071E-01	2.578E+00	4.261E+00	0.000E+00	-0.578
SB-124	-1.955E+00	4.847E+00	3.383E+00 9.574E+00	0.000E+00	0.225
SB-125	2.158E+00	5.747E+00 2.367E+01	3.922E+01	0.000E+00	0.225
TE-129M	8.820E+00	2.36/E+01 2.215E+00	3.624E+00	0.000E+00	-0.381
I-131	-1.380E+00 1.168E+01	3.348E+00	5.385E+00	0.000E+00	2.169
BA-133 CS-134	1.140E+01	3.429E+00	4.577E+00	0.000E+00	2.490
CS-134 CS-136	-2.311E+00	2.138E+00	3.354E+00	0.000E+00	-0.689
CS-130 CS-137	-1.884E-01	2.130E+00	3.721E+00	0.000E+00	-0.051
CE-139	-3.751E-01	1.935E+00	3.156E+00	0.000E+00	-0.119
BA-140	3.434E+00	7.370E+00	1.247E+01	0.000E+00	0.275
LA-140	-1.772E-01	2.555E+00	4.216E+00	0.000E+00	-0.042
CE-141	-1.789E+00	3.989E+00	5.588E+00	0.000E+00	-0.320
CE-144	7.444E-01	1.729E+01	2.472E+01	0.000E+00	0.030
EU-152	-6.497E+00	7.515E+00	9.927E+00	0.000E+00	-0.654
EU-154	-7.446E-01	4.059E+00	6.745E+00	0.000E+00	-0.110
AC-228	3.753E-01	8.546E+00	1.395E+01	0.000E+00	0.027
TH-232	3.751E-01	8.543E+00	1.394E+01	0.000E+00	0.027
U-235	3.144E+00	1.793E+01	2.542E+01	0.000E+00	0.124
U-238	6.675E+01	2.440E+02	4.089E+02	0.000E+00	0.163
AM-241	2.534E+01	1.856E+01	2.779E+01	0.000E+00	0.912

```
,04/28/2006 21:15,04/27/2006 10:15,
A,13L28431-6
                                                                 3.586E+00,WG L28431-6 EX
                                             ,08/05/2005 08:16,1335L090904
B,13L28431-6
                     , LIBD
                                    5.702E+01,
                                                   7.914E+01,,
                                                                    0.053
C, RA-226
           , YES,
                     4.163E+00,
           , YES,
                                                   6.060E+00,,
                                                                    1.009
C, TH-228
                     6.113E+00,
                                    3.568E+00,
C, BE-7
                     3.232E+00,
                                    1.707E+01,
                                                   2.804E+01,,
                                                                    0.115
           , NO
                                                   1.482E+01,,
                                                                   -0.407
C, NA-24
           , NO
                    -6.033E+00,
                                    1.128E+01,
C, K-40
           , NO
                     1.228E+01,
                                    2.965E+01,
                                                   5.687E+01,,
                                                                    0.216
C, CR-51
                                                   2.874E+01,,
                                                                   -0.207
           , NO
                    -5.944E+00,
                                    1.783E+01,
                                    2.018E+00,
                                                   3.369E+00,,
                                                                    0.190
C, MN-54
           , NO
                     6.404E-01,
C, CO-57
                    -4.727E-01,
                                    1.913E+00,
                                                   3.176E+00,,
                                                                   -0.149
           , NO
                                                   3.320E+00,,
                                                                    0.326
C, CO-58
           , NO
                     1.082E+00,
                                    1.963E+00,
C, FE-59
                     2.347E+00,
                                    3.809E+00,
                                                   6.469E+00,,
                                                                    0.363
           , NO
                                                   3.575E+00,,
                                    2.077E+00,
                                                                    0.413
C, CO-60
           , NO
                     1.475E+00,
                                                   8.854E+00,,
C, ZN-65
           , NO
                     1.334E+01,
                                    5.500E+00,
                                                                    1.507
                                                   4.271E+00,,
                                                                   -0.613
C, SE-75
           ,NO
                    -2.617E+00,
                                    2.654E+00,
                                                   4.605E+00,,
                                                                    3.341
C, SR-85
            , NO
                     1.539E+01,
                                    2.444E+00,
C, Y-88
                    -2.980E+00,
                                    2.323E+00,
                                                   3.434E+00,,
                                                                   -0.868
           , NO
                                                   3.244E+00,,
                                                                   -0.313
                                    2.035E+00,
C, NB-94
                    -1.017E+00,
           , NO
                                                   3.862E+00,,
                                                                    1.527
C, NB-95
           , NO
                     5.898E+00,
                                    2.411E+00,
                    -9.121E-02,
                                    3.820E+00,
                                                   5.874E+00,,
                                                                   -0.016
C, ZR-95
           , NO
                                                   3.410E+01,,
                                                                   -0.441
C, MO-99
           , NO
                    -1.504E+01,
                                    2.112E+01,
C, RU-103
                                                   3.507E+00,,
                                                                    0.609
                     2.134E+00,
                                    2.082E+00,
           , NO
                                                                   -0.026
                                    1.875E+01,
                                                   3.079E+01,,
                    -7.994E-01,
C, RU-106
            , NO
                                                   3.195E+00,,
                                                                   -0.191
                    -6.089E-01,
                                    1.977E+00,
C, AG-110m
           , NO
                                    2.578E+00,
                                                   4.261E+00,,
                                                                   -0.049
C, SN-113
            , NO
                    -2.071E-01,
                                                                   -0.578
C,SB-124
            , NO
                    -1.955E+00,
                                    4.847E+00,
                                                   3.383E+00,,
                                    5.747E+00,
                                                   9.574E+00,,
                                                                    0.225
C,SB-125
            , NO
                     2.158E+00,
                                    2.367E+01,
                                                   3.922E+01,,
                                                                    0.225
C, TE-129M
                     8.820E+00,
           , NO
            , NO
                                                   3.624E+00,,
                                                                   -0.381
                                    2.215E+00,
C, I-131
                    -1.380E+00,
                                                   5.385E+00,,
                                                                    2.169
C, BA-133
            , NO
                     1.168E+01,
                                    3.348E+00,
C, CS-134
            , NO
                     1.140E+01,
                                    3.429E+00,
                                                   4.577E+00,,
                                                                    2.490
                                                   3.354E+00,,
                                                                   -0.689
                    -2.311E+00,
                                    2.138E+00,
C, CS-136
            , NO
                                    2.299E+00,
                                                   3.721E+00,,
                                                                   -0.051
C, CS-137
            , NO
                    -1.884E-01,
                                                   3.156E+00,,
                                                                   -0.119
                                    1.935E+00,
C, CE-139
            , NO
                    -3.751E-01,
C, BA-140
            ,NO
                     3.434E+00,
                                    7.370E+00,
                                                   1.247E+01,,
                                                                    0.275
            , NO
                                    2.555E+00,
                                                   4.216E+00,,
                                                                   -0.042
C, LA-140
                    -1.772E-01,
                                                   5.588E+00,,
                                                                   -0.320
                    -1.789E+00,
                                    3.989E+00,
C, CE-141
            , NO
                                                   2.472E+01,,
                                                                    0.030
                     7.444E-01,
C, CE-144
                                    1.729E+01,
            , NO
                                                   9.927E+00,,
                                                                   -0.654
                                    7.515E+00,
C, EU-152
                    -6.497E+00,
            , NO
C, EU-154
            , NO
                    -7.446E-01,
                                    4.059E+00,
                                                   6.745E+00,,
                                                                   -0.110
            , NO
                     3.753E-01,
                                    8.546E+00,
                                                   1.395E+01,,
                                                                    0.027
C, AC-228
                                                                    0.027
                     3.751E-01,
                                    8.543E+00,
                                                   1.394E+01,,
C, TH-232
            , NO
                                                   2.542E+01,,
                                                                    0.124
                                    1.793E+01,
C, U-235
            , NO
                     3.144E+00,
                                                   4.089E+02,,
                                                                    0.163
                     6.675E+01,
                                    2.440E+02,
C, U-238
            , NO
                                                                    0.912
```

1.856E+01,

C, AM-241

,NO

2.534E+01,

2.779E+01,,

LIMS: 1 Analyst: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:05:39.55 TBE14 P-10933A HpGe ******** Aquisition Date/Time: 28-APR-2006 14:42:55.51

LIMS No., Customer Name, Client ID: WG L28431-7 EX BYR H-3 SPEC

Smple Date: 27-APR-2006 11:20:00. : 14L28431-7 Sample ID

Geometry : 1435L091304 Sample Type : WG BKGFILE : 14BG041406MT Quantity : 3.57650E+00 L

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	65.85*	652	5334	1.69	132.83		8.47E-03		
2	3	73.02*	173	4623	1.60	147.21	6.40E-01	2.25E-03		3.50E+00
3	3	74.68*	1150	5152	1.46	150.55	6.87E-01	1.49E-02	12.6	
4	3	76.93	2059	3956	1.19	155.08	7.51E-01	2.68E-02	5.7	
5	1	87.03*	565	4706	1.13	175.34	1.02E+00	7.34E-03	22.4	3.05E+00
6	1	92.60*	27	3606	1.30	186.53	1.15E+00	3.54E-04		
7	1	139.82	479	4478	1.50	281.31	1.67E+00			
8	1	185.87*	141	4015	1.49	373.70		1.83E-03		8.48E-01
9	1	198.50*	323	3584	1.13	399.03		4.20E-03	34.8	
10	2	238.58*	249	3363	1.71	479.41	1.47E+00			1.37E+00
11	2	242.05	2991	2592	1.39	486.36		3.89E-02	3.5	
12	1	295.29*	6508	3007	1.41	593.08		8.46E-02	2.2	
13	1	351.99*	10787	2828	1.41	706.68		1.40E-01		4.75E-01
14	1	595.85	270	925	1.75			3.52E-03		7.40E-01
15	1	609.21*	8916	1067		1221.36		1.16E-01	1.4	
16	1	665.23	219	730		1333.32		2.85E-03	25.0	3.21E+00
17	1	768.14	751	838		1538.82		9.76E-03	9.0	3.70E-01
18	1	785.05	216	977	2.95	1572.57		2.81E-03	35.5	3.34E+00
19	1	806.18	138	512		1614.76		1.79E-03		
20	1	933.79	454	625	1.93	1869.27		5.90E-03	12.9	1.65E+00
21	1	1120.15*	1889	504		2240.47		2.46E-02		4.76E-01
22	1	1154.63	309	394	3.27			4.02E-03		3.08E+00
23	1	1238.07*	785	492	2.22			1.02E-02		1.16E+00
24	1	1281.09	160	316	2.29			2.08E-03		1.15E+00
25	1	1377.79	588	339	2.47			7.64E-03		1.64E+00
26	1	1385.94	126	223	2.42			1.63E-03		1.51E+00 2.26E+00
27	1	1402.09	201	245	2.28			2.61E-03		2.205+00
28	1	1408.45	286	241	2.28	2813.58	4.04E-01	3.72E-03	14.5	2 745.00
29	1	1461.34*	11	310		2918.58	3.93E-01	1.48E-04	400.3	0 70E 01
30	1	1509.62	262	280		3014.38	3.83E-U1	3.40E-03 1.96E-03	10 6	J. /OE-UI
31	1	1662.87	151	162		3318.23				2.05E+00
32	1	1731.16	386	222	2.25			5.02E-03		
33	1	1766.13	1674	214		3522.75		2.18E-02 3.28E-03		
34	1	1849.32	252	144	2.99	3687.39	3.33E-Ul	3.∠0⊑-03	13.0	T.24D400

Flag: "*" = Peak area was modified by background subtraction

Nuclide Type: natural

Nuclide	Type: nature	aı			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	11	10.67*	3.926E-01	2.676E+00	2.676E+00	936.57
RA-226	186.21	141	3.28*	1.640E+00	2.575E+01	2.575E+01	182.42
TH-228	238.63	249	44.60*	1.469E+00	3.733E+00	3.739E+00	94.49
	240.98	2991	3.95	1.457E+00	5.105E+02	5.113E+02	6.97
U-235	143.76		10.50*	1.680E+00	Li	ne Not Found	
	163.35		4.70	1.685E+00	Li	ne Not Found	
	185.71	141	54.00	1.640E+00	1.564E+00	1.564E+00	182.42
	205.31		4.70	1.582E+00	Li	ne Not Found	

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 28-APR-2006 14:42:55 Sample ID : 14L28431-7

34

Total number of lines in spectrum

Number of unidentified lines 29

Number of lines tentatively identified by NID 5 14.71%

Nuclide Type : natural

			Uncorrected				
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error	Flags
	1.28E+09Y	1.00	2.676E+00	2.676E+00	25.06E+00	936.57	
RA-226	1600.00Y	1.00	2.575E+01	2.575E+01	4.697E+01	182.42	
TH-228	1.91Y	1.00	3.733E+00	3.739E+00	3.533E+00	94.49	
U-235	7.04E+08Y	1.00	1.564E+00	1.564E+00	2.853E+00	182.42	K

Total Activity : 3.372E+01 3.373E+01

Grand Total Activity: 3.372E+01 3.373E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3

Unidentified Energy Lines Sample ID : 14L28431-7

Acquisition date : 28-APR-2006 14:42:55

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff F	Flags
1	65.85	652	5334	1.69	132.83	129	9	8.47E-03	42.6	4.40E-01	
3	73.02	173	4623	1.60	147.21	143	18	2.25E-03	***	6.40E-01	
3	74.68	1150	5152	1.46	150.55	143	18	1.49E-02	25.2	6.87E-01	
3	76.93	2059	3956	1.19	155.08	143	18	2.68E-02	11.4	7.51E-01	
1	87.03	565	4706	1.13	175.34	172	8	7.34E-03	44.8	1.02E+00	
1	92.60	27	3606	1.30	186.53	184	7	3.54E-04	****	1.15E+00	
1	139.82	479	4478	1.50	281.31	278	8	6.22E-03	49.2	1.67E+00	
1	198.50	323	3584	1.13	399.03	396	8	4.20E-03	69.5	1.60E+00	
1	295.29	6508	3007	1.41	593.08	588	13	8.46E-02	4.4	1.29E+00	
1	351.99	10787	2828	1.41	706.68	700		1.40E-01	3.0	1.14E+00	
1	595.85	270	925	1.75	1194.67	1189	11	3.52E-03		7.79E-01	
1	609.21	8916	1067	1.58	1221.36	1215		1.16E-01	2.7	7.66E-01	
1	665.23	219	730	1.74	1333.32	1328		2.85E-03		7.17E-01	
1	768.14	751	838	1.61	1538.82	1532		9.76E-03	17.9	6.43E-01	
1	785.05	216	977	2.95	1572.57	1564	19	2.81E-03	71.1	6.33E-01	
1	806.18	138	512	1.44	1614.76	1611	9	1.79E-03	61.9	6.20E-01	
1	933.79	454	625	1.93	1869.27	1863	15	5.90E-03	25.9	5.54E-01	
1	1120.15	1889	504	1.86	2240.47			2.46E-02	7.3	4.81E-01	
1	1154.63	309	394	3.27	2309.08	2302		4.02E-03		4.70E-01	
1	1238.07	785	492	2.22	2475.04	2467	19	1.02E-02	16.1	4.45E-01	
1	1281.09	160	316	2.29	2560.58	2554	13	2.08E-03		4.34E-01	
1	1377.79	588	339	2.47	2752.71	2746	16		16.1	4.10E-01	
1	1385.94	126	223	2.42	2768.89			1.63E-03		4.09E-01	
1	1402.09	201	245	2.28	2800.97			2.61E-03		4.05E-01	
1	1408.45	286	241	2.28	2813.58	2795	25			4.04E-01	${f T}$
1	1509.62	262	280	2.21	3014.38	3007	14	3.40E-03		3.83E-01	
1	1662.87	151	162	2.66	3318.23	3312	13	1.96E-03		3.58E-01	
1	1731.16	386	222	2.25	3453.49	3447	17	5.02E-03		3.48E-01	
ī	1766.13	1674	214	2.36	3522.75	3513	19	2.18E-02	6.4	3.43E-01	
1	1849.32	252	144	2.99	3687.39	3680	18	3.28E-03	26.0	3.33E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 34 Number of unidentified lines 29
Number of lines tentatively identified by NID 5 14.71%

Nuclide Type : natural

Ivaciiac	1750 1 11111		Wtd Mean Uncorrected	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error		Flags
	1.28E+09Y	1.00	2.676E+00	2.676E+00	25.06E+00	936.57	
RA-226	1600.00Y	1.00	2.575E+01	2.575E+01	4.697E+01	182.42	
TH-228	1.91Y	1.00	3.733E+00	3.739E+00	3.533E+00	94.49	
	Total Act	ivity :	3.216E+01	3.216E+01			

Grand Total Activity: 3.216E+01 3.216E+01

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

· 7/7	Activity	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide	(pCi/L)		(bcr, n)		
K-40	2.676E+00	2.506E+01	2.545E+01	0.000E+00	0.105
RA-226	2.575E+01	4.697E+01	7.378E+01	0.000E+00	0.349
TH-228	3.739E+00	3.533E+00	5.442E+00	0.000E+00	0.687
Non-I	dentified Nuclides	<u></u>			
	Key-Line				/
	Activity K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L) Ided		(pCi/L)		
BE-7	-1.012E+01	1.407E+01	2.310E+01	0.000E+00	-0.438
NA-24	-7.470E-01	1.074E+01	1.460E+01	0.000E+00	-0.051
CR-51	-5.078E+00	1.491E+01	2.446E+01	0.000E+00	-0.208
MN-54	1.015E+00	1.603E+00	2.673E+00	0.000E+00	0.380
CO-57	-1.039E+00	1.870E+00	3.091E+00	0.000E+00	-0.336
CO-58	2.513E+00	1.832E+00	2.652E+00	0.000E+00	0.948
FE-59	3.647E+00	2.985E+00	5.081E+00	0.000E+00	0.718
CO-60	-8.473E-01	1.659E+00	2.670E+00	0.000E+00	-0.317
ZN-65	7.616E+01	5.273E+00	9.811E+00	0.000E+00	7.763
SE-75	-7.035E-01	2.374E+00	3.931E+00	0.000E+00	-0.179
SR-85	1.786E+01	1.721E+00	3.209E+00	0.000E+00	5.565
Y-88	2.204E+00	1.664E+00	2.617E+00	0.000E+00	0.842
NB-94	9.768E-01	1.537E+00	2.527E+00	0.000E+00	0.387
NB-95	1.272E+01	1.748E+00	3.236E+00	0.000E+00	3.929
ZR-95	1.643E+00	2.985E+00	4.522E+00	0.000E+00	0.363
MO-99	1.393E+01	1.692E+01	2.851E+01	0.000E+00	0.488
RU-103	1.339E+00	1.658E+00	2.776E+00	0.000E+00	0.482
RU-106	-4.272E+00	1.488E+01	2.354E+01	0.000E+00	-0.181
AG-110m	7.887E-01	1.812E+00	2.514E+00	0.000E+00	0.314
SN-113	1.512E+00	2.260E+00	3.720E+00	0.000E+00	0.407
SB-124	1.235E+00	3.805E+00	2.711E+00	0.000E+00	0.456
SB-125	1.145E-01	4.902E+00	7.965E+00	0.000E+00	0.014
TE-129M	2.586E+00	1.904E+01	3.169E+01	0.000E+00	0.082
I-131	8.000E-01	1.980E+00	3.211E+00	0.000E+00	0.249
BA-133	1.293E+02	3.830E+00	7.360E+00	0.000E+00	17.570
CS-134	9.608E+01	3.868E+00	5.839E+00	0.000E+00	16.454
CS-136	2.236E-01	1.685E+00	2.684E+00	0.000E+00	0.083
CS-137	2.974E+00	2.244E+00	3.038E+00	0.000E+00	0.979
CE-139	-1.551E+00	1.886E+00	3.077E+00	0.000E+00	-0.504
BA-140	4.694E+00	6.196E+00	1.034E+01	0.000E+00	0.454
LA-140	1.189E+00	2.025E+00	3.392E+00	0.000E+00	0.350
CE-141	4.398E-01	3.875E+00	5.437E+00	0.000E+00	0.081
CE-144	-3.548E+00	1.698E+01	2.382E+01	0.000E+00	-0.149
EU-152	-5.375E+00	6.527E+00	8.917E+00	0.000E+00	-0.603
EU-154	-8.855E-01	3.923E+00	6.498E+00	0.000E+00	-0.136
AC-228	-1.818E+00	6.678E+00	1.001E+01	0.000E+00	-0.182
TH-232	-1.817E+00	6.674E+00	1.001E+01	0.000E+00	-0.182

L28431 67 of 147

U-235	1.708E+00	1.745E+01	2.449E+01	0.000E+00	0.070
U-238	1.018E+02	1.754E+02	2.897E+02	0.000E+00	0.352
AM-241	-7.480E+00	2.889E+01	4.020E+01	0.000E+00	-0.186

```
3.576E+00,WG L28431-7 EX
                     ,04/29/2006 12:05,04/27/2006 11:20,
A,14L28431-7
                                             ,06/22/2005 08:57,1435L091304
                     ,LIBD
B,14L28431-7
                                                   2.545E+01,,
                                                                    0.105
                                    2.506E+01,
           , YES,
                    2.676E+00,
C, K-40
                                                   7.378E+01,,
                                                                    0.349
                                    4.697E+01,
           , YES,
                    2.575E+01,
C, RA-226
                                                                    0.687
                                                   5.442E+00,,
                    3.739E+00,
                                    3.533E+00,
C, TH-228
           , YES,
                                                   2.310E+01,,
                                                                   -0.438
                                    1.407E+01,
                    -1.012E+01,
C, BE-7
           , NO
                                                                   -0.051
                                                   1.460E+01,,
C, NA-24
                    -7.470E-01,
                                    1.074E+01,
           , NO
                                                                   -0.208
                                                   2.446E+01,,
            , NO
                                    1.491E+01,
C, CR-51
                    -5.078E+00,
                                                   2.673E+00,,
                                                                    0.380
                                    1.603E+00,
            , NO
                     1.015E+00,
C, MN-54
                                                   3.091E+00,,
                                                                   -0.336
                                    1.870E+00,
                    -1.039E+00,
C, CO-57
            , NO
                                    1.832E+00,
                                                   2.652E+00,,
                                                                    0.948
                     2.513E+00,
C, CO-58
            , NO
                                                                    0.718
                                                   5.081E+00,,
                                    2.985E+00,
C, FE-59
            , NO
                     3.647E+00,
                                    1.659E+00,
                                                   2.670E+00,,
                                                                   -0.317
C, CO-60
            , NO
                    -8.473E-01,
                                                   9.811E+00,,
                                                                    7.763
C, ZN-65
                     7.616E+01,
                                    5.273E+00,
            , NO
                                                   3.931E+00,,
                                                                   -0.179
            ,NO
                                    2.374E+00,
C, SE-75
                    -7.035E-01,
                                                   3.209E+00,,
                                                                    5.565
                                    1.721E+00,
                     1.786E+01,
C, SR-85
            , NO
                                                                    0.842
                                                   2.617E+00,,
                                    1.664E+00,
C, Y-88
            , NO
                     2.204E+00,
                                                                    0.387
                                    1.537E+00,
                                                   2.527E+00,,
                     9.768E-01,
C, NB-94
            , NO
                                                   3.236E+00,,
                                                                    3.929
                     1.272E+01,
                                    1.748E+00,
            , NO
C, NB-95
                                    2.985E+00,
                                                   4.522E+00,,
                                                                    0.363
                     1.643E+00,
C, ZR-95
            , NO
                                                   2.851E+01,,
                                                                    0.488
                                    1.692E+01,
                     1.393E+01,
C, MO-99
            , NO
                                                   2.776E+00,,
                                                                    0.482
                                    1.658E+00,
C, RU-103
            , NO
                     1.339E+00,
                                                                   -0.181
                                                   2.354E+01,,
                    -4.272E+00,
                                    1.488E+01,
            , NO
C, RU-106
                                                                    0.314
                                    1.812E+00,
                                                   2.514E+00,,
                     7.887E-01,
C, AG-110m , NO
                                                                    0.407
                                    2.260E+00,
                                                   3.720E+00,,
                     1.512E+00,
            , NO
C, SN-113
                                                   2.711E+00,,
                                                                    0.456
                                    3.805E+00,
                     1.235E+00,
C,SB-124
            , NO
                                                                    0.014
                                    4.902E+00,
                                                   7.965E+00,,
                     1.145E-01,
C,SB-125
            , NO
                                                   3.169E+01,,
                                                                    0.082
                     2.586E+00,
                                    1.904E+01,
C, TE-129M
           , NO
            , NO
                                    1.980E+00,
                                                   3.211E+00,,
                                                                    0.249
C, I-131
                     8.000E-01,
                                                   7.360E+00,,
                                                                   17.570
                                    3.830E+00,
                     1.293E+02,
C, BA-133
            , NO
                                                   5.839E+00,,
                                                                   16.454
                                    3.868E+00,
            , NO
C, CS-134
                     9.608E+01,
                                                                    0.083
                                                   2.684E+00,,
                                    1.685E+00,
C, CS-136
                     2.236E-01,
            , NO
                                                                    0.979
                                                   3.038E+00,,
                     2.974E+00,
                                    2.244E+00,
C, CS-137
            , NO
                                                                   -0.504
                                    1.886E+00,
                                                   3.077E+00,,
                    -1.551E+00,
            ,NO
C, CE-139
                                                   1.034E+01,,
                                                                     0.454
                     4.694E+00,
                                    6.196E+00,
C, BA-140
            , NO
                                                                     0.350
                                                   3.392E+00,,
                                    2.025E+00,
            , NO
C, LA-140
                     1.189E+00,
                                                                     0.081
                                                   5.437E+00,,
            ,NO
                     4.398E-01,
                                    3.875E+00,
C, CE-141
                                                   2.382E+01,,
                                                                   -0.149
                                    1.698E+01,
                    -3.548E+00,
C, CE-144
            , NO
                                                   8.917E+00,,
                                                                    -0.603
                    -5.375E+00,
                                    6.527E+00,
C, EU-152
            ,NO
                                                   6.498E+00,,
                                                                    -0.136
                                    3.923E+00,
                    -8.855E-01,
C, EU-154
            , NO
                                                   1.001E+01,,
                                                                    -0.182
                                    6.678E+00,
                    -1.818E+00,
C, AC-228
            , NO
                                                                    -0.182
                                                   1.001E+01,,
                    -1.817E+00,
                                    6.674E+00,
C, TH-232
            , NO
                                                                     0.070
                                    1.745E+01,
                                                   2.449E+01,,
C, U-235
            ,NO
                     1.708E+00,
                                                   2.897E+02,,
                                                                     0.352
                                    1.754E+02,
                     1.018E+02,
            ,NO
C, U-238
                                    2.889E+01,
                                                   4.020E+01,,
                                                                    -0.186
                    -7.480E+00,
C, AM-241
            ,NO ,
```

Analyst: LIMS: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 21:18:39.11 TBE15 P-10635B HpGe ******** Aquisition Date/Time: 28-APR-2006 14:42:56.70

LIMS No., Customer Name, Client ID: WG L28431-8 EX BYR H-3 SPEC

Smple Date: 27-APR-2006 12:35:00. Sample ID : 15L28431-8

Geometry : 1535L090104 Sample Type : WG BKGFILE: 15BG041406MT Quantity : 3.56810E+00 L End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 06:35:35.63 MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.97	204	1174	1.18	119.95	4.52E-01	8.60E-03	28.6	1.61E+00
2	2	75.47*	351	1181	1.25	137.04	6.72E-01	1.48E-02	18.8	3.47E+00
3	2	77.79	783	1099	1.26	141.72	7.32E-01	3.30E-02	8.5	
4	1	87.96*	198	1332	1.13	162.16	9.70E-01	8.36E-03	33.0	9.58E-01
5	1	140.41	244	1136	1.49	267.70	1.48E+00	1.03E-02	24.7	8.60E-01
6	2	242.49	784	637	1.32	473.04	1.21E+00	3.30E-02	6.6	2.51E+00
7	1	295.64*	1566	734	1.20	579.93	1.05E+00	6.60E-02	4.3	9.51E-01
8	1	352.26*	2690	622	1.27	693.81	9.15E-01	1.13E-01		
9	1	595.98	61	248	1.48	1183.80	5.97E-01	2.55E-03	53.6	7.27E-01
10	1	609.24*	2148	251	1.56	1210.45	5.86E-01	9.05E-02	2.7	1.29E+00
11	1	665.23	95	239	3.39	1322.99	5.46E-01	4.01E-03	38.8	1.92E+00
12	1	767.96	236	147	2.08	1529.43	4.86E-01	9.94E-03	12.4	9.52E-01
13	1	806.50	78	176	4.63	1606.87	4.67E-01	3.27E-03	40.8	2.54E+00
14	1	933.94	100	101	1.30	1862.90	4.15E-01	4.21E-03	20.2	
15	1	1119.84*	397	140	1.81	2236.26	3.58E-01	1.67E-02	8.6	1.52E+00
16	1	1237.65	171	90	1.89	2472.79	3.31E-01	7.20E-03	14.5	1.02E+00
17	1	1377.42	91	100	2.15	2753.36	3.04E-01	3.84E-03	26.1	9.82E+00
18	1	1407.52	75	47	2.52	2813.79	2.99E-01	3.16E-03	21.2	2.83E+00
19	1	1510.78	110	69	7.15	3020.99	2.83E-01	4.63E-03	22.4	
20	1	1729.22	75	45	2.50	3459.21	2.57E-01	3.14E-03	23.0	8.77E-01
21	1	1764.44*	353	41	2.20	3529.86	2.54E-01	1.49E-02	6.9	1.09E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID : 15L28431-8

Acquisition date : 28-APR-2006 14:42:56

Total number of lines in spectrum Number of unidentified lines 21 18

14.29%

Number of lines tentatively identified by NID 3
**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 15L28431-8

Page: 3 Acquisition date : 28-APR-2006 14:42:56

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 2 2 1 1 2 1 1 1	66.97 75.47 77.79 87.96 140.41 242.49 295.64 352.26 595.98 609.24	204 351 783 198 244 784 1566 2690 61 2148	1174 1181 1099 1332 1136 637 734 622 248 251	1.18 1.25 1.26 1.13 1.49 1.32 1.20 1.27 1.48 1.56	119.95 137.04 141.72 162.16 267.70 473.04 579.93 693.81 1183.80 1210.45	117 130 130 159 264 463 575 686 1179 1205	20 20 8 8 15 12	8.60E-03 1.48E-02 3.30E-02 8.36E-03 1.03E-02 3.30E-02 6.60E-02 1.13E-01 2.55E-03 9.05E-02	57.1 37.5 16.9 66.1 49.5 13.2 8.7 5.5 ****	4.52E-01 6.72E-01 7.32E-01 9.70E-01 1.48E+00 1.21E+00 1.05E+00 9.15E-01 5.97E-01 5.86E-01	Т
1 1 1 1 1 1 1	665.23 767.96 806.50 933.94 1119.84 1237.65 1377.42 1407.52 1510.78 1729.22 1764.44	95 236 78 100 397 171 91 75 110 75 353	239 147 176 101 140 90 100 47 69 45 41	3.39 2.08 4.63 1.30 1.81 1.89 2.15 2.52 7.15 2.50 2.20	1322.99 1529.43 1606.87 1862.90 2236.26 2472.79 2753.36 2813.79 3020.99 3459.21 3529.86	1316 1522 1600 1859 2227 2467 2747 2808	17 13 16 8 17 15 15 11 23 15	4.01E-03 9.94E-03 3.27E-03 4.21E-03	77.7 24.9 81.5 40.4 17.3 28.9 52.1 42.3	5.46E-01 4.86E-01 4.67E-01 4.15E-01 3.58E-01 3.31E-01 3.04E-01 2.99E-01 2.83E-01 2.57E-01	T T

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

21 Total number of lines in spectrum Number of unidentified lines 18 Number of lines tentatively identified by NID 3 **** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58	-1.089E+01 3.761E+00 1.464E+02 -2.241E+01 2.257E+00 6.048E-01 1.011E+00	2.717E+01 1.535E+01 4.030E+01 2.843E+01 3.255E+00 3.329E+00 3.642E+00	4.342E+01 2.168E+01 7.739E+01 4.616E+01 5.552E+00 5.558E+00 5.206E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.251 0.173 1.891 -0.485 0.407 0.109

				0 0007 00	0
FE-59	6.764E+00	5.919E+00	1.023E+01	0.000E+00	0.661
CO-60	7.999E-02	3.378E+00	5.569E+00	0.000E+00	0.014
ZN-65	6.207E+01	1.035E+01	1.883E+01	0.000E+00	3.297
SE-75	-2.547E+00	4.368E+00	7.201E+00	0.000E+00	-0.354
SR-85	1.478E+01	3.303E+00	6.139E+00	0.000E+00	2.408
Y-88	-2.645E+00	3.477E+00	5.377E+00	0.000E+00	-0.492
NB-94	1.272E+00	3.148E+00	5.221E+00	0.000E+00	0.244
NB-95	1.470E+01	3.640E+00	6.765E+00	0.000E+00	2.173
ZR-95	8.153E-01	5.951E+00	9.099E+00	0.000E+00	0.090
MO-99	2.628E+01	3.132E+01	5.286E+01	0.000E+00	0.497
RU-103	1.353E+00	3.196E+00	5.393E+00	0.000E+00	0.251
RU-106	-2.947E+00	2.857E+01	4.537E+01	0.000E+00	-0.065
AG-110m	-1.768E+00	3.562E+00	4.774E+00	0.000E+00	-0.370
SN-113	1.300E+00	4.252E+00	7.023E+00	0.000E+00	0.185
SB-124	2.882E+00	6.789E+00	5.313E+00	0.000E+00	0.542
SB-125	4.152E-01	9.713E+00	1.585E+01	0.000E+00	0.026
TE-129M	1.157E+01	3.657E+01	6.000E+01	0.000E+00	0.193
I-131	-3.028E+00	3.662E+00	5.884E+00	0.000E+00	-0.515
BA-133	1.053E+02	7.115E+00	1.357E+01	0.000E+00	7.761
CS-134	5.691E+01	7.580E+00	9.627E+00	0.000E+00	5.912
CS-136	4.813E+00	3.453E+00	5.707E+00	0.000E+00	0.843
CS-137	3.647E+00	4.088E+00	5.955E+00	0.000E+00	0.612
CE-139	3.808E+00	3.459E+00	5.792E+00	0.000E+00	0.657
BA-140	4.961E+00	1.202E+01	2.020E+01	0.000E+00	0.246
LA-140	1.889E+00	3.701E+00	6.356E+00	0.000E+00	0.297
CE-141	-2.502E+00	6.818E+00	9.556E+00	0.000E+00	-0.262
CE-144	-3.219E+01	2.940E+01	4.227E+01	0.000E+00	-0.761
EU-152	-3.962E+00	1.268E+01	1.755E+01	0.000E+00	-0.226
EU-154	9.103E-01	7.133E+00	1.178E+01	0.000E+00	0.077
RA-226	4.167E+01	8.604E+01	1.416E+02	0.000E+00	0.294
AC-228	1.391E+01	1.254E+01	2.146E+01	0.000E+00	0.648
TH-228	2.050E+01	7.543E+00	1.119E+01	0.000E+00	1.832
TH-232	1.390E+01	1.253E+01	2.145E+01	0.000E+00	0.648
U-235	3.523E+00	3.084E+01	4.372E+01	0.000E+00	0.081
U-238	4.700E+01	3.612E+02	5.958E+02	0.000E+00	0.079
AM-241	-4.464E+01	4.203E+01	6.607E+01	0.000E+00	-0.676

```
3.568E+00,WG L28431-8 EX
                     ,04/28/2006 21:18,04/27/2006 12:35,
A, 15L28431-8
                                             ,03/09/2005 13:29,1535L090104
                     ,LIBD
B, 15L28431-8
                                                   4.342E+01,,
                                                                   -0.251
                    -1.089E+01,
                                    2.717E+01,
C, BE-7
           , NO
                                                   2.168E+01,,
                                                                    0.173
            , NO
                     3.761E+00,
                                    1.535E+01,
C, NA-24
                                                                    1.891
                                    4.030E+01,
                                                   7.739E+01,,
                     1.464E+02,
C, K-40
            , NO
                                    2.843E+01,
                                                   4.616E+01,,
                                                                   -0.485
C, CR-51
            , NO
                    -2.241E+01,
                                                                    0.407
                                                   5.552E+00,,
                                    3.255E+00,
                     2.257E+00,
C, MN-54
            , NO
                                                                    0.109
                                                   5.558E+00,,
                                    3.329E+00,
C, CO-57
            , NO
                     6.048E-01,
                                                                    0.194
                                                   5.206E+00,,
                     1.011E+00,
                                    3.642E+00,
            , NO
C, CO-58
                                                                    0.661
                                                   1.023E+01,,
                                    5.919E+00,
                     6.764E+00,
C, FE-59
            , NO
                                                   5.569E+00,,
                                                                    0.014
                                    3.378E+00,
C, CO-60
            , NO
                     7.999E-02,
                                                                    3.297
                                                   1.883E+01,,
                     6.207E+01,
                                    1.035E+01,
C, ZN-65
            , NO
                                                   7.201E+00,,
                                                                   -0.354
                                    4.368E+00,
            , NO
                    -2.547E+00,
C, SE-75
                                                   6.139E+00,,
                                                                    2.408
                     1.478E+01,
                                    3.303E+00,
            , NO
C, SR-85
                                                                   -0.492
                                                   5.377E+00,,
            ,NO
                                    3.477E+00,
                    -2.645E+00,
C, Y-88
                                                                    0.244
                                                   5.221E+00,,
                                    3.148E+00,
                     1.272E+00,
C, NB-94
            , NO
                                                                    2.173
                                                   6.765E+00,,
C, NB-95
            , NO
                     1.470E+01,
                                    3.640E+00,
                                                                    0.090
                                    5.951E+00,
                                                   9.099E+00,,
            , NO
                     8.153E-01,
C, ZR-95
                                                   5.286E+01,,
                                                                     0.497
                     2.628E+01,
                                    3.132E+01,
C, MO-99
            , NO
                                                   5.393E+00,,
                                    3.196E+00,
                                                                    0.251
                     1.353E+00,
C, RU-103
            , NO
                                                   4.537E+01,,
                                                                   -0.065
                                    2.857E+01,
            , NO
                    -2.947E+00,
C, RU-106
                                                   4.774E+00,,
                                                                   -0.370
                                    3.562E+00,
C, AG-110m
            ,NO
                    -1.768E+00,
                                                                     0.185
                                                   7.023E+00,,
                     1.300E+00,
                                    4.252E+00,
C, SN-113
            , NO
                                                                     0.542
                     2.882E+00,
                                    6.789E+00,
                                                   5.313E+00,,
C,SB-124
            , NO
                                                   1.585E+01,,
                                                                     0.026
                                    9.713E+00,
                     4.152E-01,
C,SB-125
            , NO
                                                                     0.193
                                                   6.000E+01,,
                                    3.657E+01,
                     1.157E+01,
C, TE-129M
            , NO
                                                                    -0.515
                                                   5.884E+00,,
                                    3.662E+00,
                    -3.028E+00,
C, I-131
            , NO
                                                   1.357E+01,,
                                                                     7.761
                     1.053E+02,
                                    7.115E+00,
C, BA-133
            , NO
                                    7.580E+00,
                                                   9.627E+00,,
                                                                     5.912
                     5.691E+01,
C, CS-134
            , NO
                                                   5.707E+00,,
                                                                     0.843
                                    3.453E+00,
                     4.813E+00,
C, CS-136
            , NO
                                                                     0.612
                                                   5.955E+00,,
                                    4.088E+00,
C, CS-137
            , NO
                     3.647E+00,
                                                                     0.657
                                                   5.792E+00,,
                     3.808E+00,
                                    3.459E+00,
C, CE-139
            , NO
                                                                     0.246
                                                   2.020E+01,,
                     4.961E+00,
                                    1.202E+01,
C, BA-140
            , NO
                                    3.701E+00,
                                                   6.356E+00,,
                                                                     0.297
                     1.889E+00,
C, LA-140
            , NO
                                                   9.556E+00,,
                                                                    -0.262
                                    6.818E+00,
                    -2.502E+00,
C, CE-141
            ,NO
                                                   4.227E+01,,
                                                                    -0.761
                                    2.940E+01,
                    -3.219E+01,
C, CE-144
            , NO
                                                                    -0.226
                                                   1.755E+01,,
                                    1.268E+01,
C, EU-152
            ,NO
                    -3.962E+00,
                                                   1.178E+01,,
                                                                     0.077
                     9.103E-01,
                                    7.133E+00,
            , NO
C, EU-154
                                                   1.416E+02,,
                                                                     0.294
                                    8.604E+01,
            , NO
                     4.167E+01,
C, RA-226
                                                   2.146E+01,,
                                                                     0.648
                     1.391E+01,
                                    1.254E+01,
            , NO
C, AC-228
                                                                     1.832
                                                   1.119E+01,,
                                    7.543E+00,
                     2.050E+01,
C, TH-228
            , NO
                                                   2.145E+01,,
                                                                     0.648
                                    1.253E+01,
                     1.390E+01,
C, TH-232
            , NO
                                                   4.372E+01,,
                                                                     0.081
                                    3.084E+01,
                     3.523E+00,
C, U-235
            , NO
                                                   5.958E+02,,
                                                                     0.079
                                    3.612E+02,
                     4.700E+01,
C, U-238
            ,NO
                                                   6.607E+01,,
                                                                    -0.676
                                    4.203E+01,
            ,NO ,
                    -4.464E+01,
C, AM-241
```

Sec. Review: LIMS: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 21:20:44.68 TBE23 03017322 HpGe ******* Aquisition Date/Time: 28-APR-2006 14:42:59.93

LIMS No., Customer Name, Client ID: WG L28431-9 EX BYR H-3 SPEC

Smple Date: 27-APR-2006 13:35:00. Sample ID : 23L28431-9

: WG Geometry : 2335L090704 Sample Type Quantity : 3.59180E+00 L BKGFILE : 23BG041406MT

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff Cts/Sec %Err Fit	
1	6	33.86*	93	66	1.16	67.87	9.48E-02 3.91E-03 32.8 6.16E+00	
2	6		84	289	1.62	70.42	1.15E-01 3.50E-03 53.1	
3	6	36.57*		412	1.63	73.30	1.41E-01 5.38E-04352.5	
4	0		56	519	0.91	82.06	2.36E-01 2.36E-03 65.2	
	0	63.32*		1050	1.42	126.75	9.42E-01 2.24E-04****	
6	0	66.11		940	1.94	132.32	1.03E+00 7.83E-03 28.4	
5 6 7	3	74.77		1029	1.32	149.62	1.29E+00 1.29E-02 19.4 1.75E+00	
8	3	77.05	483	943	1.09	154.17		
9	0	87.37	148	1122	0.92	174.79	1.59E+00 6.20E-03 40.1	
10	0	92.66*		1233	1.01		1.69E+00 1.74E-03164.8	
11	0	139.85*	132	966	1.05		2.05E+00 5.54E-03 43.1	
12	0	197.81*		780	0.90	395.48	1.90E+00 3.55E-03 61.2	
13	2	238.85*	71	690	1.44			
14	2	241.83	335	449	1.08	483.46		
15	0	295.05*		660	1.23	589.81		
16		351.83*	1394	359	1.22			
17	0	582.91*	13	230	1.40	1165.27	8.89E-01 5.47E-04254.2	
18	0	595.57	53	169	1.63	1190.56	8.74E-01 2.22E-03 46.1	
19	0	609.10*	1133	233		1217.63		
20	0	768.06	140	163			7.22E-01 5.85E-03 20.7	
21	0	934.46	74	129		1868.31		
22	0	1120.37*	247	83		2240.25		
23	0	1237.77		67		2475.17		
24	0	1377.59		81		2754.99		
25	0	1408.08	62	36		2816.01		
26		1510.47	30	62		3020.97		
27	0			53		3460.40		
28	0	1764.47*	214	33			4.00E-01 8.99E-03 10.0	
29	0	1847.23	33	27	1.73	3695.28	3.87E-01 1.37E-03 34.7	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nucliuc i	ype. Hacara				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	71	44.60*	1.723E+00	2.920E+00	2.923E+00	141.67

240.98 335 3.95 1.711E+00 1.566E+02 1.568E+02 22.96

Page: 2

Summary of Nuclide Activity

Sample ID : 23L28431-9 Acquisition date : 28-APR-2006 14:42:59

Total number of lines in spectrum 29

Number of unidentified lines 25

Number of lines tentatively identified by NID 4 13.79%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

TH-228 1.91Y 1.00 2.920E+00 2.923E+00 4.141E+00 141.67

Total Activity : 2.920E+00 2.923E+00

Grand Total Activity: 2.920E+00 2.923E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID : 23L28431-9

Acquisition date : 28-APR-2006 14:42:59

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
6 6 0 0	33.86 35.13 36.57 40.95 63.32 66.11	93 84 13 56 5	66 289 412 519 1050 940	1.16 1.62 1.63 0.91 1.42 1.94	67.87 70.42 73.30 82.06 126.75 132.32	64 64 80 123 130	16 16 6 7	3.91E-03 3.50E-03 5.38E-04 2.36E-03 2.24E-04 7.83E-03	65.7 **** **** **** 56.8	9.48E-02 1.15E-01 1.41E-01 2.36E-01 9.42E-01 1.03E+00	
3 3 0 0	74.77 77.05 87.37 92.66	307 483 148 41	1029 943 1122 1233	1.32 1.09 0.92 1.01	149.62 154.17 174.79 185.37	142 142 171 181	8 9	2.03E-02 6.20E-03 1.74E-03	80.2 ****	1.29E+00 1.35E+00 1.59E+00 1.69E+00	
0 0 0	139.85 197.81 295.05 351.83	132 85 836 1394	966 780 660 359	1.05 0.90 1.23 1.22	279.67 395.48 589.81 703.31 1165.27	276 392 583 699 1160	8 13 10 13	3.55E-03	86.2 **** 14.8 7.6 ****	2.05E+00 1.90E+00 1.50E+00 1.32E+00 8.89E-01	
0 0 0 0	582.91 595.57 609.10 768.06 934.46	13 53 1133 140 74	230 169 233 163 129	1.40 1.63 1.34 1.74 1.68	1165.27 1190.56 1217.63 1535.50 1868.31	1187 1210 1529 1861	9 15 13	2.22E-03 4.75E-02 5.85E-03	92.3 8.7 41.3	8.74E-01 8.59E-01 7.22E-01 6.27E-01	
0 0 0	1120.37 1237.77 1377.59 1408.08	247 137 57 62	83 67 81 36	1.90 1.06 1.54 2.34	2240.25	2234 2468 2747	13 14	1.04E-02 5.73E-03 2.38E-03 2.58E-03	30.6 77.4 47.5	5.52E-01 5.16E-01 4.79E-01 4.71E-01	. T
0 0 0	1510.47 1729.94 1764.47 1847.23	30 39 214 33	62 53 33 27	1.82 1.04 1.90 1.73	3020.97 3460.40 3529.55 3695.28	3453 3520	14 15 19 10	1.26E-03 1.61E-03 8.99E-03 1.37E-03	20.0	4.49E-01 4.06E-01 4.00E-01 3.87E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

29 Total number of lines in spectrum 25 Number of unidentified lines Number of lines tentatively identified by NID 4 13.79%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma

Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags

TH-228 1.91Y 1.00 2.920E+00 2.923E+00 4.141E+00 141.67

Total Activity: 2.920E+00 2.923E+00

Grand Total Activity : 2.920E+00 2.923E+00

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
TH-228	2.923E+00	4.141E+00	6.449E+00	0.000E+00	0.453
Non-Ide	entified Nucl:	ides			
	Key-Line	K.L. Act error	MDA	MDA error	Act/MDA
Nuclide		K.L. Act error Ided	(pCi/L)	MDA CIIOI	1100/11011
BE-7	8.921E+00	1.686E+01	2.880E+01	0.000E+00	0.310
NA-24	8.018E+00	7.766E+00	1.260E+01	0.000E+00	0.636
K-40	-9.912E+00	2.648E+01	5.303E+01	0.000E+00	-0.187
CR-51	-1.571E+00	1.715E+01	2.912E+01	0.000E+00	-0.054
MN-54	-4.898E-01	1.982E+00	3.387E+00	0.000E+00	-0.145 -0.065
CO-57	-2.330E-01	2.180E+00	3.571E+00	0.000E+00	
CO-58	3.940E-01	2.014E+00	3.427E+00	0.000E+00	0.115 -0.085
FE-59	-5.181E-01	3.576E+00	6.064E+00	0.000E+00	-0.091
CO-60	-2.857E-01	1.821E+00	3.145E+00	0.000E+00	2.136
ZN-65	2.161E+01	5.744E+00	1.012E+01	0.000E+00	-0.119
SE-75	-5.530E-01	2.806E+00	4.632E+00	0.000E+00 0.000E+00	2.240
SR-85	8.982E+00	2.144E+00	4.010E+00		0.203
Y-88	7.225E-01	2.192E+00	3.565E+00	0.000E+00	0.203
NB-94	4.858E-01	1.897E+00	3.255E+00	0.000E+00	1.671
NB-95	6.815E+00	2.460E+00	4.079E+00	0.000E+00	-0.087
ZR-95	-4.897E-01	3.524E+00	5.650E+00	0.000E+00	-0.604
MO-99	-1.846E+01	1.888E+01	3.055E+01	0.000E+00	0.397
RU-103	1.411E+00	2.074E+00	3.551E+00	0.000E+00	-0.366
RU-106	-1.082E+01	1.772E+01	2.954E+01	0.000E+00	-0.150
AG-110m	-4.909E-01	1.937E+00	3.266E+00	0.000E+00	0.136
SN-113	6.127E-01	2.652E+00	4.510E+00	0.000E+00 0.000E+00	-0.209
SB-124	-6.729E-01	4.291E+00	3.217E+00	0.000E+00	-0.231
SB-125	-2.288E+00	5.957E+00	9.904E+00		-0.231
TE-129M	-8.090E+00	2.303E+01	3.822E+01	0.000E+00 0.000E+00	0.084
I-131	3.225E-01	2.250E+00	3.828E+00	0.000E+00	2.740
BA-133	1.627E+01	3.552E+00	5.940E+00	0.000E+00	3.733
CS-134	1.977E+01	3.479E+00	5.296E+00	0.000E+00	0.324
CS-136	1.137E+00	2.026E+00	3.513E+00	0.000E+00	0.298
CS-137	1.113E+00	2.147E+00	3.734E+00	0.000E+00	-0.011
CE-139	-4.043E-02	2.169E+00	3.656E+00	0.000E+00	0.636
BA-140	8.181E+00	7.182E+00	1.285E+01	0.000E+00	0.068
LA-140	2.731E-01	2.308E+00	4.008E+00	0.000E+00	0.653
CE-141	4.180E+00	4.305E+00	6.396E+00	0.000E+00	-0.438
CE-144	-1.199E+01	1.991E+01	2.736E+01	0.000E+00	-0.709
EU-152	-7.422E+00	7.299E+00	1.047E+01	0.000E+00	-0.211
EU-154	-1.580E+00	4.598E+00	7.499E+00	0.000E+00	0.132
RA-226	1.261E+01	5.658E+01	9.517E+01	0.000E+00	-0.128
AC-228	-1.658E+00	7.559E+00	1.296E+01	0.000E+00	-0.128
TH-232	-1.658E+00	7.556E+00	1.295E+01	0.000E+00	0.142
U-235	4.081E+00	1.982E+01	2.870E+01	0.000E+00	-0.210
U-238	-8.011E+01	2.277E+02	3.807E+02	0.000E+00	1.121
AM-241	2.265E+01	1.337E+01	2.021E+01	0.0001100	1. · 1.2. 1.

```
3.592E+00,WG L28431-9 EX
                     ,04/28/2006 21:20,04/27/2006 13:35,
A,23L28431-9
                                             ,06/24/2005 07:59,2335L090704
                     , LIBD
B,23L28431-9
                                                   6.449E+00,,
                                                                    0.453
                     2.923E+00,
                                    4.141E+00,
C, TH-228
            , YES,
                                                   2.880E+01,,
                                                                    0.310
            , NO
                     8.921E+00,
                                    1.686E+01,
C, BE-7
                                    7.766E+00,
                                                                    0.636
                                                   1.260E+01,,
C, NA-24
                     8.018E+00,
            , NO
                                                   5.303E+01,,
                                                                   -0.187
                                    2.648E+01,
C, K-40
                    -9.912E+00,
            , NO
                                                   2.912E+01,
                                                                   -0.054
C, CR-51
                    -1.571E+00,
                                    1.715E+01,
            , NO
                                                                   -0.145
                                                   3.387E+00,,
            ,NO
                    -4.898E-01,
                                    1.982E+00,
C, MN-54
                                                                   -0.065
                                                   3.571E+00,,
            , NO
                    -2.330E-01,
                                    2.180E+00,
C, CO-57
                                                   3.427E+00,,
                                                                    0.115
                                    2.014E+00,
                     3.940E-01,
C, CO-58
            , NO
                                                   6.064E+00,,
                                                                   -0.085
                                    3.576E+00,
                    -5.181E-01,
C, FE-59
            , NO
                                                                   -0.091
                                                   3.145E+00,,
                                    1.821E+00,
C, CO-60
            , NO
                    -2.857E-01,
                                                   1.012E+01,,
                                                                    2.136
                                    5.744E+00,
C, ZN-65
            , NO
                     2.161E+01,
                                                                   -0.119
                                                   4.632E+00,,
                    -5.530E-01,
                                    2.806E+00,
C, SE-75
            , NO
                                                                    2.240
                                                   4.010E+00,,
                     8.982E+00,
                                    2.144E+00,
C, SR-85
            , NO
                                                   3.565E+00,,
                                                                    0.203
                                    2.192E+00,
                     7.225E-01,
C, Y-88
            , NO
                                                                    0.149
                                                   3.255E+00,,
                                    1.897E+00,
C, NB-94
            , NO
                     4.858E-01,
                                                                    1.671
                                    2.460E+00,
                                                   4.079E+00,,
                     6.815E+00,
C, NB-95
            , NO
                                                   5.650E+00,,
                                                                   -0.087
                    -4.897E-01,
                                    3.524E+00,
C, ZR-95
            , NO
                    -1.846E+01,
                                    1.888E+01,
                                                   3.055E+01,,
                                                                   -0.604
C, MO-99
            , NO
                                                   3.551E+00,,
                                                                    0.397
                     1.411E+00,
                                    2.074E+00,
C, RU-103
            , NO
                                                   2.954E+01,,
                                                                   -0.366
            , NO
                                    1.772E+01,
C, RU-106
                    -1.082E+01,
                                                                   -0.150
                                                   3.266E+00,,
            , NO
                    -4.909E-01,
                                    1.937E+00,
C, AG-110m
                                                                    0.136
            , NO
                                    2.652E+00,
                                                   4.510E+00,,
                     6.127E-01,
C, SN-113
                                    4.291E+00,
                                                   3.217E+00,,
                                                                   -0.209
                    -6.729E-01,
C,SB-124
            , NO
                                                   9.904E+00,,
                                                                   -0.231
                                    5.957E+00,
                    -2.288E+00,
C,SB-125
            , NO
                                                                   -0.212
                                                   3.822E+01,
                                    2.303E+01,
C, TE-129M
            ,NO
                    -8.090E+00,
                                                                    0.084
                                                   3.828E+00,,
            , NO
                     3.225E-01,
                                    2.250E+00,
C, I-131
            , NO
                                    3.552E+00,
                                                   5.940E+00,,
                                                                    2.740
                     1.627E+01,
C, BA-133
                                                   5.296E+00,,
                                                                    3.733
                                    3.479E+00,
C, CS-134
            , NO
                     1.977E+01,
                                                                    0.324
                                                   3.513E+00,,
                                    2.026E+00,
C, CS-136
            ,NO
                     1.137E+00,
                                                   3.734E+00,,
                                                                    0.298
                                    2.147E+00,
C, CS-137
            , NO
                     1.113E+00,
                                                                   -0.011
                                                   3.656E+00,,
            ,NO
                    -4.043E-02,
                                    2.169E+00,
C, CE-139
                                    7.182E+00,
                                                   1.285E+01,,
                                                                    0.636
                     8.181E+00,
            , NO
C, BA-140
                                                   4.008E+00,,
                                                                    0.068
                                    2.308E+00,
                     2.731E-01,
C, LA-140
            , NO
                                                   6.396E+00,,
                                                                    0.653
                                    4.305E+00,
            , NO
C, CE-141
                     4.180E+00,
                                                                    -0.438
                                                   2.736E+01,,
            , NO
                    -1.199E+01,
                                    1.991E+01,
C, CE-144
                ,
                                                                    -0.709
            , NO
                                    7.299E+00,
                                                   1.047E+01,,
                    -7.422E+00,
C, EU-152
                                                   7.499E+00,,
                                                                    -0.211
                    -1.580E+00,
                                    4.598E+00,
C, EU-154
            , NO
                                                   9.517E+01,,
                                                                    0.132
                                    5.658E+01,
                     1.261E+01,
C, RA-226
            , NO
                                                                    -0.128
                                    7.559E+00,
                                                   1.296E+01,,
                    -1.658E+00,
C, AC-228
            , NO
                ,
                                                   1.295E+01,,
                                                                    -0.128
                    -1.658E+00,
                                    7.556E+00,
C, TH-232
            , NO
                                    1.982E+01,
                                                   2.870E+01,,
                                                                    0.142
            , NO
C, U-235
                     4.081E+00,
                                                                    -0.210
                                    2.277E+02,
                                                   3.807E+02,,
            ,NO
                    -8.011E+01,
C, U-238
                                                   2.021E+01,,
                                                                    1.121
                                    1.337E+01,
                     2.265E+01,
C, AM-241
            ,NO ,
```

Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 21:22:09.90 TBE10 12892256 HpGe ******* Aquisition Date/Time: 28-APR-2006 14:42:42.21

LIMS No., Customer Name, Client ID: WG L28431-10 EX BYR H-3 SPEC

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1 3 1 1 2 1 1 1 1 1 1	66.43* 77.06 92.56* 139.80 198.06* 241.89 295.21* 351.95* 594.97 609.27* 768.10 969.13* 1120.35* 1238.19 1407.69 1460.85*	171 323 43 122 129 274 542 1024 151 796 80 26 154 59 35	977 868 866 766 720 484 631 387 205 202 130 66 79 29 74	1.37 1.16 1.37 1.21 1.45 1.27 1.16 1.31 0.90 1.42 1.91 1.71 1.48 2.02	2817.24	6.37E-01 9.42E-01 1.30E+00 1.68E+00 1.55E+00 1.39E+00 1.21E+00 7.07E-01 6.94E-01 5.79E-01 4.83E-01 4.33E-01 4.01E-01 3.65E-01 3.56E-01	7.15E-03 1.35E-02 1.78E-03 5.10E-03 5.40E-03 1.14E-02 2.26E-02 4.28E-02 6.28E-03 3.32E-02 3.36E-03 1.08E-03 6.41E-03 2.48E-03 1.48E-03 2.39E-04	16.3 126.9 38.5 40.8 15.1 11.0 5.2 19.4 5.4 31.7 63.9 15.0 36.7 33.6	2.57E+00 2.65E+00 7.93E+00 8.03E-01 4.99E+00 1.45E+00 9.72E-01 5.43E+01 1.78E+00 1.13E+00 1.54E+00 7.87E-01 8.34E-01 9.77E-01 1.19E+00
17	1	1764.66*	110	46	2.52	3532.21	3.13E-01	4.59E-03	17.6	3.12E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

2-Sigma Uncorrected Decay Corr pCi/L %Error pCi/L %Eff %Abn Area Energy Nuclide 892.86 3.559E-01 4.760E+00 4.760E+00 10.67* 1460.81 6 K-40

Page: 2 Summary of Nuclide Activity Acquisition date : 28-APR-2006 14:42:42 Sample ID : 10L28431-10

17 Total number of lines in spectrum 13 Number of unidentified lines Number of lines tentatively identified by NID 4 23.53%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L pCi/L 2-519ma 11101 1.760E+00 4.760E+00 42.50E+00 892.86 2-Sigma Error %Error Flags Nuclide Hlife Decay

1.00 4.760E+00 K-40 1.28E+09Y

> 4.760E+00 Total Activity: 4.760E+00

4.760E+00 Grand Total Activity : 4.760E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3

Unidentified Energy Lines Sample ID: 10L28431-10

Acquisition date : 28-APR-2006 14:42:42

23.53%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.43	171	977	1.37	132.11	129	8	7.15E-03	66.4	6.37E-01	
3	77.06	323	868	1.16	153.37	146	15	1.35E-02	32.6	9.42E-01	
1	92.56	43	866	1.37	184.39	181	8	1.78E-03	***	1.30E+00	
1	139.80	122	766	1.21	278.93	276	7	5.10E-03	77.1	1.68E+00	
1	198.06	129	720	1.45	395.53	392	9	5.40E-03	81.5	1.55E+00	
2	241.89	274	484	1.27	483.26	473	15	1.14E-02	30.3	1.39E+00	${ m T}$
1	295.21	542	631	1.16	589.98	583	14	2.26E-02	22.0	1.21E+00	
1	351.95	1024	387	1.31	703.55	696	13	4.28E-02	10.3	1.07E+00	
1	594.97	151	205	0.90	1189.98	1187	12	6.28E-03	38.8	7.07E-01	
1	609.27	796	202	1.42	1218.61	1211	14	3.32E-02	10.8	6.94E-01	
1	768.10	80	130	1.81	1536.57	1530	13	3.36E-03	63.4	5.79E-01	
1	969.13	26	66	1.92	1939.04	1935	9	1.08E-03	***	4.83E-01	${f T}$
1	1120.35	154	66	1.91	2241.85	2235	14	6.41E-03	30.0	4.33E-01	
1	1238.19	59	79	1.71	2477.81	2471	16	2.48E-03	73.4	4.01E-01	
1	1407.69	35	29	1.48	2817.24	2813	10	1.48E-03	67.1	3.65E-01	T
1	1764.66	110	46	2.52	3532.21	3525	15	4.59E-03	35.3	3.13E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 17
Number of unidentified lines 13
Number of lines tentatively identified by NID 4

Nuclide Type : natural

Wtd Mean Wtd Mean
Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags
K-40 1.28E+09Y 1.00 4.760E+00 4.760E+00 42.50E+00 892.86

Total Activity: 4.760E+00 4.760E+00

Grand Total Activity: 4.760E+00 4.760E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	4.760E+00	4.250E+01	3.832E+01	0.000E+00	0.124

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity (pCi/L)	K.L. Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7	7.142E-01		1.994E+01	3.288E+01	0.000E+00	0.022
NA-24	-1.774E+01		1.067E+01	1.573E+01	0.000E+00	-1.128
CR-51	-9.335E+00		2.069E+01	3.343E+01	0.000E+00	-0.279
MN-54	7.563E-01		2.390E+00	3.955E+00	0.000E+00	0.191
CO-57	1.600E+00		2.458E+00	4.126E+00	0.000E+00	0.388
CO-58	2.226E+00		2.411E+00	4.111E+00	0.000E+00	0.541
FE-59	-4.150E+00		4.695E+00	7.284E+00	0.000E+00	-0.570
CO-60	6.638E-01		2.487E+00	4.167E+00	0.000E+00	0.159
ZN-65	1.940E+01		7.086E+00	1.156E+01	0.000E+00	1.678
SE-75	-8.964E-01		3.290E+00	5.407E+00	0.000E+00	-0.166
SR-85	1.632E+01		2.776E+00	5.284E+00	0.000E+00	3.089
Y-88	-1.551E+00		2.611E+00	4.063E+00	0.000E+00	-0.382
NB-94	-1.782E+00		2.342E+00	3.733E+00	0.000E+00	-0.477
NB-95	6.050E+00		2.518E+00	4.546E+00	0.000E+00	1.331
ZR-95	-2.338E-01		4.499E+00	6.809E+00	0.000E+00	-0.034
MO-99	2.389E+01		2.400E+01	4.122E+01	0.000E+00	0.580
RU-103	1.136E+00		2.520E+00	4.205E+00	0.000E+00	0.270
RU-106	-5.577E+00		2.174E+01	3.527E+01	0.000E+00	-0.158
AG-110m	-2.394E+00		2.312E+00	3.654E+00	0.000E+00	-0.655
SN-113	2.170E+00		2.977E+00	5.074E+00	0.000E+00	0.428
SB-124	-6.460E-01		5.507E+00	3.878E+00	0.000E+00	-0.167
SB-125	-1.336E+00		6.731E+00	1.108E+01	0.000E+00	-0.121
TE-129M	-7.740E+00		2.671E+01	4.363E+01	0.000E+00	-0.177
I-131	3.705E-01		2.710E+00	4.423E+00	0.000E+00	0.084
BA-133	2.919E+01		4.548E+00	7.724E+00	0.000E+00	3.780
CS-134	2.325E+01		5.864E+00	6.231E+00	0.000E+00	3.732
CS-136	-3.361E-01		2.490E+00	4.034E+00	0.000E+00	-0.083
CS-137	4.741E-01		2.541E+00	4.240E+00	0.000E+00	0.112
CE-139	5.679E-01		2.494E+00	4.102E+00	0.000E+00	0.138
BA-140	1.649E-01		9.062E+00	1.482E+01	0.000E+00	0.011
LA-140	2.142E+00		2.911E+00	5.064E+00	0.000E+00	0.423
CE-141	4.602E+00		4.859E+00	7.009E+00	0.000E+00	0.656
CE-144	-2.137E+01		2.156E+01	3.078E+01	0.000E+00	-0.694
EU-152	-1.042E+01		9.266E+00	1.215E+01	0.000E+00	-0.858
EU-154	1.420E+00		5.210E+00	8.684E+00	0.000E+00	0.163
RA-226	4.654E+00		6.443E+01	1.040E+02	0.000E+00	0.045
AC-228	1.324E+00		9.279E+00	1.556E+01	0.000E+00	0.085
TH-228	7.541E+00		5.652E+00	8.394E+00	0.000E+00	0.898
TH-232	1.324E+00		9.276E+00	1.556E+01	0.000E+00	0.085
U-235	2.660E+01		2.204E+01	3.202E+01	0.000E+00	0.831 0.285
U-238	1.295E+02		2.688E+02	4.540E+02	0.000E+00	-1.240
AM-241	-4.162E+01		2.241E+01	3.357E+01	0.000E+00	-1.240

```
3.571E+00,WG L28431-10 E
                     ,04/28/2006 21:22,04/27/2006 13:35,
A,10L28431-10
                                             ,06/09/2005 08:04,1035L091004
                     , LIBD
B, 10L28431-10
                                                   3.832E+01,,
                                                                    0.124
                                    4.250E+01,
            , YES,
                     4.760E+00,
C, K-40
                                                                    0.022
                                                   3.288E+01,,
            , NO
                                    1.994E+01,
                    7.142E-01,
C, BE-7
                                                   1.573E+01,,
                                                                   -1.128
                                    1.067E+01,
                    -1.774E+01,
C, NA-24
            , NO
                                                   3.343E+01,,
                                                                   -0.279
C, CR-51
            , NO
                    -9.335E+00,
                                    2.069E+01,
                                                                    0.191
                                    2.390E+00,
                                                   3.955E+00,,
C, MN-54
            , NO
                     7.563E-01,
                                                   4.126E+00,,
                                                                    0.388
                     1.600E+00,
                                    2.458E+00,
C, CO-57
            , NO
                                                   4.111E+00,,
                                                                    0.541
            , NO
                                    2.411E+00,
C, CO-58
                     2.226E+00,
                                                                   -0.570
                                                   7.284E+00,,
                                    4.695E+00,
                    -4.150E+00,
C, FE-59
            , NO
                                                                    0.159
                                                   4.167E+00,,
                                    2.487E+00,
                     6.638E-01,
C, CO-60
            , NO
                                                                    1.678
                                                   1.156E+01,,
                     1.940E+01,
                                    7.086E+00,
C, ZN-65
            , NO
                                                   5.407E+00,,
                                                                   -0.166
                    -8.964E-01,
                                    3.290E+00,
C, SE-75
            , NO
                                                   5.284E+00,,
                                                                    3.089
                                    2.776E+00,
                     1.632E+01,
C, SR-85
            , NO
                                                                   -0.382
                    -1.551E+00,
                                                   4.063E+00,,
                                    2.611E+00,
C, Y-88
            , NO
                                                                   -0.477
                                                   3.733E+00,,
                                    2.342E+00,
                    -1.782E+00,
C, NB-94
            , NO
                                                   4.546E+00,,
                                                                    1.331
            , NO
                     6.050E+00,
                                    2.518E+00,
C, NB-95
                                    4.499E+00,
                                                   6.809E+00,,
                                                                   -0.034
C, ZR-95
            , NO
                    -2.338E-01,
                                                                    0.580
                                    2.400E+01,
                                                   4.122E+01,,
                     2.389E+01,
C, MO-99
            , NO
                                    2.520E+00,
                                                   4.205E+00,,
                                                                    0.270
                     1.136E+00,
C, RU-103
            , NO
                                                   3.527E+01,,
                                                                   -0.158
                    -5.577E+00,
                                    2.174E+01,
C, RU-106
            , NO
                                                                   -0.655
                                                   3.654E+00,,
                    -2.394E+00,
                                    2.312E+00,
C, AG-110m
           , NO
                                                                    0.428
            , NO
                     2.170E+00,
                                    2.977E+00,
                                                   5.074E+00,,
C, SN-113
                                                   3.878E+00,,
                                                                   -0.167
                    -6.460E-01,
                                    5.507E+00,
C,SB-124
            , NO
                                                   1.108E+01,,
                                                                   -0.121
            , NO
                                    6.731E+00,
                    -1.336E+00,
C,SB-125
                                                                   -0.177
                                                   4.363E+01,,
                                    2.671E+01,
C, TE-129M
            , NO
                    -7.740E+00,
                                                   4.423E+00,,
                                                                     0.084
                     3.705E-01,
                                    2.710E+00,
C, I-131
            , NO
                                                                     3.780
                     2.919E+01,
                                    4.548E+00,
                                                   7.724E+00,,
C, BA-133
            , NO
                                                   6.231E+00,,
                                                                     3.732
                                    5.864E+00,
                     2.325E+01,
C, CS-134
            , NO
                                                                    -0.083
                                                   4.034E+00,,
                    -3.361E-01,
                                    2.490E+00,
C, CS-136
            , NO
                                                   4.240E+00,,
                                                                     0.112
                                    2.541E+00,
C, CS-137
                     4.741E-01,
            , NO
                                                   4.102E+00,,
                                                                     0.138
            , NO
                                    2.494E+00,
C, CE-139
                     5.679E-01,
                                                                     0.011
                     1.649E-01,
                                    9.062E+00,
                                                   1.482E+01,,
C, BA-140
            , NO
                                                   5.064E+00,,
                                                                     0.423
                                    2.911E+00,
                     2.142E+00,
C, LA-140
            , NO
                                                                     0.656
                                                   7.009E+00,,
                                    4.859E+00,
                     4.602E+00,
C, CE-141
            , NO
                                                                    -0.694
                                                   3.078E+01,,
                    -2.137E+01,
                                    2.156E+01,
C, CE-144
            , NO
                                                                    -0.858
                                    9.266E+00,
                                                   1.215E+01,,
            , NO
                    -1.042E+01,
C, EU-152
                                                                     0.163
                                                   8.684E+00,,
                     1.420E+00,
                                    5.210E+00,
            ,NO
C, EU-154
                                                                     0.045
                                    6.443E+01,
                                                   1.040E+02,,
            , NO
                     4.654E+00,
C, RA-226
                                                                     0.085
                                                   1.556E+01,,
                                    9.279E+00,
                     1.324E+00,
C, AC-228
            , NO
                                                   8.394E+00,,
                                                                     0.898
                                    5.652E+00,
                     7.541E+00,
            , NO
C, TH-228
                                                                     0.085
                                                   1.556E+01,,
                                    9.276E+00,
                     1.324E+00,
C, TH-232
            , NO
                                                   3.202E+01,,
                                                                     0.831
            , NO
                     2.660E+01,
                                    2.204E+01,
C, U-235
                                                                     0.285
                                    2.688E+02,
                                                   4.540E+02,,
                     1.295E+02,
C, U-238
            , NO
                                                   3.357E+01,,
                                                                    -1.240
                                    2.241E+01,
```

-4.162E+01,

C, AM-241

, NO

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 28-APR-2006 21:23:35.41 TBE11 P-20610B HpGe ******* Aquisition Date/Time: 28-APR-2006 14:42:43.38

LIMS No., Customer Name, Client ID: WG L28431-11 EX BYR H-3 SPEC

Sample ID : 11L28431-11 Smple Date: 27-APR-2006 14:55:00.

MDA Constant : 0.00 Library Used: LIBD

Pk	Τt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1.11		21101 51						•		
1	0	66.51*	127	821	1.21	132.21	6.08E-01	5.30E-03	39.5	
2	3	74.91*	98	999	1.46	149.05		4.06E-03	64.2	2.72E+00
3	3	77.03	328	878	1.27	153.31	9.08E-01	1.37E-02	17.1	
4	0	139.78		785	1.19	279.17	1.69E+00	9.48E-03	23.1	
5	Ö	198.41*	171	720	1.41	396.74	1.57E+00	7.12E-03	31.0	
6	2	238.55*		472	1.29	477.24	1.42E+00	2.94E-03	58.7	7.37E-01
7	2	241.88	269	477	1.25	483.91	1.41E+00	1.12E-02	15.2	
8	0	295.02*		457	1.39	590.47	1.23E+00	2.31E-02	8.6	
9	0	351.78*	1003	447	1.39	704.27	1.08E+00	4.17E-02	5.6	
10	0	499.07	29	161	0.73	999.54	8.21E-01	1.20E-03	78.3	
11	0	582.70*	11	157	1.55	1167.17	7.27E-01	4.71E-042	234.5	
12	0	595.19	99	122	1.85	1192.21	7.15E-01	4.11E-03	22.5	
13	0	608.92*	864	183	1.47	1219.72	7.02E-01	3.59E-02	5.0	
14	0	767.17		152	1.73	1536.84		4.99E-03		
15	0	911.81	50	115	4.61	1826.64		2.06E-03		
16	0	1119.50*	203	64	1.41	2242.64		8.44E-03		
17	0	1237.10*	93	49	1.72	2478.13		3.89E-03		
18	0	1376.72	81	55		2757.67		3.36E-03		
19	0	1460.14*		76	2.03	2924.67	3.54E-01			
20	0	1659.44	24	23	2.68	3323.55		9.94E-04		
21	0	1762.59*	120	41	2.33	3529.95	3.04E-01	4.98E-03	16.0	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Nucliuc	Type: Hacar	от ш			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	1	10.67*	3.541E-01	1.074E+00	1.074E+00	3618.47
AC-228	835.50		1.75	5.493E-01	Lir	ne Not Found	
	911.07	50	27.70*	5.133E-01	1.091E+01	1.092E+01	95.19
TH-228	238.63	71	44.60*	1.421E+00	3.488E+00	3.491E+00	117.46
111 110	240.98	269	3.95	1.409E+00	1.514E+02	1.515E+02	30.49
TH-232	583.14	11	30.25	7.271E-01	1.614E+00	1.614E+00	469.00
111 232	911.07	50	27.70*	5.133E-01	1.091E+01	1.091E+01	95.19
	969.11		16.60	4.895E-01	Li	ne Not Found	

Page: 2 Summary of Nuclide Activity

Acquisition date : 28-APR-2006 14:42:43 Sample ID : 11L28431-11

21 Total number of lines in spectrum Number of unidentified lines 15 Number of lines tentatively identified by NID 6 28.57%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr 2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error %Error	Flags
K-40	1.28E+09Y	1.00	1.074E+00	1.074E+00	38.85E+00 3618.47	
AC-228	5.75Y	1.00	1.091E+01	1.092E+01	1.039E+01 95.19	
TH-228	1.91Y	1.00	3.488E+00	3.491E+00	4.101E+00 117.46	
TH-232	1.41E+10Y	1.00	1.091E+01	1.091E+01	1.039E+01 95.19	

Total Activity : 2.638E+01 2.639E+01

Grand Total Activity: 2.638E+01 2.639E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID : 11L28431-11

Page: 3 Acquisition date : 28-APR-2006 14:42:43

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	66.51	127	821	1.21	132.21	129	7	5.30E-03	79.0	6.08E-01	
3	74.91	98	999	1.46	149.05	143	15	4.06E-03	****	8.50E-01	
3	77.03	328	878	1.27	153.31	143	15	1.37E-02	34.2	9.08E-01	
0	139.78	228	785	1.19	279.17	275	9	9.48E-03	46.3	1.69E+00	
0	198.41	171	720	1.41	396.74	392	10	7.12E-03	62.0	1.57E+00	
0	295.02	556	457	1.39	590.47	586	10	2.31E-02	17.2	1.23E+00	
0	351.78	1003	447	1.39	704.27	698	14	4.17E-02	11.3	1.08E+00	
0	499.07	29	161	0.73	999.54	997	8	1.20E-03	****	8.21E-01	
0	595.19	99	122	1.85	1192.21	1188	9	4.11E-03	45.0	7.15E-01	
0	608.92	864	183	1.47	1219.72	1212	15	3.59E-02	10.1	7.02E-01	
0	767.17	120	152	1.73	1536.84	1531	16	4.99E-03	49.0	5.87E-01	${f T}$
0	1119.50	203	64	1.41	2242.64	2236	14	8.44E-03	22.4	4.37E-01	
0	1237.10	93	49	1.72	2478.13	2471	15	3.89E-03	41.9	4.04E-01	
0	1376.72	81	55	2.11	2757.67	2749	17	3.36E-03	47.6	3.71E-01	
0	1659.44	24	23	2.68	3323.55	3316	13	9.94E-04	92.0	3.19E-01	
0	1762.59	120	41	2.33	3529.95	3522	15	4.98E-03	32.0	3.04E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 21 Number of unidentified lines 15 Number of lines tentatively identified by NID 6 28.57%

Nuclide	Type : natu	ıral				
			Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr 2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error %Error Flag	gs
K-40	1.28E+09Y	1.00	1.074E+00	1.074E+00	38.85E+00 3618.47	
AC-228	5.75Y	1.00	9.298E+00	9.301E+00	12.86E+00 138.23	
TH-228	1.91Y	1.00	3.488E+00	3.491E+00	4.101E+00 117.46	
TH-232	1.41E+10Y	1.00	1.614E+00	1.614E+00	7.569E+00 469.00	
	Total Act:	ivity :	1.547E+01	1.548E+01		

Grand Total Activity: 1.547E+01 1.548E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interf	ered
Nuclide	Line	Nuclide	Line
TH-232	911.07	AC-228	911.07

Combined Activity-MDA Report

---- Identified Nuclides ----

R-40	Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
Nuclide	AC-228 TH-228	9.301E+00 3.491E+00	1.286E+01 4.101E+00	1.228E+01 7.150E+00	0.000E+00 0.000E+00	0.758 0.488
Nuclide	Non-Id	dentified Nuclides				
NA-24	Nuclide	Activity K.L.			MDA error	Act/MDA
U-235 -1.435E+01 2.304E+01 3.121E+01 0.000E+00 -0.460 U-238 1.967E+02 2.601E+02 4.461E+02 0.000E+00 0.441 AM-241 2.429E+01 3.292E+01 4.980E+01 0.000E+00 0.488	NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 RA-226 U-235	-8.128E+00 -1.372E+01 2.401E+00 1.993E+00 -2.665E+00 3.313E+00 8.401E-01 2.571E+01 1.018E+00 1.222E+01 -1.937E+00 4.615E-01 6.163E+00 9.923E+00 8.922E-01 1.334E+01 -3.508E-01 3.229E+00 1.707E+00 -4.518E+00 -6.249E+00 -3.009E-01 2.310E+01 3.363E+01 2.061E+00 3.203E+00 1.980E+00 -8.317E-01 1.648E+00 9.645E-01 6.361E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00 -7.834E+00	1.063E+01 2.075E+00 2.387E+00 2.387E+00 2.448E+00 4.583E+00 2.443E+00 6.824E+00 2.633E+00 2.773E+00 2.386E+00 2.376E+00 2.376E+01 2.431E+00 2.136E+01 2.397E+00 3.078E+00 2.136E+01 2.397E+00 3.078E+00 2.136E+01 2.397E+00 3.078E+00 2.136E+01 2.397E+00 3.078E+00 2.1657E+00 4.321E+00 4.321E+00 4.183E+00 2.430E+00 2.430E+00 2.479E+00 2.636E+00 2.636E+00 2.162E+01 9.517E+00 5.007E+01 2.162E+01 9.517E+00 5.007E+01 2.304E+01 2.304E+01 2.304E+01	1.352E+01 3.315E+00 3.980E+00 3.980E+00 7.806E+00 4.125E+00 1.179E+01 5.433E+00 4.883E+00 4.308E+00 3.961E+00 4.564E+01 4.034E+01 4.034E+01 3.941E+00 3.944E+01 3.944E+01 4.370E+01 4.370E+01 4.240E+00 7.133E+00 4.131E+00 4.131E+00 4.131E+00 4.572E+00 4.084E+00 1.404E+01 4.778E+00 6.937E+01 4.778E+00 3.037E+01 1.258E+01 8.348E+00 9.982E+01 3.121E+01 4.461E+02	O.000E+00 O.000E+00	-0.601 -0.414 0.588 0.501 -0.705 0.424 0.204 2.182 0.187 2.503 -0.450 0.2260 0.371 -0.0260 0.221 -0.143

```
3.590E+00,WG L28431-11 E
                     ,04/28/2006 21:23,04/27/2006 14:55,
A,11L28431-11
                                             ,09/01/2005 07:43,1135L090204
                     ,LIBD
B, 11L28431-11
                                                                    0.028
                                    3.885E+01,
                                                   3.854E+01,,
C, K-40
            , YES,
                     1.074E+00,
                                                   1.228E+01,,
                                                                    0.758
                                    1.286E+01,
C, AC-228
            , YES,
                     9.301E+00,
                                                   7.150E+00,,
                                                                    0.488
            , YES,
                     3.491E+00,
                                    4.101E+00,
C, TH-228
                                                   1.612E+01,,
                                                                    0.100
C, TH-232
            , YES,
                     1.614E+00,
                                    7.569E+00,
                                    2.044E+01,
                                                   3.312E+01,,
                                                                   -0.223
C, BE-7
            ,NO ,
                    -7.391E+00,
                                                   1.352E+01,,
                                                                   -0.601
C, NA-24
            , NO
                    -8.128E+00,
                                    1.063E+01,
                                                   3.315E+01,,
                                                                   -0.414
                                    2.075E+01,
                    -1.372E+01,
C, CR-51
            , NO
                                                   4.081E+00,,
                                                                    0.588
                                    2.389E+00,
                     2.401E+00,
C, MN-54
            , NO
                                                                    0.501
                                                   3.980E+00,,
                                    2.387E+00,
C, CO-57
            , NO
                     1.993E+00,
                                                                   -0.705
                                                   3.782E+00,,
C, CO-58
                    -2.665E+00,
                                    2.448E+00,
            , NO
                                                   7.806E+00,,
                                    4.583E+00,
                                                                    0.424
C, FE-59
            , NO
                     3.313E+00,
                                                                    0.204
                                    2.443E+00,
                                                   4.125E+00,,
                     8.401E-01,
C, CO-60
            , NO
                                                   1.179E+01,,
                                                                    2.182
            ,NO
                                    6.824E+00,
                     2.571E+01,
C, ZN-65
                                                                    0.187
                                                   5.433E+00,,
                     1.018E+00,
                                    3.282E+00,
C, SE-75
            , NO
                                                                    2.503
                                                   4.883E+00,,
C, SR-85
            ,NO
                     1.222E+01,
                                    2.633E+00,
                                    2.773E+00,
                                                   4.308E+00,,
                                                                   -0.450
                    -1.937E+00,
C, Y-88
            , NO
                                                                    0.117
                                    2.386E+00,
                                                   3.961E+00,,
                     4.615E-01,
C, NB-94
            , NO
                                                   4.564E+00,,
                                                                    1.350
                                    2.915E+00,
C, NB-95
                     6.163E+00,
            , NO
                                                                    0.205
                                                   6.833E+00,,
                     1.403E+00,
                                    4.509E+00,
C, ZR-95
            , NO
                                                                    0.260
                                                   3.811E+01,,
C, MO-99
            , NO
                     9.923E+00,
                                    2.274E+01,
                                                                    0.221
                     8.922E-01,
                                    2.431E+00,
                                                   4.034E+00,,
C, RU-103
            , NO
                                                   3.594E+01,,
                                                                    0.371
                     1.334E+01,
                                    2.136E+01,
            , NO
C, RU-106
                                                   3.941E+00,,
                                                                   -0.089
                                    2.397E+00,
            ,NO
                    -3.508E-01,
C, AG-110m
                                                                    0.613
                                                   5.269E+00,,
                                    3.078E+00,
C, SN-113
            ,NO
                     3.229E+00,
                                                   3.944E+00,,
                                                                    0.433
C,SB-124
            , NO
                     1.707E+00,
                                    5.234E+00,
                                                                   -0.421
                    -4.518E+00,
                                    6.657E+00,
                                                   1.074E+01,,
C,SB-125
            , NO
                                                   4.370E+01,,
                                                                   -0.143
                    -6.249E+00,
                                    2.679E+01,
C, TE-129M
            , NO
                                                                   -0.071
                                                   4.240E+00,,
                    -3.009E-01,
                                    2.555E+00,
            ,NO
C, I-131
                                                   7.133E+00,,
                                                                    3.239
                                    4.321E+00,
C, BA-133
            , NO
                     2.310E+01,
                                                   6.911E+00,,
                                                                    4.866
                     3.363E+01,
                                    4.183E+00,
C, CS-134
            , NO
                                                                    0.499
                     2.061E+00,
                                    2.430E+00,
                                                   4.131E+00,,
C, CS-136
            , NO
                                    2.636E+00,
                                                   4.572E+00,,
                                                                    0.701
                     3.203E+00,
C, CS-137
            , NO
                                                                    0.485
                                                   4.084E+00,,
                                    2.479E+00,
                     1.980E+00,
C, CE-139
            , NO
                                                                   -0.059
                                                   1.404E+01,,
                                    8.645E+00,
C, BA-140
            , NO
                    -8.317E-01,
                                                                    0.345
                                    2.806E+00,
                                                   4.778E+00,,
            , NO
                     1.648E+00,
C, LA-140
                                                                    0.139
                                                   6.937E+00,,
                     9.645E-01,
                                    4.972E+00,
C, CE-141
            , NO
                                    2.162E+01,
                                                   3.037E+01,,
                                                                    0.209
                     6.361E+00,
C, CE-144
            , NO
                                                                   -0.623
                                                   1.258E+01,,
                    -7.834E+00,
                                    9.517E+00,
C, EU-152
            , NO
                ,
                                                   8.348E+00,,
                                                                    0.510
                                    5.007E+00,
                     4.261E+00,
C, EU-154
            , NO
                                                                   -0.060
                                    6.069E+01,
                                                   9.982E+01,,
            , NO
                    -5.952E+00,
C, RA-226
                                                   3.121E+01,,
                                                                   -0.460
                    -1.435E+01,
                                    2.304E+01,
C, U-235
            ,NO
                                    2.601E+02,
                                                   4.461E+02,,
                                                                    0.441
                     1.967E+02,
C, U-238
            , NO
                                                   4.980E+01,,
                                                                    0.488
                                    3.292E+01,
C, AM-241
            ,NO,
                     2.429E+01,
```

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:07:51.90 TBE04 P-40312B HpGe ******** Aquisition Date/Time: 28-APR-2006 21:45:55.89

LIMS No., Customer Name, Client ID: WG L28431-12 EX BYRON

Smple Date: 27-APR-2006 16:00:00. Sample ID : 04L28431-12

Geometry : 0435L090804 Sample Type : WG Quantity : 3.57940E+00 L BKGFILE : 04BG041406MT

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.21*	450	1259	1.38	132.98	6.44E-01	8.71E-03		5.20E+00
2	3	76.97	296	1006	0.92	154.51	9.86E-01	5.72E-03	18.1	6.37E-01
3	1	92.83*	125	1412	1.67	186.23	1.39E+00	2.41E-03	62.3	4.66E+00
4	1	139.82*	272	1384	0.91	280.22	1.82E+00	5.27E-03		
5	1	185.97*	150	1268	1.72	372.55	1.73E+00	2.90E-03		3.66E+00
6	1	198.35*	307	1187	1.12	397.30	1.68E+00	5.94E-03	23.5	2.43E+00
7	2	238.42*	238	762	1.36	477.44	1.52E+00	4.60E-03		3.16E+00
8	2	241.77*	212	688	1.23	484.15	1.51E+00	4.10E-03	23.4	
9	1	295.14*	465	855	1.27	590.90	1.32E+00	9.00E-03		2.67E+00
10	1	351.78*	623	577	1.21	704.18	1.17E+00	1.21E-02		
11	1	595.58	157	299	1.38	1191.77	7.87E-01	3.03E-03	21.5	2.56E+00
12	1	609.00*	544	373	1.25	1218.61	7.73E-01	1.05E-02	9.5	8.36E-01
13	1	867.73	50	203	1.83	1736.00	5.88E-01	9.63E-04	57.1	
14	1	968.45*	38	126	1.77	1937.40	5.39E-01	7.35E-04	73.8	1.52E+00
15	1	1119.56*	148	136	1.87	2239.55	4.81E-01	2.87E-03	20.4	1.40E+00
16	1	1237.72	129	115	1.27	2475.79	4.45E-01	2.49E-03	16.8	
17	1	1331.73*	22	90	2.90	2663.76	4.20E-01	4.29E-04		2.03E+00
18	1	1459.88*	42	116	2.02	2919.94	3.92E-01	8.16E-04	77.0	1.37E+00
19	1	1763.34*	121	86	2.47	3526.58	3.43E-01	2.34E-03	22.3	6.43E-01

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-519111a
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	42	10.67*	3.922E-01	1.473E+01	1.473E+01	153.91
RA-226	186.21	150	3.28*	1.726E+00	3.866E+01	3.866E+01	98.57
	238.63	238	44.60*	1.521E+00		5.123E+00	49.81
TH-228			3.95	1.508E+00		5.203E+01	46.83
	240.98	212					
U-235	143.76		10.50*	1.822E+00		ne Not Found	
0 200	163.35		4.70	1.796E+00	Li	ne Not Found	
	185.71	150	54.00	1.726E+00	2.348E+00	2.348E+00	98.57
	205.31		4.70	1.652E+00	T.i	ne Not Found	
	∠∪5.3⊥		+./0	1.00211700			

at a Damen Cores

Nuclide Type: activation

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
CO-60	1173.22		100.00	4.637E-01	Lin	ne Not Found	
	1332.49	22	100.00*	4.204E-01	7.707E-01	7.711E-01	233.35

Page: 2

Summary of Nuclide Activity

Acquisition date: 28-APR-2006 21:45:55 Sample ID : 04L28431-12

19

Total number of lines in spectrum

13 Number of unidentified lines

Number of lines tentatively identified by NID 6 31.58%

Nuclide Type : natural

			Uncorrected	Decay Corr		2-Sigma	T1 - ~~
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error		rrags
	1.28E+09Y	1.00	1.473E+01	1.473E+01	2.267E+01	153.91	
RA-226	1600.00Y	1.00	3.866E+01	3.866E+01	3.811E+01	98.57	
TH-228	1.91Y	1.00	5.115E+00	5.123E+00	2.552E+00	49.81	
	7.04E+08Y	1.00	2.348E+00	2.348E+00	2.315E+00	98.57	K
0 200	,						

Total Activity : 6.086E+01 6.087E+01

Nuclide Type : activation

Nuclide CO-60	Hlife 5.27Y	Decay	Uncorrected pCi/L 7.707E-01	Decay Corr pCi/L 7.711E-01	Decay Corr 2-Sigma Error 17.99E-01	%Error	Flags

Total Activity : 7.707E-01 7.711E-01

Grand Total Activity: 6.163E+01 6.164E+01

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3 Unidentified Energy Lines Acquisition date : 28-APR-2006 21:45:55 Sample ID : 04L28431-12

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	66.21	450	1259	1.38	132.98	130	7	8.71E-03	29.3	6.44E-01	
3	76.97	296	1006	0.92	154.51	142	17	5.72E-03	36.2	9.86E-01	
1	92.83	125	1412	1.67	186.23	182	9	2.41E-03	***	1.39E+00	
1	139.82	272	1384	0.91	280.22	276	9	5.27E-03	53.3	1.82E+00	
1	198.35	307	1187	1.12	397.30	393	10	5.94E-03	46.9	1.68E+00	
1	295.14	465	855	1.27	590.90	586	12	9.00E-03	28.6	1.32E+00	
1	351.78	623	577	1.21	704.18	699	11	1.21E-02	18.6	1.17E+00	
1	595.58	157	299	1.38	1191.77	1187	9	3.03E-03	43.1	7.87E-01	
1	609.00	544	373	1.25	1218.61	1212	13	1.05E-02	18.9	7.73E-01	
1	867.73	50	203	1.83	1736.00	1730	11	9.63E-04	****	5.88E-01	
1	968.45	38	126	1.77	1937.40	1931	12	7.35E-04	****	5.39E-01	${f T}$
1	1119.56	148	136	1.87	2239.55	2233	13	2.87E-03	40.8	4.81E-01	
1	1237.72	129	115	1.27	2475.79	2474	9	2.49E-03	33.6	4.45E-01	
1	1763.34	121	86	2.47	3526.58	3519	18	2.34E-03	44.6	3.43E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 19 Number of unidentified lines 13 Number of lines tentatively identified by NID 6 31.58%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr			
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error		Flags
K-40	1.28E+09Y	1.00	1.473E+01	1.473E+01	2.267E+01	153.91	
RA-226	1600.00Y	1.00	3.866E+01	3.866E+01	3.811E+01	98.57	
TH-228	1.91Y	1.00	5.115E+00	5.123E+00	2.552E+00	49.81	
	Total Acti	.vity :	5.851E+01	5.852E+01			

Nuclide Type : activation Wtd Mean

Nuclide CO-60	Hlife 5.27Y	Decay 1.00	Uncorrected	Decay Corr	Decay Corr 2-Sigma Error 17.99E-01	%Error l	Flags
			11000 11000	Wtd Mean Decay Corr	Decay Corr	2-Sigma	
				± ,	_		Flags

Total Activity : 7.707E-01 7.711E-01

Grand Total Activity: 5.928E+01 5.929E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40	1.473E+01	2.267E+01	2.229E+01	0.000E+00	0.661
CO-60	7.711E-01	1.799E+00	2.269E+00	0.000E+00	0.340
RA-226	3.866E+01	3.811E+01	5.054E+01	0.000E+00	0.765
TH-228	5.123E+00	2.552E+00	3.684E+00	0.000E+00	1.391
Non-Id	entified Nuclides	3			
	Key-Line		1477	7 T	7 ~+ /MT) 7
Nuclide	Activity K.L (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
Nacitae	(201/11/ 100	~	-		
BE-7	1.484E+01	1.093E+01	1.854E+01	0.000E+00	0.800
NA-24	-9.573E+00	8.095E+00	1.268E+01	0.000E+00	-0.755
CR-51	-1.083E+01	1.141E+01	1.816E+01	0.000E+00	-0.596 0.139
MN-54	3.080E-01	1.330E+00	2.218E+00	0.000E+00 0.000E+00	0.139
CO-57	8.797E-01	1.190E+00	1.997E+00 2.212E+00	0.000E+00	0.127
CO-58	2.807E-01	1.324E+00 2.511E+00	4.360E+00	0.000E+00	0.688
FE-59	2.998E+00 9.225E+00	3.636E+00	5.767E+00	0.000E+00	1.600
ZN-65	-1.589E+00	1.711E+00	2.765E+00	0.000E+00	-0.575
SE-75 SR-85	1.145E+01	1.578E+00	2.763E+00 2.954E+00	0.000E+00	3.875
Y-88	-5.042E-01	1.611E+00	2.609E+00	0.000E+00	-0.193
NB-94	-1.310E+00	1.296E+00	2.045E+00	0.000E+00	-0.640
NB-95	2.026E+00	1.334E+00	2.280E+00	0.000E+00	0.889
ZR-95	1.117E-01	2.287E+00	3.720E+00	0.000E+00	0.030
MO-99	-2.148E+01	1.420E+01	2.178E+01	0.000E+00	-0.986
RU-103	1.590E+00	1.345E+00	2.265E+00	0.000E+00	0.702
RU-106	1.952E+00	1.197E+01	1.985E+01	0.000E+00	0.098
AG-110m	-6.848E-01	1.312E+00	2.119E+00	0.000E+00	-0.323
SN-113	5.707E-01	1.692E+00	2.828E+00	0.000E+00	0.202
SB-124	-2.674E-01	3.043E+00	2.239E+00	0.000E+00	-0.119
SB-125	1.830E+00	3.659E+00	6.110E+00	0.000E+00 0.000E+00	0.300 -0.283
TE-129M	-7.012E+00	1.530E+01	2.476E+01 2.470E+00	0.000E+00	0.122
I-131	3.016E-01	1.475E+00	2.470E+00 3.066E+00	0.000E+00	0.963
BA-133	2.952E+00	2.057E+00 2.064E+00	2.821E+00	0.000E+00	2.400
CS-134	6.771E+00 -9.106E-01	1.357E+00	2.021E+00 2.192E+00	0.000E+00	-0.415
CS-136	1.644E+00	1.457E+00	2.479E+00	0.000E+00	0.663
CS-137 CE-139	4.215E-01	1.236E+00	2.028E+00	0.000E+00	0.208
BA-140	4.213E 01 4.324E-01	5.016E+00	8.147E+00	0.000E+00	0.053
LA-140	1.936E-01	1.677E+00	2.762E+00	0.000E+00	0.070
CE-141	1.512E+00	2.454E+00	3.513E+00	0.000E+00	0.430
CE-144	1.107E+01	1.067E+01	1.552E+01	0.000E+00	0.713
EU-152	-7.020E+00	4.982E+00	6.502E+00	0.000E+00	-1.080
EU-154	1.029E+00	2.500E+00	4.174E+00	0.000E+00	0.247
AC-228	-1.004E+00	5.726E+00	8.665E+00	0.000E+00	-0.116
TH-232	-1.003E+00	5.723E+00	8.661E+00	0.000E+00	-0.116
U-235	1.118E+00	1.109E+01	1.570E+01	0.000E+00	0.071
U-238	-1.298E+01	1.467E+02	2.381E+02	0.000E+00	-0.055
AM-241	-3.338E+00	1.157E+01	1.838E+01	0.000E+00	-0.182

```
3.579E+00,WG L28431-12 E
                     ,04/29/2006 12:07,04/27/2006 16:00,
A,04L28431-12
                                             ,03/14/2005 09:04,0435L090804
B,04L28431-12
                     ,LIBD
                                                                    0.661
                                                   2.229E+01,,
                                    2.267E+01,
           , YES,
                    1.473E+01,
C, K-40
                                                                    0.340
                                                   2.269E+00,,
           , YES,
                    7.711E-01,
                                    1.799E+00,
C, CO-60
                                                                    0.765
                                                   5.054E+01,,
                                    3.811E+01,
                    3.866E+01,
C, RA-226
           , YES,
                                                   3.684E+00,,
                                                                    1.391
                     5.123E+00,
                                    2.552E+00,
C, TH-228
           , YES,
                                                                    0.800
                                    1.093E+01,
                                                   1.854E+01,,
C, BE-7
            ,NO,
                     1.484E+01,
                                                                   -0.755
                                                   1.268E+01,,
                    -9.573E+00,
                                    8.095E+00,
            , NO
C, NA-24
                                                                   -0.596
                                                   1.816E+01,,
            , NO
                                    1.141E+01,
C, CR-51
                    -1.083E+01,
                                                                    0.139
                                                   2.218E+00,,
                                    1.330E+00,
                     3.080E-01,
C, MN-54
            , NO
                                                   1.997E+00,,
                                                                    0.440
C, CO-57
                                    1.190E+00,
                     8.797E-01,
            , NO
                                                                    0.127
                                                   2.212E+00,,
                     2.807E-01,
                                    1.324E+00,
C, CO-58
            , NO
                                                   4.360E+00,,
                                                                    0.688
                                    2.511E+00,
                     2.998E+00,
C, FE-59
            , NO
                                                                    1.600
                                                   5.767E+00,,
                                    3.636E+00,
                     9.225E+00,
C, ZN-65
            , NO
                                                                   -0.575
                                                   2.765E+00,,
                    -1.589E+00,
                                    1.711E+00,
C, SE-75
            , NO
                                                                    3.875
                                                   2.954E+00,,
                                    1.578E+00,
            , NO
C, SR-85
                     1.145E+01,
                                                                   -0.193
                                                   2.609E+00,,
                                    1.611E+00,
            , NO
                    -5.042E-01,
C, Y-88
                                                   2.045E+00,,
                                                                   -0.640
                    -1.310E+00,
                                    1.296E+00,
            , NO
C, NB-94
                                                   2.280E+00,,
                                                                    0.889
                                    1.334E+00,
                     2.026E+00,
C, NB-95
            , NO
                                    2.287E+00,
                                                   3.720E+00,,
                                                                    0.030
                     1.117E-01,
C, ZR-95
            , NO
                                                                   -0.986
                                                   2.178E+01,,
                                    1.420E+01,
C, MO-99
            , NO
                    -2.148E+01,
                                                                    0.702
                                                   2.265E+00,,
C, RU-103
            , NO
                     1.590E+00,
                                    1.345E+00,
                                                                    0.098
                     1.952E+00,
                                    1.197E+01,
                                                   1.985E+01,,
            , NO
C, RU-106
                                                                   -0.323
                                    1.312E+00,
                                                   2.119E+00,,
           , NO
                    -6.848E-01,
C, AG-110m
                                                   2.828E+00,,
                                                                    0.202
                                    1.692E+00,
            , NO
                     5.707E-01,
C, SN-113
                                                                   -0.119
                                                   2.239E+00,,
                                    3.043E+00,
            , NO
                    -2.674E-01,
C, SB-124
                                                   6.110E+00,,
                                                                    0.300
                                    3.659E+00,
                     1.830E+00,
C,SB-125
            , NO
                                                                   -0.283
                    -7.012E+00,
                                    1.530E+01,
                                                   2.476E+01,,
C, TE-129M
            , NO
                                    1.475E+00,
                                                   2.470E+00,,
                                                                    0.122
            ,NO
                     3.016E-01,
C, I-131
                                                   3.066E+00,,
                                                                    0.963
                                    2.057E+00,
                     2.952E+00,
C, BA-133
            , NO
                                                                    2.400
                                                   2.821E+00,,
                                    2.064E+00,
                     6.771E+00,
C, CS-134
            , NO
                                                                   -0.415
                                                   2.192E+00,,
                                    1.357E+00,
            , NO
                    -9.106E-01,
C, CS-136
                                                   2.479E+00,,
                                                                     0.663
                                    1.457E+00,
                     1.644E+00,
            , NO
C, CS-137
                                                   2.028E+00,,
                                                                     0.208
                                    1.236E+00,
                     4.215E-01,
C, CE-139
            , NO
                                                   8.147E+00,,
                                                                     0.053
                                    5.016E+00,
                     4.324E-01,
C, BA-140
            , NO
                                                                     0.070
                                                   2.762E+00,,
                                    1.677E+00,
                     1.936E-01,
C, LA-140
            , NO
                                                                     0.430
                                    2.454E+00,
                                                   3.513E+00,,
            ,NO
                     1.512E+00,
C, CE-141
                                                                     0.713
                                                   1.552E+01,,
                     1.107E+01,
                                    1.067E+01,
C, CE-144
            , NO
                                                                   -1.080
                                    4.982E+00,
                                                   6.502E+00,,
            , NO
                    -7.020E+00,
C, EU-152
                                                                     0.247
                                                   4.174E+00,,
                                    2.500E+00,
                     1.029E+00,
            , NO
C, EU-154
                                                                    -0.116
                                                   8.665E+00,,
                                    5.726E+00,
            , NO
                    -1.004E+00,
C, AC-228
                                                                    -0.116
                                                   8.661E+00,,
                                    5.723E+00,
C, TH-232
            ,NO
                    -1.003E+00,
                                                   1.570E+01,,
                                                                     0.071
                     1.118E+00,
                                    1.109E+01,
            , NO
C, U-235
                                                                    -0.055
                                    1.467E+02,
                                                   2.381E+02,,
                    -1.298E+01,
C, U-238
            , NO
                                                   1.838E+01,,
                                                                    -0.182
                                    1.157E+01,
```

-3.338E+00,

,NO,

C, AM-241

Analyst: LIMS: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:09:56.75 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 28-APR-2006 21:45:59.15

LIMS No., Customer Name, Client ID: WG L28431-13 EX BYRON

Smple Date: 27-APR-2006 16:15:00. Sample ID : 07L28431-13

Geometry : 0735L090904 Sample Type : WG Quantity : 3.59680E+00 L BKGFILE : 07BG041406MT

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	66.27*	418	1686	1.36	133.38	7.23E-01 2.09E+00	8.07E-03 4.92E-03		2.88E+00
2 3	1 1	139.76* 174.42	255 232	1095 1157	0.92 1.80	280.41 349.76	2.09E+00 2.06E+00			
4	1	198.36*	338	1181	0.94	397.65		6.53E-03		
5 6	1 1	238.59* 351.84*	205 197	945 697	1.14 1.38	478.14 704.69		3.96E-03 3.80E-03		
7	1	500.20	56	405	1.48	1001.47	1.13E+00	1.08E-03	66.5	2.45E+00
8	1	595.82	227	403		1192.73	9.96E-01	1.002		1.84E+00
9	1	609.24*	306	287	2.32	1219.58	9.81E-01	J. J UL UU		4.78E+00
10	1	867.96	66	141	1.35	1737.01	7.57E-01	1.27E-03	33.4	1.39E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
TH-228	238.63	205			5.0,02.00		64.14
	240.98		3.95	1.806E+00	Li	ne Not Found	

Page: 2

Summary of Nuclide Activity

Acquisition date : 28-APR-2006 21:45:59 Sample ID : 07L28431-13

10 Total number of lines in spectrum Number of unidentified lines 9

Number of lines tentatively identified by NID 1 10.00%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma

2-Sigma Error %Error Flags pCi/L pCi/L Nuclide Hlife Decay

3.682E+00 2.361E+00 64.14 1.00 3.676E+00 TH-228 1.91Y

> Total Activity: 3.676E+00 3.682E+00

3.682E+00 Grand Total Activity: 3.676E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

0.443

-0.415

0.000E+00

0.000E+00

Page :

Unidentified Energy Lines Sample ID : 07L28431-13

Acquisition date : 28-APR-2006 21:45:59

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 1 1 1 1	66.27 139.76 174.42 198.36 351.84 500.20 595.82 609.24 867.96	418 255 232 338 197 56 227 306 66	1686 1095 1157 1181 697 405 403 287	1.36 0.92 1.80 0.94 1.38 1.48 2.07 2.32	133.38 280.41 349.76 397.65 704.69 1001.47 1192.73 1219.58	997 1188 1215	7 9 9 12 9 12	8.07E-03 4.92E-03 4.48E-03 6.53E-03 3.80E-03 1.08E-03 4.38E-03 5.90E-03 1.27E-03	49.6 54.1 41.2 61.5 **** 37.8 30.8	7.23E-01 2.09E+00 2.06E+00 1.98E+00 1.43E+00 9.96E-01 9.81E-01 7.57E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

10 Total number of lines in spectrum Number of unidentified lines 9 Number of lines tentatively identified by NID 1

10.00%

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma pCi/L 2-Sigma Error %Error Flags pCi/L Nuclide Hlife Decay 2.361E+00 64.14 3.682E+00 TH-228 1.91Y 1.00 3.676E+00 _____ ______

> 3.682E+00 3.676E+00 Total Activity:

3.682E+00 Grand Total Activity : 3.676E+00

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

BE-7

NA-24

No interference correction performed

7.010E+00

-4.629E+00

Combined Activity-MDA Report

---- Tdentified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA						
TH-228	3.682E+00	2.361E+00	3.192E+00	0.000E+00	1.154						
Non-Identified Nuclides											
Nuclide	-	K.L. Act error Ided	MDA (pCi/L)	MDA error	Act/MDA						

9.349E+00

6.958E+00

1.583E+01

1.116E+01

				0.0007.00	0.095
K-40	3.109E+00	1.818E+01	3.257E+01	0.000E+00	-0.442
CR-51	-7.019E+00	9.977E+00	1.588E+01	0.000E+00	0.358
MN-54	7.082E-01	1.171E+00	1.980E+00	0.000E+00	0.350
CO-57	5.473E-01	1.011E+00	1.707E+00	0.000E+00	-0.059
CO-58	-1.122E-01	1.169E+00	1.894E+00	0.000E+00	1.050
FE-59	4.208E+00	2.280E+00	4.007E+00	0.000E+00	
CO-60	5.535E-02	1.229E+00	2.036E+00	0.000E+00	0.027
ZN-65	5.281E+00	2.553E+00	4.509E+00	0.000E+00	1.171
SE-75	-9.200E-01	1.458E+00	2.365E+00	0.000E+00	-0.389
SR-85	1.582E+01	1.408E+00	2.772E+00	0.000E+00	5.709
Y-88	1.907E-01	1.380E+00	2.265E+00	0.000E+00	0.084
NB-94	-1.683E-01	1.140E+00	1.871E+00	0.000E+00	-0.090
NB-95	9.698E-01	1.142E+00	1.917E+00	0.000E+00	0.506
ZR-95	-1.757E+00	2.019E+00	3.211E+00	0.000E+00	-0.547
MO-99	8.052E+00	1.284E+01	2.147E+01	0.000E+00	0.375
RU-103	1.026E+00	1.411E+00	2.033E+00	0.000E+00	0.505
RU-106	-2.607E+00	1.131E+01	1.767E+01	0.000E+00	-0.148
AG-110m	7.475E-02	1.139E+00	1.892E+00	0.000E+00	0.040
SN-113	2.858E-01	1.451E+00	2.395E+00	0.000E+00	0.119
SB-124	3.156E-01	2.480E+00	1.818E+00	0.000E+00	0.174
SB-125	-1.212E+00	3.252E+00	5.253E+00	0.000E+00	-0.231
TE-129M	3.408E+00	1.285E+01	2.097E+01	0.000E+00	0.163
I-131	9.495E-02	1.268E+00	2.100E+00	0.000E+00	0.045
BA-133	2.540E+00	1.770E+00	2.609E+00	0.000E+00	0.974
CS-134	3.713E+00	2.497E+00	2.085E+00	0.000E+00	1.781
CS-136	-5.157E-01	1.185E+00	1.894E+00	0.000E+00	-0.272
CS-137	1.173E+00	1.259E+00	2.142E+00	0.000E+00	0.548
CE-139	6.313E-01	1.048E+00	1.735E+00	0.000E+00	0.364
BA-140	2.115E-01	4.242E+00	6.990E+00	0.000E+00	0.030
LA-140	5.507E-02	1.505E+00	2.492E+00	0.000E+00	0.022
CE-141	1.220E+00	1.951E+00	2.931E+00	0.000E+00	0.416
CE-144	-4.010E+00	8.613E+00	1.273E+01	0.000E+00	-0.315
EU-152	-6.170E+00	4.042E+00	5.641E+00	0.000E+00	-1.094
EU-154	1.448E+00	2.126E+00	3.596E+00	0.000E+00	0.403
RA-226	2.184E+01	2.996E+01	4.695E+01	0.000E+00	0.465
AC-228	-3.390E+00	4.934E+00	7.670E+00	0.000E+00	-0.442
TH-232	-3.389E+00	4.931E+00	7.666E+00	0.000E+00	-0.442
U-235	3.902E+00	9.590E+00	1.331E+01	0.000E+00	0.293
U-233	-2.092E+02	1.400E+02	1.989E+02	0.000E+00	-1.052
AM-241	-1.541E+01	9.516E+00	1.456E+01	0.000E+00	-1.058
WIN - 7 # T	T. 0 4 TH 1 O T	3.3			

```
3.597E+00,WG L28431-13 E
                     ,04/29/2006 12:09,04/27/2006 16:15,
A,07L28431-13
                                             ,06/23/2005 07:26,0735L090904
                     , LIBD
B,07L28431-13
                                                                    1.154
                                    2.361E+00,
                                                   3.192E+00,,
            , YES,
                     3.682E+00,
C, TH-228
                                                                    0.443
                                                   1.583E+01,,
            , NO
                                    9.349E+00,
                    7.010E+00,
C, BE-7
                                                   1.116E+01,,
                                                                   -0.415
                                    6.958E+00,
                   -4.629E+00,
C, NA-24
            , NO
                                                   3.257E+01,,
                                                                    0.095
                     3.109E+00,
C, K-40
            , NO
                                    1.818E+01,
                                                                   -0.442
                                    9.977E+00,
                                                   1.588E+01,,
            , NO
C, CR-51
                    -7.019E+00,
                                                   1.980E+00,,
                                                                    0.358
C, MN-54
                     7.082E-01,
                                    1.171E+00,
            , NO
                                                   1.707E+00,,
                                                                    0.321
                                    1.011E+00,
            , NO
C, CO-57
                     5.473E-01,
                                                                   -0.059
                                                   1.894E+00,,
                                    1.169E+00,
                    -1.122E-01,
C, CO-58
            , NO
                                                                    1.050
                                                   4.007E+00,,
                     4.208E+00,
                                    2.280E+00,
C, FE-59
            , NO
                                                                    0.027
                                                   2.036E+00,,
                     5.535E-02,
                                    1.229E+00,
C, CO-60
            , NO
                                                   4.509E+00,,
                                                                    1.171
                     5.281E+00,
                                    2.553E+00,
C, ZN-65
            , NO
                                                                   -0.389
                                    1.458E+00,
                                                   2.365E+00,,
                    -9.200E-01,
C, SE-75
            , NO
                                                                    5.709
                                                   2.772E+00,,
                                    1.408E+00,
                     1.582E+01,
C, SR-85
            , NO
                                                   2.265E+00,,
                                                                    0.084
                                    1.380E+00,
C, Y-88
            , NO
                     1.907E-01,
                                                                   -0.090
                                    1.140E+00,
                                                   1.871E+00,,
                    -1.683E-01,
C, NB-94
            , NO
                                                   1.917E+00,,
                                                                    0.506
                                    1.142E+00,
                     9.698E-01,
C, NB-95
            , NO
                                                                   -0.547
                                    2.019E+00,
                                                   3.211E+00,,
                    -1.757E+00,
            , NO
C, ZR-95
                                                   2.147E+01,,
                                                                    0.375
                                    1.284E+01,
                     8.052E+00,
C, MO-99
            , NO
                                                                    0.505
                                                   2.033E+00,,
                                    1.411E+00,
C, RU-103
            ,NO
                     1.026E+00,
                                                                   -0.148
                                                   1.767E+01,,
                    -2.607E+00,
                                    1.131E+01,
            ,NO
C, RU-106
                                                                    0.040
                                    1.139E+00,
                                                   1.892E+00,,
           , NO
                     7.475E-02,
C, AG-110m
                                                   2.395E+00,,
                                                                    0.119
                                    1.451E+00,
                     2.858E-01,
            , NO
C, SN-113
                                                   1.818E+00,,
                                                                    0.174
                                    2.480E+00,
C,SB-124
            , NO
                     3.156E-01,
                                                                   -0.231
                                                   5.253E+00,,
                                    3.252E+00,
            , NO
                    -1.212E+00,
C,SB-125
                                                   2.097E+01,,
                                                                    0.163
                                    1.285E+01,
                     3.408E+00,
C, TE-129M
            ,NO
                                                                    0.045
                                    1.268E+00,
                                                   2.100E+00,,
                     9.495E-02,
C, I-131
            , NO
                                                   2.609E+00,,
                                                                    0.974
                     2.540E+00,
                                    1.770E+00,
            , NO
C, BA-133
                                                                    1.781
                                                   2.085E+00,,
                                    2.497E+00,
            , NO
                     3.713E+00,
C, CS-134
                                                                   -0.272
                                                   1.894E+00,,
                    -5.157E-01,
                                    1.185E+00,
C, CS-136
            , NO
                                                                    0.548
                                                   2.142E+00,,
                                    1.259E+00,
                     1.173E+00,
C, CS-137
            , NO
                                                                    0.364
                                    1.048E+00,
                                                   1.735E+00,,
                     6.313E-01,
C, CE-139
            , NO
                                                   6.990E+00,,
                                                                    0.030
                                    4.242E+00,
                     2.115E-01,
C, BA-140
            , NO
                                                                     0.022
                                                   2.492E+00,,
                                    1.505E+00,
            , NO
                     5.507E-02,
C, LA-140
                                                                     0.416
                                                   2.931E+00,,
                     1.220E+00,
                                    1.951E+00,
            , NO
C, CE-141
                                                                   -0.315
                                    8.613E+00,
                                                   1.273E+01,,
            ,NO
                    -4.010E+00,
C, CE-144
                                                   5.641E+00,,
                                                                   -1.094
                                    4.042E+00,
                    -6.170E+00,
C, EU-152
            , NO
                                                   3.596E+00,,
                                                                     0.403
                                    2.126E+00,
C, EU-154
            , NO
                     1.448E+00,
                                                                     0.465
                                                   4.695E+01,,
                                    2.996E+01,
                     2.184E+01,
            , NO
C, RA-226
                                                   7.670E+00,,
                                                                   -0.442
                                    4.934E+00,
                    -3.390E+00,
C, AC-228
            , NO
                                                                    -0.442
                                                   7.666E+00,,
                                    4.931E+00,
            , NO
                    -3.389E+00,
C, TH-232
                                                   1.331E+01,,
                                                                     0.293
                     3.902E+00,
                                    9.590E+00,
            , NO
C, U-235
                                                                    -1.052
                                                   1.989E+02,,
                                    1.400E+02,
            , NO
                    -2.092E+02,
C, U-238
                                                   1.456E+01,,
                                                                    -1.058
                    -1.541E+01,
                                    9.516E+00,
```

C, AM-241

, NO

Analyst: LIMS: Sec. Review:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:11:32.68 TBE10 12892256 HpGe ******* Aquisition Date/Time: 28-APR-2006 21:46:05.73

LIMS No., Customer Name, Client ID: WGB L28431-14 EX BYRON

Smple Date: 27-APR-2006 17:45:00. : 10L28431-14 Sample ID

Geometry : 1035L091004 Sample Type : WG BKGFILE : 10BG041406MT : 3.58890E+00 L Quantity Start Channel: 80 Energy Tol: 1.30000 Real Time : 0 14:25:17.48 End Channel: 4090 Pk Srch Sens: 5.00000 Live time: 0 14:25:09.02 MDA Constant: 0.00 Library Used: LIBD

Pk :	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19		66.50* 77.20 92.63* 139.77 174.98 185.87* 198.30* 238.70* 242.00 295.31* 352.01* 583.46* 596.16 609.24* 767.74 911.05* 120.10* 1238.12 1460.78*	229 202 88 305 205 0 193 96 308 549 880 12 162 723 110 24 136 65	2098 1253 1752 1732 903 1076 1149 1026 776 975 879 248 375 391 251 268 168 136	1.01 0.86 1.47 1.08 1.04 1.10 1.33 1.49 1.54 1.36 1.31 1.29 1.79 1.44 3.28 2.31 2.08 1.58 1.85	132.24 153.66 184.53 278.87 349.34 371.14 396.01 476.88 483.46 590.16 703.66 1166.93 1192.36 1218.55 1535.84 1822.77 2241.33 2477.66 2923.58	6.39E-01 9.46E-01 1.30E+00 1.68E+00 1.63E+00 1.59E+00 1.55E+00 1.40E+00 1.39E+00 1.21E+00 1.07E+00 7.18E-01 7.06E-01 6.94E-01 5.79E-01 5.79E-01 4.33E-01 4.01E-01 3.56E-01	4.69E-04 2.63E-03 1.26E-03 1.02E-04	28.4 94.4 25.2 23.8 **** 36.8 68.7 16.1 12.7 8.1 292.2 25.3 29.4 26.3 37.8 724.1	2.05E+00 8.31E-01 5.36E+00 1.25E+00 6.24E-01 1.33E+00 1.60E+00
20 21	1 1	1729.64 1764.10*	46 172	100 75	4.08 2.43	3462.07 3531.09	3.17E-01 3.13E-01			

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide	Type:	natural

Type. Hacara.	-			Uncorrected	Decay Corr	2-Sigma
Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
	5	10.67*	3.559E-01	2.018E+00		1448.15
	0	3.28*	1.594E+00	1.192E-01		
	_	1.75	5.422E-01	Li		
	24	27.70*	5.070E-01	2.516E+00		332.73
	96	44.60*	1.400E+00	2.219E+00	2.22E+00	137.40
	308	3.95	1.389E+00	8.137E+01	8.149E+01	32.11
		30.25	7.180E-01	7.909E-01	7.909E-01	584.43
				2.516E+00	2.516E+00	332.73
· · · ·		16.60		Li:	ne Not Found	d
	Energy 1460.81 186.21 835.50 911.07 238.63 240.98 583.14 911.07	1460.81 5 186.21 0 835.50 911.07 24 238.63 96 240.98 308 583.14 12 911.07 24	Energy Area %Abn 1460.81 5 10.67* 186.21 0 3.28* 835.50 1.75 911.07 24 27.70* 238.63 96 44.60* 240.98 308 3.95 583.14 12 30.25 911.07 24 27.70*	Energy Area %Abn %Eff 1460.81 5 10.67* 3.559E-01 186.21 0 3.28* 1.594E+00 835.50 1.75 5.422E-01 911.07 24 27.70* 5.070E-01 238.63 96 44.60* 1.400E+00 240.98 308 3.95 1.389E+00 583.14 12 30.25 7.180E-01 911.07 24 27.70* 5.070E-01	Energy Area %Abn %Eff pCi/L 1460.81 5 10.67* 3.559E-01 2.018E+00 186.21 0 3.28* 1.594E+00 1.192E-01 835.50 1.75 5.422E-01 Lin 911.07 24 27.70* 5.070E-01 2.516E+00 238.63 96 44.60* 1.400E+00 2.219E+00 240.98 308 3.95 1.389E+00 8.137E+01 583.14 12 30.25 7.180E-01 7.909E-01 911.07 24 27.70* 5.070E-01 2.516E+00	Energy Area %Abn %Eff pCi/L pCi/L 1460.81 5 10.67* 3.559E-01 2.018E+00 2.018E+00 186.21 0 3.28* 1.594E+00 1.192E-01 1.192E-01 835.50 1.75 5.422E-01 Line Not Found 911.07 24 27.70* 5.070E-01 2.516E+00 2.517E+00 238.63 96 44.60* 1.400E+00 2.219E+00 2.222E+00 240.98 308 3.95 1.389E+00 8.137E+01 8.149E+01 583.14 12 30.25 7.180E-01 7.909E-01 7.909E-01 911.07 24 27.70* 5.070E-01 2.516E+00 2.516E+00

U-235	143.76	10.50*	1.683E+00	Line Not Found
	163.35			Line Not Found
	185.71 0			7.239E-03 7.239E-03 29413.95
	205.31	4.70	1.524E+00	Line Not Found

Summary of Nuclide Activity Page: 2
Sample ID: 10L28431-14 Acquisition date: 28-APR-2006 21:46:05

Total number of lines in spectrum 21
Number of unidentified lines 15

Number of lines tentatively identified by NID 6 28.57%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr 2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error %Error Flags
K-40	1.28E+09Y	1.00	2.018E+00	2.018E+00	29.22E+00 1448.15
RA-226	1600.00Y	1.00	1.192E-01	1.192E-01	350.6E-01 29413.95
AC-228	5.75Y	1.00	2.516E+00	2.517E+00	8.374E+00 332.73
TH-228	1.91Y	1.00	2.219E+00	2.22E+00	3.053E+00 137.40
TH-232	1.41E+10Y	1.00	2.516E+00	2.516E+00	8.370E+00 332.73
U-235	7.04E+08Y	1.00	7.239E-03	7.239E-03	2129.E-03 29413.95 K
0 200	,				

Total Activity: 9.394E+00 9.399E+00

Grand Total Activity: 9.394E+00 9.399E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Page: 3
Sample ID: 10L28431-14 Acquisition date: 28-APR-2006 21:46:05

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff Flag	s
1	66.50	229	2098	1.01	132.24	127	9	4.42E-03	76.3	6.39E-01	
1	77.20	202	1253	0.86	153.66	152	6	3.90E-03	56.9	9.46E-01	
1	92.63	88	1752	1.47	184.53	181	9	1.69E-03	***	1.30E+00	
1	139.77	305	1732	1.08	278.87	275	9	5.87E-03	50.4	1.68E+00	
1	174.98	205	903	1.04	349.34	347	6	3.95E-03	47.7	1.63E+00	
1	198.30	193	1149	1.33	396.01	392	8	3.72E-03	73.6	1.55E+00	
1	295.31	549	975	1.36	590.16	585	12	1.06E-02	25.5	1.21E+00	
1	352.01	880	879	1.31	703.66	697	13	1.70E-02	16.2	1.07E+00	
1	596.16	162	375	1.79	1192.36	1187	12	3.11E-03	50.6	7.06E-01	
1	609.24	723	391	1.44	1218.55	1213	12	1.39E-02	14.5	6.94E-01	
1	767.74	110	251	3.28	1535.84	1530	12	2.13E-03	59.7	5.79E-01	
1	1120.10	136	168	2.08	2241.33	2234	17	2.63E-03	52.5	4.33E-01	
1	1238.12	65	136	1.58	2477.66	2471	12	1.26E-03	75.6	4.01E-01	
1	1729.64	46	100	4.08	3462.07	3455	15	8.87E-04	98.5	3.17E-01	
1	1764.10	172	75	2.43	3531.09	3522	20	3.31E-03	32.3	3.13E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 21
Number of unidentified lines 15
Number of lines tentatively identified by NID 6 28.57%

Nuclide Type : natural

NUCLIUC	Type . Hace	11 (11	Wtd Mean	Wtd Mean	
			Uncorrected	Decay Corr	Decay Corr 2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error %Error Flags
K-40	1.28E+09Y	1.00	2.018E+00	2.018E+00	29.22E+00 1448.15
RA-226	1600.00Y	1.00	1.192E-01	1.192E-01	350.6E-01 29413.95
AC-228	5.75Y	1.00	1.725E+00	1.726E+00	9.566E+00 554.39
TH-228	1.91Y	1.00	2.219E+00	2.22E+00	3.053E+00 137.40
TH-232	1.41E+10Y	1.00	7.909E-01	7.909E-01	46.22E-01 584.43
	Total Act:	ivity :	6.871E+00	6.876E+00	

Grand Total Activity: 6.871E+00 6.876E+00

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interfered		
Nuclide	Line	Nuclide	Line	
TH-232	911.07	AC-228	911.07	

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA						
K-40 RA-226 AC-228 TH-228 TH-232	2.018E+00 1.192E-01 1.726E+00 2.222E+00 7.909E-01	2.922E+01 3.506E+01 9.566E+00 3.053E+00 4.622E+00	2.508E+01 6.151E+01 9.661E+00 4.611E+00 1.031E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.080 0.002 0.179 0.482 0.077						
Non-Identified Nuclides											
Nuclide	Key-Line Activity K.I (pCi/L) Ide		MDA (pCi/L)	MDA error	Act/MDA						
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152	8.286E+00 -1.172E+01 -1.694E+01 1.942E-01 7.991E-01 -1.773E-01 2.659E+00 -6.042E-01 1.277E+01 -1.935E+00 1.546E+01 -1.123E+00 2.618E-01 2.055E+00 -4.289E-01 1.490E+00 -4.502E-01 3.669E+00 6.770E-01 -6.639E-01 -2.314E+00 2.409E+00 6.702E+00 -1.678E-02 1.368E+01 9.169E+00 -1.395E+00 3.792E-01 -1.905E-02 -3.569E-03 6.364E-01 2.701E+00 -7.288E+00 -1.118E+00	1.303E+01 8.407E+00 1.312E+01 1.543E+00 1.523E+00 1.590E+00 2.932E+00 4.138E+00 2.016E+00 1.804E+00 1.818E+00 1.561E+00 1.637E+01 1.607E+00 1.429E+01 1.459E+00 1.959E+00 1.959E+00 3.695E+00 4.314E+00 1.766E+01 1.751E+00 2.704E+00 3.791E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00 1.632E+00	2.180E+01 1.289E+01 2.090E+01 2.526E+00 2.544E+00 2.586E+00 4.972E+00 2.515E+00 6.637E+00 3.277E+00 2.877E+00 2.877E+00 2.867E+00 2.667E+00 2.667E+00 2.363E+01 2.620E+01 2.452E+00 3.239E+00 2.462E+00 3.239E+00 2.462E+00 3.2351E+00 2.942E+01 2.844E+00 4.273E+00 2.942E+01 2.8477E+00 9.489E+00 2.721E+00 2.721E+00 2.477E+00 9.489E+00 1.920E+01 7.862E+00	0.000E+00 0.000E+00	0.380 -0.909 -0.811 0.077 0.314 -0.069 0.535 -0.240 1.924 -0.591 4.483 -0.390 0.102 0.770 -0.098 0.055 -0.172 0.276 -0.205 -0.205 -0.205 -0.332 0.228 -0.551 0.328 -0.551 0.139 -0.551 0.139 -0.551 0.139 -0.551 0.139 -0.1						
EU-154 U-235 U-238 AM-241	-8.242E-01 1.052E+01 2.309E+02 -7.865E+00	3.207E+00 1.392E+01 1.697E+02 1.444E+01	5.302E+00 1.988E+01 2.939E+02 2.094E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.155 0.529 0.785 -0.376						

```
3.589E+00,WGB L28431-14
                     ,04/29/2006 12:11,04/27/2006 17:45,
A, 10L28431-14
                                             ,06/09/2005 08:04,1035L091004
                     ,LIBD
B,10L28431-14
                                                   2.508E+01,,
                                                                    0.080
                                    2.922E+01,
                     2.018E+00,
C, K-40
            , YES,
                                                   6.151E+01,,
                                                                    0.002
                                    3.506E+01,
            , YES,
                     1.192E-01,
C, RA-226
                                                                    0.179
                                                   9.661E+00,,
                     1.726E+00,
                                    9.566E+00,
C, AC-228
            , YES,
                                                   4.611E+00,,
                                                                    0.482
                                    3.053E+00,
                     2.22E+00,
C, TH-228
            , YES,
                                    4.622E+00,
                                                   1.031E+01,,
                                                                    0.077
                     7.909E-01,
C, TH-232
            , YES,
                                                                    0.380
                                                   2.180E+01,,
C, BE-7
                                    1.303E+01,
            , NO
                     8.286E+00,
                                                                   -0.909
                                    8.407E+00,
                                                   1.289E+01,,
                    -1.172E+01,
C, NA-24
            , NO
                                                                   -0.811
                                                   2.090E+01,,
                                    1.312E+01,
                    -1.694E+01,
C, CR-51
            , NO
                                    1.543E+00,
                                                   2.526E+00,,
                                                                    0.077
                     1.942E-01,
C, MN-54
            , NO
                                                   2.544E+00,,
                                                                    0.314
                                    1.523E+00,
C, CO-57
            , NO
                     7.991E-01,
                                                                   -0.069
                                                   2.586E+00,,
                    -1.773E-01,
                                    1.590E+00,
C, CO-58
            , NO
                                                   4.972E+00,,
                                                                    0.535
                     2.659E+00,
                                    2.932E+00,
C, FE-59
            , NO
                                                   2.515E+00,,
                                                                   -0.240
            , NO
                                    1.557E+00,
                    -6.042E-01,
C, CO-60
                                                                    1.924
                                                   6.637E+00,,
                                    4.138E+00,
                     1.277E+01,
C, ZN-65
            , NO
                                                                   -0.591
                                                   3.277E+00,,
                                    2.016E+00,
C, SE-75
            , NO
                    -1.935E+00,
                                                                    4.483
                                    1.804E+00,
                                                   3.447E+00,,
C, SR-85
                     1.546E+01,
            , NO
                                                                   -0.390
                                                   2.877E+00,,
                    -1.123E+00,
                                    1.818E+00,
C, Y-88
            , NO
                                                                     0.102
                                    1.549E+00,
                                                   2.568E+00,,
                     2.618E-01,
            , NO
C, NB-94
                                                   2.667E+00,,
                                                                    0.770
                                    1.561E+00,
                     2.055E+00,
C, NB-95
            , NO
                                                   4.398E+00,,
                                                                   -0.098
            ,NO
                                    2.915E+00,
C, ZR-95
                    -4.289E-01,
                                                                    0.055
                                                   2.698E+01,,
            , NO
                     1.490E+00,
                                    1.637E+01,
C, MO-99
                                                   2.620E+00,,
                                                                   -0.172
                                    1.607E+00,
                    -4.502E-01,
C, RU-103
            , NO
                                                                    0.155
                                    1.429E+01,
                                                   2.363E+01,,
                     3.669E+00,
C, RU-106
            , NO
                                                   2.452E+00,,
                                                                     0.276
                                    1.459E+00,
                     6.770E-01,
C, AG-110m
           , NO
                                                   3.239E+00,,
                                                                    -0.205
                                    1.959E+00,
C, SN-113
            , NO
                    -6.639E-01,
                                                                   -0.940
                                                   2.462E+00,,
                    -2.314E+00,
                                    3.695E+00,
C,SB-124
            , NO
            , NO
                                    4.314E+00,
                                                   7.248E+00,,
                                                                     0.332
                     2.409E+00,
C,SB-125
                                    1.766E+01,
                                                   2.942E+01,,
                                                                     0.228
                     6.702E+00,
C, TE-129M
            , NO
                                                   2.844E+00,,
                                                                    -0.006
                                    1.751E+00,
                    -1.678E-02,
C, I-131
            , NO
                                                                     3.201
                                                   4.273E+00,,
                                    2.704E+00,
C, BA-133
                     1.368E+01,
            , NO
                                                                     2.736
                                                   3.351E+00,,
                     9.169E+00,
                                    3.791E+00,
C, CS-134
            , NO
                                                                    -0.551
                    -1.395E+00,
                                    1.603E+00,
                                                   2.530E+00,,
C, CS-136
            , NO
                ,
                                                   2.721E+00,,
                                                                     0.139
                     3.792E-01,
                                    1.632E+00,
C, CS-137
            , NO
                ,
                                                                    -0.008
                                                   2.477E+00,,
                                    1.513E+00,
            ,NO
C, CE-139
                    -1.905E-02,
                                                                     0.000
                                                   9.489E+00,,
                                    5.806E+00,
                    -3.569E-03,
C, BA-140
            , NO
                                                   3.196E+00,,
                                                                     0.199
                                    1.898E+00,
                     6.364E-01,
C, LA-140
            , NO
                                                                     0.615
                                    3.069E+00,
                                                   4.391E+00,,
                     2.701E+00,
C, CE-141
            , NO
                                                   1.920E+01,,
                                                                    -0.380
                                    1.374E+01,
                    -7.288E+00,
C, CE-144
            , NO
                                                                    -0.142
                                                   7.862E+00,,
                                    5.733E+00,
            , NO
                    -1.118E+00,
C, EU-152
                                                                    -0.155
                                                   5.302E+00,,
                    -8.242E-01,
                                    3.207E+00,
C, EU-154
            , NO
                                                                     0.529
            , NO
                                    1.392E+01,
                                                   1.988E+01,,
C, U-235
                     1.052E+01,
                                                   2.939E+02,,
                                                                     0.785
                     2.309E+02,
                                    1.697E+02,
            , NO
C, U-238
```

1.444E+01,

-7.865E+00,

C, AM-241

, NO

2.094E+01,,

-0.376

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 2-MAY-2006 08:40:43.10 TBE11 P-20610B HpGe ******* Aquisition Date/Time: 28-APR-2006 21:46:12.39

LIMS No., Customer Name, Client ID: WG L28431-15 EX BYRON

MDA Constant : 0.00 Library Used: LIBD

Pk	Ιt	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	0	66.30*	268	2132	1.26	131.79		5.15E-03		
2	0	77.35	218	1625	1.04	153.96		4.19E-03		
3	0	87.19*	53	1417	1.17	173.68		1.02E-031		
4	0	139.78	351	1453	1.45	279.17	1.69E+00	6.75E-03	19.6	
5	0	185.95*	42	1185	1.36	371.76	1.62E+00	8.03E-043	161.2	
6	0	198.53*	352	1609	1.25	396.98	1.57E+00	6.78E-03	24.3	
7	1	238.36*	162	972	1.44	476.84	1.42E+00	3.11E-03	39.7	3.26E+00
8	1	241.79		770	1.18	483.74	1.41E+00	7.91E-03	12.1	
9	0	295.06*		1001	1.20	590.55	1.23E+00	1.22E-02	11.1	
10	0	351.79*		684	1.39	704.30	1.08E+00	2.24E-02	5.6	
11	0	595.26		391	1.19	1192.34	7.15E-01	2.47E-03	32.1	
12	0	608.93*		361	1.52	1219.75	7.02E-01	1.98E-02	5.4	
13	0	726.98*		187	1.44	1456.31	6.12E-01	1.01E-03	54.3	
14	0	767.02		315	1.73	1536.56	5.87E-01	3.14E-03	25.0	
15	0	910.98*		158	1.26	1824.97	5.14E-01	2.95E-042	206.9	
16	0	933.63		230	2.14	1870.35	5.04E-01	1.42E-03	45.3	
17	0	1119.70*	206	150	1.72	2243.05	4.37E-01	3.97E-03	15.4	
18	0		67	147	1.57	2478.08	4.04E-01	1.29E-03	46.2	
19	0	1376.74		120	1.75	2757.72	3.71E-01	2.21E-03	22.8	
20	0	1406.75		50		2817.80		1.49E-03	20.9	
21	0	1762.42*		88			3.04E-01	3.19E-03	16.9	
22	_	1845.06	36	63		3694.96		6.98E-04		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natura	Nuci	ıae	Type:	natural
----------------------	------	-----	-------	---------

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
RA-226	186.21	42	3.28*	1.615E+00	1.137E+01	1.137E+01	322.44
AC-228	835.50		1.75	5.493E-01	Li	ne Not Found	
	911.07	15	27.70*	5.136E-01	1.556E+00	1.557E+00	413.80
TH-228	238.63	162	44.60*	1.422E+00	3.683E+00	3.690E+00	79.49
	240.98	411	3.95	1.410E+00	1.065E+02	1.067E+02	24.19
U-235	143.76		10.50*	1.695E+00	Li	ne Not Found	
	163.35		4.70	1.678E+00	Li:	ne Not Found	
	185 71	42	54.00	1.615E+00	6.904E-01	6.904E-01	322.44

205.31 ----- 4.70 1.546E+00 ----- Line Not Found -----

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity

Acquisition date : 28-APR-2006 21:46:12 Sample ID : 11L28431-15

22 Total number of lines in spectrum Number of unidentified lines 17

Number of lines tentatively identified by NID 5 22.73%

Nuclide Type : natural

Nuclide RA-226 AC-228 TH-228	Hlife 1600.00Y 5.75Y 1.91Y	Decay 1.00 1.00 1.00	pCi/L 1.137E+01 1.556E+00 3.683E+00	pCi/L 1.137E+01 1.557E+00 3.690E+00	Decay Corr 2-Sigma Error 3.665E+01 6.442E+00 2.933E+00 22.26E-01	2-Sigma %Error 322.44 413.80 79.49 322.44	
U-235	7.04E+08Y	1.00	6.904E-01	6.904E-01	22.26E-01	322.44	K.

Total Activity : 1.730E+01 1.730E+01

Grand Total Activity: 1.730E+01 1.730E+01

"M" = Manually accepted Flags: "K" = Keyline not found
"E" = Manually edited

"A" = Nuclide specific abn. limit

Page :

3

Unidentified Energy Lines Sample ID: 11L28431-15

Acquisition date : 28-APR-2006 21:46:12

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	66.30	268	2132	1.26	131.79	128	9	5.15E-03	65.9	6.02E-01	
0	77.35	218	1625	1.04	153.96	151	7	4.19E-03	63.4	9.17E-01	
0	87.19	53	1417	1.17	173.68	171	7	1.02E-03	****	1.16E+00	
0	139.78	351	1453	1.45	279.17	275	8	6.75E-03	39.1	1.69E+00	
0	198.53	352	1609	1.25	396.98	391	12	6.78E-03	48.5	1.57E+00	
0	295.06	634	1001	1.20	590.55	586	11	1.22E-02	22.2	1.23E+00	
0	351.79	1165	684	1.39	704.30	699	11	2.24E-02	11.2	1.08E+00	
0	595.26	128	391	1.19	1192.34	1186	12	2.47E-03	64.1	7.15E-01	
0	608.93	1029	361	1.52	1219.75	1213	13	1.98E-02	10.9	7.02E-01	
0	726.98	53	187	1.44	1456.31	1453	9	1.01E-03	***	6.12E-01	
0	767.02	163	315	1.73	1536.56	1529	15	3.14E-03	50.0	5.87E-01	${f T}$
0	933.63	74	230	2.14	1870.35	1861	14	1.42E-03	90.6	5.04E-01	
0	1119.70	206	150	1.72	2243.05	2237	12	3.97E-03	30.8	4.37E-01	
0	1237.07	67	147	1.57	2478.08	2470	14	1.29E-03	92.4	4.04E-01	
0	1376.74	115	120	1.75	2757.72	2751	15	2.21E-03	45.5	3.71E-01	
0	1406.75	78	50	1.30	2817.80	2812	11	1.49E-03	41.9	3.65E-01	
0	1762.42	166	88	1.87	3529.62	3523	17	3.19E-03	33.8	3.04E-01	
0	1845.06	36	63	1.06	3694.96	3689	12	6.98E-04	93.5	2.93E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 22
Number of unidentified lines 17
Number of lines tentatively identified by NID 5 22.73%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr			
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	1.137E+01	1.137E+01	3.665E+01	322.44	
AC-228	5.75Y	1.00	1.556E+00	1.557E+00	6.442E+00	413.80	
TH-228	1.91Y	1.00	3.683E+00	3.690E+00	2.933E+00	79.49	
	Total Activity:		1.661E+01	1.661E+01			

Grand Total Activity: 1.661E+01 1.661E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Activity Act error MDA MDA error Act/MDA Nuclide (pCi/L)

RA-226 AC-228 TH-228	1.137E+01 1.557E+00 3.690E+00	3.665E+01 6.442E+00 2.933E+00	5.975E+01 9.060E+00 4.652E+00	0.000E+00 0.000E+00 0.000E+00	0.190 0.172 0.793
Non-Id	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 K-40 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154	1.707E+01 -4.476E+00 1.087E+02 -1.124E+01 1.430E+00 -3.803E-01 2.854E-01 8.570E-01 4.248E-01 1.472E+01 -1.659E+00 1.421E+01 6.305E-02 -2.654E-01 4.372E+00 4.555E-01 1.165E+01 8.729E-01 -5.328E-01 -5.328E-01 -6.947E-02 3.358E-01 -3.470E-01 1.185E+01 -7.528E-02 1.420E+01 1.734E+01 -6.478E-01 3.286E-01 8.291E-01 -7.750E-01 6.352E-01 -1.522E+00 -3.371E+00 -1.101E+01 1.512E-01	1.347E+01 1.291E+01 1.972E+01 1.375E+00 1.570E+00 1.573E+00 3.023E+00 1.597E+00 4.259E+00 2.052E+00 1.788E+00 2.042E+00 1.602E+00 1.764E+01 1.569E+00 1.764E+01 1.569E+00 1.763E+00 2.003E+00 2.003E+00 1.765E+00 1.765E+00 1.765E+00 1.776E+00 1.776E+00 1.776E+00 1.776E+00 1.776E+00 1.776E+00 1.776E+00 1.776E+00 1.775E+00 1.571E+00 1.571E+00 1.571E+00 1.571E+00 1.571E+00 3.138E+00 1.383E+01 6.055E+00 3.142E+00	2.280E+01 1.738E+01 3.870E+01 2.202E+01 2.637E+00 2.446E+00 2.583E+00 5.007E+00 2.669E+00 3.323E+00 3.377E+00 2.819E+00 2.842E+00 4.314E+00 2.959E+01 2.606E+01 2.552E+00 3.320E+00 2.424E+01 2.552E+00 3.320E+00 2.549E+00 3.320E+00 2.549E+00 3.320E+00 2.549E+00 3.320E+00 2.549E+00 3.320E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.839E+00 3.186E+00 4.310E+00 5.159E+00 5.159E+00	0.000E+00 0.000E+00	0.748 -0.258 2.810 -0.510 0.542 -0.155 0.110 0.171 0.159 2.132 -0.499 4.207 0.022 -0.108 1.538 0.106 0.394 0.335 -0.029 -0.021 0.132 -0.048 0.402 -0.025 3.336 4.516 -0.248 0.116 0.323 -0.079 0.199 -0.353 -0.176 -1.408 0.029
TH-232 U-235 U-238 AM-241	1.556E+00 + -9.126E+00 -9.913E+01 3.895E+01	6.438E+00 1.464E+01 1.694E+02 2.242E+01	1.001E+01 1.948E+01 2.730E+02 3.307E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.155 -0.468 -0.363 1.178

```
,05/02/2006 08:40,04/27/2006 10:57,
                                                                 3.602E+00,WG L28431-15 E
A,11L28431-15
                                             ,09/01/2005 07:43,1135L090204
                     , LIBD
B,11L28431-15
                                    3.665E+01,
                                                   5.975E+01,,
                                                                    0.190
C, RA-226
           , YES,
                     1.137E+01,
                                                   9.060E+00,,
                                                                    0.172
                     1.557E+00,
                                    6.442E+00,
C, AC-228
           , YES,
                                                   4.652E+00,,
                                                                    0.793
C, TH-228
                     3.690E+00,
                                    2.933E+00,
           , YES,
                                                                    0.748
           , NO
                                                   2.280E+01,,
                                    1.347E+01,
C, BE-7
                     1.707E+01,
                                                                   -0.258
                                    1.291E+01,
                                                   1.738E+01,,
                    -4.476E+00,
C, NA-24
           , NO
                                                                    2.810
                                                   3.870E+01,,
                                    1.972E+01,
C, K-40
                     1.087E+02,
           , NO
                                                   2.202E+01,,
                                                                   -0.510
                                    1.375E+01,
C, CR-51
           , NO
                    -1.124E+01,
                                                                    0.542
                                                   2.637E+00,,
            , NO
                     1.430E+00,
                                    1.570E+00,
C, MN-54
                                                                   -0.155
                                    1.495E+00,
                                                   2.446E+00,,
                    -3.803E-01,
C, CO-57
           , NO
                                                   2.583E+00,,
                                                                    0.110
C, CO-58
                     2.854E-01,
                                    1.573E+00,
            , NO
                                                                    0.171
            , NO
                                    3.023E+00,
                                                   5.007E+00,,
                     8.570E-01,
C, FE-59
                                    1.597E+00,
                                                                    0.159
                                                   2.669E+00,,
C, CO-60
            , NO
                     4.248E-01,
                                    4.259E+00,
                                                   6.906E+00,,
                                                                    2.132
C, ZN-65
                     1.472E+01,
            , NO
                                                   3.323E+00,,
                                    2.052E+00,
                                                                   -0.499
                    -1.659E+00,
C, SE-75
            , NO
                                                                    4.207
                                                   3.377E+00,,
            ,NO
                     1.421E+01,
                                    1.788E+00,
C, SR-85
                     6.305E-02,
                                    2.042E+00,
                                                   2.819E+00,,
                                                                    0.022
C, Y-88
            , NO
                                                                   -0.108
                                                   2.464E+00,,
                    -2.654E-01,
                                    1.504E+00,
C, NB-94
            , NO
                                                                    1.538
                                                   2.842E+00,,
            , NO
                     4.372E+00,
                                    1.602E+00,
C, NB-95
                                                   4.314E+00,,
                                                                    0.106
                     4.555E-01,
                                    3.017E+00,
C, ZR-95
            ,NO
                                                   2.959E+01,,
                                                                    0.394
                     1.165E+01,
                                    1.764E+01,
C, MO-99
            , NO
                                                   2.606E+00,,
                                                                     0.335
                     8.729E-01,
                                    1.569E+00,
C, RU-103
            , NO
                                                                   -0.022
                                                   2.424E+01,,
                                    1.462E+01,
                    -5.328E-01,
C, RU-106
            , NO
                                                   2.552E+00,,
                                                                    0.099
                     2.532E-01,
                                    1.535E+00,
C, AG-110m
           , NO
                                                   3.320E+00,,
                                                                   -0.021
C, SN-113
            , NO
                    -6.947E-02,
                                    2.003E+00,
                                                   2.549E+00,,
                                                                    0.132
                                    3.525E+00,
C,SB-124
            , NO
                     3.358E-01,
                                                   7.241E+00,,
                                                                   -0.048
                    -3.470E-01,
                                    4.393E+00,
C,SB-125
            , NO
                                                                     0.402
                                                   2.948E+01,,
                                    1.763E+01,
                     1.185E+01,
C, TE-129M
            , NO
                                                   2.955E+00,,
                                                                   -0.025
                                    1.776E+00,
C, I-131
            ,NO
                    -7.528E-02,
                                                                     3.336
                                                   4.257E+00,,
C, BA-133
            , NO
                     1.420E+01,
                                    2.696E+00,
                     1.734E+01,
                                    2.756E+00,
                                                   3.839E+00,,
                                                                     4.516
            , NO
C, CS-134
                ,
                                                   2.611E+00,,
                                                                   -0.248
            , NO
                                    1.624E+00,
                    -6.478E-01,
C, CS-136
                                                   2.835E+00,,
                                                                     0.116
                                    1.705E+00,
C, CS-137
                     3.286E-01,
            , NO
                                                                     0.323
                     8.291E-01,
                                                   2.567E+00,,
C, CE-139
            , NO
                                    1.571E+00,
                                                   9.752E+00,,
                                                                    -0.079
                    -7.750E-01,
                                    6.004E+00,
C, BA-140
            , NO
                                    1.921E+00,
                                                   3.186E+00,,
                                                                     0.199
                     6.352E-01,
C, LA-140
            , NO
                                                   4.310E+00,,
                                                                    -0.353
            , NO
                                    3.138E+00,
C, CE-141
                    -1.522E+00,
                                                                    -0.176
                                    1.383E+01,
                                                   1.917E+01,,
                    -3.371E+00,
C, CE-144
            , NO
                                                                    -1.408
            , NO
                                                   7.822E+00,,
C, EU-152
                    -1.101E+01,
                                    6.055E+00,
C, EU-154
                     1.512E-01,
                                    3.142E+00,
                                                   5.159E+00,,
                                                                     0.029
            , NO
                     1.556E+00,
                                    6.438E+00,
                                                   1.001E+01,,
                                                                     0.155
C, TH-232
            , NO
                ,
                                                   1.948E+01,,
                                                                    -0.468
                                    1.464E+01,
                    -9.126E+00,
C, U-235
            , NO
                                                   2.730E+02,,
                                                                    -0.363
                                    1.694E+02,
C, U-238
            , NO
                    -9.913E+01,
```

2.242E+01,

, NO

C, AM-241

3.895E+01,

3.307E+01,,

1.178

LIMS: Sec. Review: Analyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:14:54.56 TBE13 P-10727B HpGe ******** Aquisition Date/Time: 28-APR-2006 21:46:20.63

LIMS No., Customer Name, Client ID: WG L28431-16 EX BYRON

Smple Date: 27-APR-2006 12:25:00. Sample ID : 13L28431-16

Geometry : 1335L090904 Sample Type : WG BKGFILE : 13BG041406MT Quantity : 3.61430E+00 L

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	5	63.32*	167	2053	1.09	126.61	6.21E-01	3.20E-03	50.9	1.04E+00
2	5	66.33	283	2387	1.33	132.61	7.24E-01	5.42E-03	30.6	
3	1	77.18*	566	2018	0.82	154.30		1.09E-02		
4	4	87.23*	182	1522	0.87	174.38		3.50E-03		
5	1	92.69*	28	2274	1.03	185.30	1.52E+00	5.34E-043	342.9	2.78E+00
6	1	139.74*	414	2071	1.16	279.32		7.95E-03		
7	1	143.45*	101	1785	1.31	286.73		1.94E-03		
8	1	185.71*	76	1985	1.12	371.20		1.45E-03		
9	1	198.49*	305	1660	1.02	396.74		5.86E-03		
10	2	238.62*	345	1107	1.13	476.93	1.73E+00	6.63E-03	19.4	4.50E+00
11	2	241.93	1092	1093	1.16	483.54	1.72E+00	2.10E-02	5.8	
12	2	295.16*	1923	842	1.20	589.94		3.69E-02		3.99E+00
13	2	297.42	121	687	0.96	594.45	1.51E+00	2.33E-03		
14	1	351.85*	3098	856	1.10	703.26		5.95E-02		4.61E-01
15	1	499.64	133	523	1.58	998.70		2.55E-03		
16	1	583.17*	27	546	1.14	1165.71		5.25E-04		
17	1	595.87	217	405	1.63	1191.11		4.17E-03		
18	1	609.27*	2702	639	1.34	1217.91		5.19E-02		7.59E-01
19	1	665.61	90	327	1.28	1330.57		1.72E-03		
20	1	768.13	282	285	1.90	1535.58		5.42E-03		
21	1	786.00	123	370		1571.32		2.36E-03		
22	1	911.21*	3	261	1.70	1821.76		6.03E-05		
23	1	934.06	126	297	1.63	1867.45		2.42E-03		
24	1	1001.69*	40	310	3.15	2002.74		7.75E-04		
25	1	1120.34*	582	286		2240.12		1.12E-02		2.79E+00
26	1	1155.38	102	166		2310.22		1.96E-03		1.03E+00
27	1	1238.73*	276	243		2477.00		5.29E-03		
28	1	1281.64	93	158		2562.87		1.79E-03		
29	1	1378.44	238	135		2756.59		4.57E-03		
30	1	1408.57	97	178		2816.89		1.86E-03		
31	1	1461.23*	6	180		2922.30		1.25E-04		
32	1	1509.52	95	164		3018.96		1.83E-03		
33	1	1730.40	123	117		3461.15		2.36E-03		
34	1	1764.88*	411	146		3530.19		7.88E-03		2.09E+00
35	1	1848.21	112	93	2.98	3697.04	3.99E-01	2.16E-03	23.1	1.55E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	6	10.67*	4.687E-01	1.863E+00	1.863E+00	1292.80
RA-226	186.21	76	3.28*	1.946E+00	1.704E+01	1.704E+01	235.87
AC-228	835.50		1.75	7.084E-01	Lin	e Not Found	
	911.07	3	27.70*	6.640E-01	2.453E-01	2.455E-01	2386.04
TH-228	238.63	345	44.60*	1.733E+00	6.416E+00	6.427E+00	38.84
	240.98	1092	3.95	1.719E+00	2.309E+02	2.313E+02	11.69
TH-232	583.14	27	30.25	9.262E-01	1.402E+00	1.402E+00	364.20
	911.07	3	27.70*	6.640E-01	2.453E-01	2.453E-01	2386.04
	969.11		16.60	6.342E-01	Lin	e Not Found	
U-235	143.76	101	10.50*	2.023E+00	6.828E+00	6.828E+00	152.20
	163.35		4.70	2.011E+00	Lin	e Not Found	
	185.71	76	54.00	1.946E+00	1.035E+00	1.035E+00	235.87
	205.31		4.70	1.871E+00	Lin	e Not Found	
U-238	766.41		0.21	7.555E-01	Lin	e Not Found	
	1001.03	40	0.92*	6.188E-01	1.018E+02	1.018E+02	212.25

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity Acquisition date : 28-APR-2006 21:46:20

Sample ID : 13L28431-16

Total number of lines in spectrum 35 Number of unidentified lines 26

Number of lines tentatively identified by NID 9 25.71%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Erro		Flags
K-40	1.28E+09Y	1.00	1.863E+00	1.863E+00	24.08E+00	1292.80	
RA-226	1600.00Y	1.00	1.704E+01	1.704E+01	4.019E+01	235.87	
AC-228	5.75Y	1.00	2.453E-01	2.455E-01	58.57E-01	2386.04	
TH-228	1.91Y	1.00	6.416E+00	6.427E+00	2.496E+00	38.84	
TH-232	1.41E+10Y	1.00	2.453E-01	2.453E-01	58.54E-01	2386.04	
U-235	7.04E+08Y	1.00	6.828E+00	6.828E+00	10.39E+00	152.20	
U-238	4.47E+09Y	1.00	1.018E+02	1.018E+02	2.160E+02	212.25	

Total Activity : 1.344E+02 1.344E+02

Grand Total Activity: 1.344E+02 1.344E+02

Flags: "K" = Keyline not found
"E" = Manually edited "M" = Manually accepted

"M" = Manuarry accepted "A" = Nuclide specific abn. limit

Page: 3

Unidentified Energy Lines Sample ID : 13L28431-16

Acquisition date : 28-APR-2006 21:46:20

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
5	63.32	167	2053	1.09	126.61	122	15	3.20E-03	***	6.21E-01	
5	66.33	283	2387	1.33	132.61	122	15	5.42E-03	61.1	7.24E-01	
1	77.18	566	2018	0.82	154.30	153	6	1.09E-02	28.5	1.09E+00	
4	87.23	182	1522	0.87	174.38	166	13	3.50E-03	70.7	1.39E+00	
1	92.69	28	2274	1.03	185.30	182	8	5.34E-04	****	1.52E+00	
1	139.74	414	2071	1.16	279.32	276	8	7.95E-03	40.8	2.02E+00	
1	198.49	305	1660	1.02	396.74	393	8	5.86E-03	51.4	1.90E+00	
2	295.16	1923	842	1.20	589.94	585	13	3.69E-02	7.2	1.52E+00	
2	297.42	121	687	0.96	594.45	585	13	2.33E-03	72.0	1.51E+00	
1	351.85	3098	856	1.10	703.26	699	9	5.95E-02	5.2	1.34E+00	
1	499.64	133	523	1.58	998.70	993	10	2.55E-03	67.0	1.04E+00	
1	595.87	217	405	1.63	1191.11	1187	9	4.17E-03	35.9	9.11E-01	
1	609.27	2702	639	1.34	1217.91	1211	13	5.19E-02	5.8	8.96E-01	
1	665.61	90	327	1.28	1330.57	1327	9		76.2	8.39E-01	
1	768.13	282	285	1.90	1535.58	1531		5.42E-03	25.4	7.54E-01	
1	786.00	123	370	2.43	1571.32	1565		2.36E-03		7.41E-01	
1	934.06	126	297	1.63	1867.45	1861		2.42E-03		6.52E-01	
1	1120.34	582	286	2.07	2240.12	2233		1.12E-02	16.5	5.69E-01	
1	1155.38	102	166	2.60	2310.22			1.96E-03		5.56E-01	
1	1238.73	276	243	2.78	2477.00	2468		5.29E-03	32.8	5.29E-01	
1	1281.64	93	158	3.36	2562.87	2556		1.79E-03		5.16E-01	
1	1378.44	238	135	2.29	2756.59		15		24.9	4.89E-01	
1	1408.57	97	178	2.72	2816.89			1.86E-03	62.2	4.81E-01	
1	1509.52	95	164	3.14	3018.96			1.83E-03		4.58E-01	
1	1730.40	123	117	2.89	3461.15					4.17E-01	
1	1764.88	411	146	2.16	3530.19			7.88E-03	18.6	4.11E-01	
1	1848.21	112	93	2.98	3697.04	3690	18	2.16E-03	46.2	3.99E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

35 Total number of lines in spectrum Number of unidentified lines 26 Number of lines tentatively identified by NID 9 25.71%

Nuclide Type : natural

Nuclide	Type: nacc	игат	Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĈi/L	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.863E+00	1.863E+00	24.08E+00 1	292.80
TH-228	1.91Y	1.00	6.416E+00	6.427E+00	2.496E+00	38.84
TH-232	1.41E+10Y	1.00	9.022E-01	9.022E-01	38.48E-01	426.50
U-235	7.04E+08Y	1.00	1.338E+00	1.338E+00	2.376E+00	177.63
U-238	4.47E+09Y	1.00	1.018E+02	1.018E+02	2.160E+02	212.25
	Total Act:	ivity :	1.123E+02	1.123E+02		

Grand Total Activity: 1.123E+02 1.123E+02

Flags: "K" = Keyline not found

"M" = Manually accepted "A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

0.371

0.338

3.355

5.193

-0.374

-0.181

-0.112

1.670

0.063

0.284

0.887

-0.099

-0.247

0.021

0.588

0.095

3.937

5.701

0.008

0.156

0.109

0.543

0.416

-0.054

-0.324

-0.098

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

Interfe	ring	Interfered				
Nuclide	Line	Nuclide	Line			
U-235 TH-232	185.71 911.07	RA-226 AC-228	186.21 911.07			

Combined Activity-MDA Report

1.694E+00

8.488E-01

2.292E+01

1.651E+01

-1.165E+00

-4.322E-01

-2.519E-01

4.399E+00

2.545E-01

7.599E+00

2.158E+00

-2.099E+00

-5.536E-01

6.289E-02

1.372E+00

2.561E+00

1.527E+01

1.998E+01

1.859E-02

4.174E-01

2.493E-01

4.954E+00

1.685E+00

-1.604E-01

-2.144E+00

-2.601E-01

FE-59

CO-60

ZN-65

SE-75

SR-85

Y-88

NB-94

NB-95

ZR-95

MO-99

RU-103

RU-106

SN-113

SB-124

SB-125

I - 131

BA-133

CS-134

CS-136

CS-137

CE-139

BA-140

LA-140

CE-141

TE-129M

AG-110m

Identified Nuclides										
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA					
K-40 TH-228 TH-232 U-235 U-238	1.863E+00 6.427E+00 9.022E-01 1.338E+00 1.018E+02	2.408E+01 2.496E+00 3.848E+00 2.376E+00 2.160E+02	2.400E+01 4.236E+00 8.621E+00 1.830E+01 2.572E+02	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.078 1.517 0.105 0.073 0.396					
Non-Identified Nuclides										
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA					
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58	-6.349E-01 -4.337E+00 -1.258E+01 9.040E-01 5.426E-01 -1.165E+00	1.197E+01 1.107E+01 1.228E+01 1.421E+00 1.336E+00 1.413E+00	1.951E+01 1.494E+01 1.961E+01 2.382E+00 2.240E+00 2.279E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	-0.033 -0.290 -0.642 0.380 0.242 -0.511					

2.716E+00

1.486E+00

4.014E+00

1.907E+00

1.683E+00

1.709E+00

1.383E+00

1.481E+00

2.484E+00

1.585E+01

1.447E+00

1.290E+01

1.595E+00

1.805E+00

3.024E+00

4.070E+00

1.649E+01

1.600E+00

2.367E+00

2.390E+00

1.472E+00

1.951E+00

1.394E+00

5.372E+00

1.797E+00

2.822E+00

4.562E+00

2.508E+00

6.833E+00

3.116E+00

3.179E+00

2.392E+00

2.240E+00

2.634E+00

4.030E+00

2.671E+01

2.433E+00

2.113E+01

2.241E+00

2.993E+00

2.333E+00

6.626E+00

2.708E+01

2.657E+00

3.879E+00

3.505E+00

2.429E+00

2.670E+00

2.288E+00

9.125E+00

2.968E+00

4.048E+00

L28431 119 of 147

CE-144	-2.887E-02	1.170E+01	1.739E+01	0.000E+00	-0.002
EU-152	-7.702E+00	5.211E+00	7.152E+00	0.000E+00	-1.077
EU-154	1.316E+00	2.815E+00	4.721E+00	0.000E+00	0.279
RA-226	1.704E+01	4.019E+01	6.159E+01	0.000E+00	0.277
AC-228	2.455E-01	5.857E+00	9.796E+00	0.000E+00	0.025
AM-241	2.290E+01	1.311E+01	1.949E+01	0.000E+00	1.175

```
3.614E+00,WG L28431-16 E
                     ,04/29/2006 12:14,04/27/2006 12:25,
A,13L28431-16
                                             ,08/05/2005 08:16,1335L090904
                     ,LIBD
B,13L28431-16
                                    2.408E+01,
                                                   2.400E+01,,
                                                                    0.078
C, K-40
           , YES,
                    1.863E+00,
                                                                    1.517
           ,YES,
                                                   4.236E+00,,
C, TH-228
                     6.427E+00,
                                    2.496E+00,
                                                   8.621E+00,,
                                                                    0.105
                     9.022E-01,
                                    3.848E+00,
C, TH-232
           , YES,
                                                                    0.073
                    1.338E+00,
                                                   1.830E+01,,
C, U-235
           , YES,
                                    2.376E+00,
                                                   2.572E+02,,
                                                                    0.396
                     1.018E+02,
                                    2.160E+02,
C, U-238
           ,YES,
                                                   1.951E+01,,
                                                                   -0.033
                                    1.197E+01,
C, BE-7
           ,NO,
                   -6.349E-01,
                                                   1.494E+01,,
                                                                   -0.290
                    -4.337E+00,
                                    1.107E+01,
C, NA-24
           ,NO
                                                                   -0.642
                                    1.228E+01,
                                                   1.961E+01,,
                   -1.258E+01,
C, CR-51
           , NO
                                                   2.382E+00,,
                                                                    0.380
C, MN-54
           ,NO
                     9.040E-01,
                                    1.421E+00,
                                    1.336E+00,
                                                   2.240E+00,,
                                                                    0.242
                     5.426E-01,
C, CO-57
           , NO
                                                   2.279E+00,,
                                                                   -0.511
                                    1.413E+00,
                    -1.165E+00,
C, CO-58
            , NO
                                                   4.562E+00,,
                                                                    0.371
                     1.694E+00,
                                    2.716E+00,
C, FE-59
           , NO
                                                   2.508E+00,,
                                                                    0.338
                     8.488E-01,
                                    1.486E+00,
C, CO-60
            , NO
                                                   6.833E+00,,
                                                                    3.355
C, ZN-65
            , NO
                     2.292E+01,
                                    4.014E+00,
                                                                   -0.374
                                    1.907E+00,
                                                   3.116E+00,,
C, SE-75
            , NO
                    -1.165E+00,
                                    1.683E+00,
                                                   3.179E+00,,
                                                                    5.193
            , NO
                     1.651E+01,
C, SR-85
                                                   2.392E+00,,
                                                                   -0.181
            , NO
                    -4.322E-01,
                                    1.709E+00,
C, Y-88
                                                                   -0.112
                                    1.383E+00,
                                                   2.240E+00,,
C, NB-94
            , NO
                    -2.519E-01,
                                                   2.634E+00,,
                                                                    1.670
                     4.399E+00,
                                    1.481E+00,
C, NB-95
            , NO
                                                                    0.063
                                                   4.030E+00,,
                     2.545E-01,
                                    2.484E+00,
C, ZR-95
            , NO
                                                   2.671E+01,,
                                                                    0.284
            , NO
                                    1.585E+01,
                     7.599E+00,
C, MO-99
                                                                    0.887
                                                   2.433E+00,,
            ,NO
                                    1.447E+00,
C, RU-103
                     2.158E+00,
                                                                   -0.099
                                    1.290E+01,
                                                   2.113E+01,,
C, RU-106
            , NO
                    -2.099E+00,
                                                                   -0.247
           , NO
                    -5.536E-01,
                                    1.595E+00,
                                                   2.241E+00,,
C, AG-110m
                                    1.805E+00,
                                                   2.993E+00,,
                                                                    0.021
                     6.289E-02,
C, SN-113
            , NO
                                    3.024E+00,
                                                                    0.588
                                                   2.333E+00,,
                     1.372E+00,
C, SB-124
            , NO
                                                                   -0.324
                                                   6.626E+00,,
                                    4.070E+00,
C,SB-125
            ,NO
                    -2.144E+00,
                                                   2.708E+01,,
                                                                    0.095
                     2.561E+00,
                                    1.649E+01,
C, TE-129M
            , NO
            ,NO
                                    1.600E+00,
                                                   2.657E+00,,
                                                                   -0.098
C, I-131
                    -2.601E-01,
                                                   3.879E+00,,
                                                                    3.937
                                    2.367E+00,
                     1.527E+01,
C, BA-133
            , NO
                                                   3.505E+00,,
                                                                    5.701
                                    2.390E+00,
                     1.998E+01,
C, CS-134
            , NO
                                                                    0.008
                                                   2.429E+00,,
            , NO
                                    1.472E+00,
C, CS-136
                     1.859E-02,
                                    1.951E+00,
                                                                    0.156
                     4.174E-01,
                                                   2.670E+00,,
C, CS-137
            , NO
                                    1.394E+00,
                                                   2.288E+00,,
                                                                    0.109
                     2.493E-01,
C, CE-139
            , NO
                                                   9.125E+00,,
                                                                    0.543
                                    5.372E+00,
                     4.954E+00,
C, BA-140
            , NO
                                                                   -0.054
                                                   2.968E+00,,
                    -1.604E-01,
                                    1.797E+00,
C, LA-140
            , NO
                ,
                                                   4.048E+00,,
                                                                    0.416
C, CE-141
            , NO
                     1.685E+00,
                                    2.822E+00,
                                                                   -0.002
                    -2.887E-02,
                                    1.170E+01,
                                                   1.739E+01,,
C, CE-144
            , NO
                                    5.211E+00,
                                                   7.152E+00,,
                                                                   -1.077
            , NO
                    -7.702E+00,
C, EU-152
                                                   4.721E+00,,
                                                                    0.279
                                    2.815E+00,
                     1.316E+00,
C, EU-154
            , NO
                                                   6.159E+01,,
                                                                    0.277
                                    4.019E+01,
C, RA-226
            , NO
                     1.704E+01,
                                                   9.796E+00,,
                                                                    0.025
                     2.455E-01,
                                    5.857E+00,
C, AC-228
            , NO
```

1.311E+01,

C, AM-241

, NO

2.290E+01,

1.949E+01,,

1.175

LIMS: Analyst: Sec. Review:

______ ______

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 30-APR-2006 10:07:56.80 TBE10 12892256 HpGe ******* Aquisition Date/Time: 29-APR-2006 13:03:32.65

LIMS No., Customer Name, Client ID: WG L28431-17 EX BYRON

Smple Date: 27-APR-2006 14:05:00. : 10L28431-17 Sample ID

Geometry : 1035L091004 Sample Type : WG BKGFILE : 10BG041406MT : 3.58600E+00 L Quantity Start Channel: 80 Energy Tol: 1.30000 End Channel: 4090 Pk Srch Sens: 5.00000 MDA Constant: 0.00 Library Used: LIBD Real Time : 0 21:04:17.43 Live time : 0 21:04:04.24

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err Fit	
1	1	52.94	196	1970	1.29	105.10	2.62E-01	2.58E-03 38.2 2.40E-01	
2	1	66.30*	495	2928	1.33	131.83	6.33E-01	6.53E-03 20.8 1.51E+00	
3	2	74.81*	58	2687	1.26	148.88	8.81E-01	7.60E-04177.7 4.32E+00	
4	2	77.08	731	2243	1.09	153.42	9.43E-01	9.64E-03 11.7	
5	1	87.27*	44	2082	0.86	173.81	1.19E+00	5.75E-04182.2 1.37E+00	
6	1	92.76*	188	2862	1.80	184.79	1.30E+00	2.48E-03 57.1 2.92E+00	
7	1	139.71	665	2610	1.51	278.76	1.68E+00	8.76E-03 14.3 3.96E+00	
8	1	185.68*	36	1941	1.21	370.75		4.70E-04249.2 2.71E+00	
9	1	198.18*	281	2514	1.77	395.77	1.55E+00	3.71E-03 39.9 1.20E+00	
10	2	238.64*	140	1435	1.26	476.74	1.40E+00	1.84E-03 56.4 1.07E+00	
11	2	241.97	616	1438	1.30	483.41	1.39E+00	8.13E-03 11.4	
12	1	295.21*	1217	1567	1.24	589.97	1.21E+00	1.60E-02 7.6 6.83E-01	
13	1	351.94*	2166	1442	1.32	703.51		2.86E-02 4.5 1.60E+00	
14	1	583.84*	20	580	2.04	1167.71		2.63E-04285.7 3.17E+00	
15	1	595.67	257	457	1.50	1191.39		3.39E-03 16.9 1.80E+00	
16	1	609.24*	1796	560	1.39	1218.56		2.37E-02 4.1 6.24E-01	
17	1	768.20	186	386	1.71	1536.77		2.45E-03 22.6 1.09E+00	
18	1	910.97*	28	270	2.10	1822.61	5.07E-01	3.74E-04134.1 8.79E-01	
19	1	934.18	150	336	2.91	1869.07		1.97E-03 29.5 1.21E+00	
20	1	968.75*	32	208	2.93	1938.30		4.28E-04102.1 1.25E+00	
21	1	1120.01*	324	231	1.83	2241.16		4.28E-03 13.0 9.73E-01	
22	1	1237.86	185	200	2.42	2477.14		2.43E-03 18.2 1.33E+00	
23	1	1377.58	118	122	2.39	2756.94		1.55E-03 20.2 1.45E+00	
24	1	1407.96	70	158	2.27	2817.78		9.22E-04 38.2 1.58E+00	
25	1	1729.40	76	122	2.83	3461.59		9.96E-04 34.9 7.88E-01	
26	1	1764.31*	322	132	2.23	3531.52		4.25E-03 11.2 4.99E-01	
27	1	1847.17	78	79	3.30	3697.49	3.05E-01	1.03E-03 26.9 1.73E+00	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
RA-226	186.21	36			6.769E+00		498.37
AC-228	835.50		1.75	5.422E-01	Lir	ne Not Found	
	911.07	28	27.70*	5.070E-01	2.006E+00	2.007E+00	268.21

TH-228 TH-232	238.63 240.98 583.14 911.07 969.11	140 616 20 28 32	44.60* 3.95 30.25 27.70* 16.60	1.401E+00 1.389E+00 7.176E-01 5.070E-01 4.835E-01	2.224E+00 2.229 1.117E+02 1.119 9.134E-01 9.134 2.006E+00 2.006 4.017E+00 4.017	E+02 22.74 E-01 571.36 E+00 268.21
U-235	143.76 163.35 185.71 205.31	36	10.50* 4.70 54.00 4.70	1.683E+00 1.659E+00 1.595E+00 1.524E+00	Line Not Line Not 4.111E-01 4.111 Line Not	Found E-01 498.37

Flag: "*" = Keyline

Summary of Nuclide Activity

Sample ID: 10L28431-17

Page: 2
Acquisition date: 29-APR-2006 13:03:32

Total number of lines in spectrum 27
Number of unidentified lines 20
Number of lines tentatively identified by NID 7 25.93%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error	Flags
RA-226	1600.00Y	1.00	6.769E+00	6.769E+00	33.73E+00	498.37	
AC-228	5.75Y	1.00	2.006E+00	2.007E+00	5.384E+00	268.21	
TH-228	1.91Y	1.00	2.224E+00	2.229E+00	2.517E+00	112.90	
	1.41E+10Y	1.00	2.006E+00	2.006E+00	5.380E+00	268.21	
U-235	7.04E+08Y	1.00	4.111E-01	4.111E-01	20.49E-01	498.37	K

Total Activity : 1.342E+01 1.342E+01

Grand Total Activity: 1.342E+01 1.342E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 10L28431-17

Page: 3 Acquisition date : 29-APR-2006 13:03:32

-	•										
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff :	Flags
1	52.94	196	1970	1.29	105.10	102	7	2.58E-03	76.4	2.62E-01	
1	66.30	495	2928	1.33	131.83	128	8	6.53E-03	41.5	6.33E-01	
2	74.81	58	2687	1.26	148.88	142	15	7.60E-04	***	8.81E-01	
2	77.08	731	2243	1.09	153.42	142	15	9.64E-03	23.4	9.43E-01	
1	87.27	44	2082	0.86	173.81	172	6	5.75E-04	***	1.19E+00	
1	92.76	188	2862	1.80	184.79	181	9	2.48E-03	***	1.30E+00	
1	139.71	665	2610	1.51	278.76	275	9	8.76E-03	28.7	1.68E+00	
1	198.18	281	2514	1.77	395.77	391	11	3.71E-03	79.7	1.55E+00	
1	295.21	1217	1567	1.24	589.97	584	12	1.60E-02	15.1	1.21E+00	
1	351.94	2166	1442	1.32	703.51	696	14	2.86E-02	9.1	1.07E+00	
1	595.67	257	457	1.50	1191.39	1186	10	3.39E-03	33.8	7.06E-01	
1	609.24	1796	560	1.39	1218.56	1213		2.37E-02	8.1	6.94E-01	
1	768.20	186	386	1.71	1536.77	1532		2.45E-03	45.1	5.79E-01	
1	934.18	150	336	2.91	1869.07	1861	17	1.97E-03	59.1	4.97E-01	
1	1120.01	324	231	1.83	2241.16	2235	13	4.28E-03	25.9	4.33E-01	
1	1237.86	185	200	2.42	2477.14	2472		2.43E-03	36.5	4.01E-01	
1	1377.58	118	122	2.39	2756.94	2752	11	1.55E-03	40.4	3.71E-01	
1	1407.96	70	158	2.27	2817.78	2813	12		76.5	3.65E-01	
1	1729.40	76	122	2.83	3461.59	3456	16	9.96E-04		3.17E-01	
1	1764.31	322	132	2.23	3531.52	3525	19	4.25E-03		3.13E-01	
1	1847.17	78	79	3.30	3697.49	3693	14	1.03E-03	53.8	3.05E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 27 Number of unidentified lines 20 Number of lines tentatively identified by NID 7 25.93%

Nuclide Type : natural

			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Erro	r %Error Flag	s
RA-226	1600.00Y	1.00	6.769E+00	6.769E+00	33.73E+00	498.37	
AC-228	5.75Y	1.00	1.977E-01	1.979E-01	69.57E-01	3516.21	
TH-228	1.91Y	1.00	2.224E+00	2.229E+00	2.517E+00	112.90	
TH-232	1.41E+10Y	1.00	1.808E+00	1.808E+00	4.403E+00	243.54	
	Total Acti	vity:	1.100E+01	1.100E+01			

Grand Total Activity: 1.100E+01 1.100E+01

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Interference Report

Interfe	ring	Interfered				
Nuclide	Line	Nuclide	Line			
TH-232	911.07	AC-228	911.07			

---- Identified Nuclides ----

RA-226 6.769E+00 3.373E+01 5.265E+01 0.000E+00 AC-228 1.979E-01 6.957E+00 7.669E+00 0.000E+00 TH-228 2.229E+00 2.517E+00 3.963E+00 0.000E+00 TH-232 1.808E+00 4.403E+00 8.685E+00 0.000E+00	0.129 0.026 0.563 0.208										
Non-Identified Nuclides											
Key-Line Activity K.L. Act error MDA MDA error Nuclide (pCi/L) Ided (pCi/L)	Act/MDA										
BE-7 9.420E+00 1.126E+01 1.886E+01 0.000E+00 NA-24 9.459E+00 2.161E+01 3.057E+01 0.000E+00 K-40 -6.658E-01 2.070E+01 3.441E+01 0.000E+00 MN-51 9.748E+00 1.183E+01 1.911E+01 0.000E+00 MN-54 8.596E-01 1.300E+00 2.158E+00 0.000E+00 CO-57 -5.432E-01 1.328E+00 2.132E+00 0.000E+00 FE-59 2.783E-01 2.476E+00 4.065E+00 0.000E+00 CO-60 5.473E-01 1.366E+00 2.284E+00 0.000E+00 CO-60 5.473E-01 1.366E+00 2.284E+00 0.000E+00 SE-75 -1.879E-01 1.773E+00 2.928E+00 0.000E+00 SE-75 -1.879E-01 1.773E+00 2.928E+00 0.000E+00 Y-88 9.194E-01 1.506E+00 2.365E+00 0.000E+00 Y-88 9.194E-01 1.566E+00 2.365E+00 0.000E+00 NB-95 3.471E+00 1.586E+00 2.373E+00 0.000E+00 NB-95 3.471E+00 1.584E+00 2.373E+00 0.000E+00 MO-99 1.098E+00 1.710E+01 2.814E+01 0.000E+00 MO-99 1.098E+00 1.710E+01 2.814E+01 0.000E+00 RU-103 1.398E+00 1.357E+00 2.278E+00 0.000E+00 RU-106 6.894E+00 1.266E+00 2.048E+01 0.000E+00 RU-113 3.185E-01 1.704E+00 2.849E+00 0.000E+00 SB-124 1.401E+00 2.853E+00 2.146E+00 0.000E+00 SB-125 -9.363E-01 1.704E+00 2.849E+00 0.000E+00 SB-124 1.401E+00 2.853E+00 2.146E+00 0.000E+00 SB-125 -9.363E-01 3.791E+00 2.849E+00 0.000E+00 SB-126 9.363E-01 3.791E+00 2.853E+00 0.000E+00 SB-133 2.236E+01 2.369E+00 3.945E+00 0.000E+00 SB-134 1.751E+01 2.352E+00 2.376E+00 0.000E+00 SB-134 1.751E+01 2.369E+00 2.376E+00 0.000E+00 SB-134 1.751E+01 2.369E+00 3.945E+00 0.000E+00 SB-135 -9.363E-01 3.791E+00 6.256E+00 0.000E+00 SB-136 9.633E-01 3.791E+00 2.849E+00 0.000E+00 SB-137 1.488E+00 2.352E+00 3.945E+00 0.000E+00 SB-134 1.751E+01 2.369E+00 3.945E+00 0.000E+00 SC-136 9.633E-01 3.791E+00 2.376E+00 0.000E+00 SC-137 1.488E+00 2.373E+00 3.847E+00 0.000E+00 SC-136 9.633E-01 1.409E+00 2.376E+00 0.000E+00 SC-137 1.488E+00 3.99E+00 2.376E+00 0.000E+00 SC-134 9.633E-01 1.409E+00 2.376E+00 0.000E+00 SC-135 9.633E-01 1.409E+00 2.376E+00 0.000E+00 SC-136 9.633E-01 1.409E+00 2.376E+00 0.000E+00 SC-137 1.488E+00 1.399E+00 2.376E+00 0.000E+00 SC-138 6.187E+01 1.409E+00 3.847E+00 0.000E+00 SC-134 9.633E-01 1.409E+01 3.39E+00 3.847E+00 0.000E+00 SC-134 9.633E-01 1.409E+01 3.39	0.499 0.309 -0.510 0.398 -0.471 0.068 0.247 -0.064 4.861 0.240 -0.0614 0.337 -0.0614 0.337 -0.153 -0.153 -0.153 -0.153 -0.153 -0.1626 -0.187 0.241 0.6267 0.187 0.6367 0.6367 0.26644 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.2666666 -0.1891 0.266666 -0.1891 0.266666 -0.1891 0.266666 -0.1891 0.266666 -0.1891 0.26666 -0.1891 0.										

-1.444

1.814E+01,,

```
3.586E+00,WG L28431-17 E
                     ,04/30/2006 10:07,04/27/2006 14:05,
A,10L28431-17
                                             ,06/09/2005 08:04,1035L091004
                     , LIBD
B,10L28431-17
                                    3.373E+01,
                                                   5.265E+01,,
                                                                    0.129
C, RA-226
           , YES,
                     6.769E+00,
                                                   7.669E+00,,
                                                                    0.026
C, AC-228
           , YES,
                     1.979E-01,
                                    6.957E+00,
                                                   3.963E+00,,
                                                                    0.563
                     2.229E+00,
                                    2.517E+00,
C, TH-228
           , YES,
                                                                    0.208
                                                   8.685E+00,,
C, TH-232
           , YES,
                     1.808E+00,
                                    4.403E+00,
                                                   1.886E+01,,
                                                                    0.499
                     9.420E+00,
                                    1.126E+01,
C, BE-7
           , NO
                     9.459E+00,
                                                   3.057E+01,,
                                                                    0.309
                                    2.161E+01,
C, NA-24
           , NO
                                                                   -0.019
                                                   3.441E+01,,
                                    2.070E+01,
C, K-40
           , NO
                    -6.658E-01,
                                                                   -0.510
                                    1.183E+01,
                                                   1.911E+01,,
           ,NO
                    -9.748E+00,
C, CR-51
                                                   2.158E+00,,
                                                                    0.398
           , NO
                     8.596E-01,
                                    1.300E+00,
C, MN-54
                    -5.423E-01,
                                    1.328E+00,
                                                   2.195E+00,,
                                                                   -0.247
C, CO-57
           , NO
                                                   2.132E+00,,
                                                                   -0.471
            , NO
                                    1.335E+00,
                    -1.004E+00,
C, CO-58
                                                   4.065E+00,,
                                                                    0.068
                     2.783E-01,
                                    2.476E+00,
C, FE-59
           , NO
                                                                    0.240
                                                   2.284E+00,,
                     5.473E-01,
                                    1.366E+00,
C, CO-60
           ,NO
                                                   6.135E+00,,
                                                                    3.072
            , NO
                     1.884E+01,
                                    3.690E+00,
C, ZN-65
                                                                   -0.064
                                    1.773E+00,
                                                   2.928E+00,,
            , NO
                    -1.879E-01,
C, SE-75
                                                   2.837E+00,,
                                                                    4.861
                                    1.507E+00,
C, SR-85
            , NO
                     1.379E+01,
                                                                    0.389
                                                   2.365E+00,,
                     9.194E-01,
                                    1.566E+00,
C, Y-88
            , NO
                                                   2.062E+00,,
                                                                   -0.283
                                    1.266E+00,
C, NB-94
            , NO
                    -5.836E-01,
                                                   2.373E+00,,
                                                                    1.463
                     3.471E+00,
                                    1.584E+00,
C, NB-95
            , NO
                                                                   -0.241
                                                   3.684E+00,,
                    -8.881E-01,
                                    2.371E+00,
C, ZR-95
            ,NO
                                                   2.814E+01,,
                                                                    0.039
                                    1.710E+01,
                     1.098E+00,
C, MO-99
            , NO
                                                                    0.614
                                                   2.278E+00,,
                                    1.357E+00,
C, RU-103
            , NO
                     1.398E+00,
                                                                    0.337
                                    1.266E+01,
                                                   2.048E+01,,
            , NO
                     6.894E+00,
C, RU-106
                                                   2.122E+00,,
                                                                   -0.061
                    -1.296E-01,
                                    1.284E+00,
C, AG-110m , NO
                                                                    0.112
                                    1.704E+00,
                                                   2.849E+00,,
                     3.185E-01,
C, SN-113
            , NO
                                                   2.146E+00,,
                                                                    0.653
                                    2.853E+00,
                     1.401E+00,
C,SB-124
            , NO
                                                   6.256E+00,,
                                                                   -0.150
C,SB-125
            , NO
                    -9.363E-01,
                                    3.791E+00,
                                                   2.550E+01,,
                                                                    0.241
                     6.149E+00,
                                    1.532E+01,
C, TE-129M
            , NO
                                                                   -0.133
                                    1.622E+00,
                                                   2.625E+00,,
C, I-131
                    -3.492E-01,
            , NO
                                                   3.945E+00,,
                                                                    5.669
            ,NO
                                    2.369E+00,
C, BA-133
                     2.236E+01,
                                                                    5.541
                                                   3.161E+00,,
                                    2.232E+00,
                     1.751E+01,
C, CS-134
            , NO
                                                                    0.411
                                                   2.345E+00,,
                                    1.409E+00,
C, CS-136
            , NO
                     9.633E-01,
                                                   2.376E+00,,
                                                                     0.626
                     1.488E+00,
                                    1.399E+00,
C, CS-137
            , NO
                                    1.347E+00,
                                                   2.212E+00,,
                                                                     0.187
                     4.137E-01,
C, CE-139
            , NO
                                                   8.749E+00,,
                                                                     0.789
                                    5.194E+00,
            ,NO
                     6.900E+00,
C, BA-140
                                                                     0.282
                     7.961E-01,
                                                   2.820E+00,,
                                    1.670E+00,
            , NO
C, LA-140
                                                   3.847E+00,,
                                                                     0.052
            , NO
                     1.994E-01,
                                    2.734E+00,
C, CE-141
                                                                   -0.660
                    -1.107E+01,
                                    1.205E+01,
                                                   1.676E+01,,
            , NO
C, CE-144
                                    5.038E+00,
                                                   6.801E+00,,
                                                                   -0.636
                    -4.323E+00,
C, EU-152
            , NO
                                                   4.615E+00,,
                                                                   -0.197
                                    2.792E+00,
                    -9.091E-01,
C, EU-154
            , NO
                                                                     0.851
                                                   1.702E+01,,
                                    1.187E+01,
C, U-235
            , NO
                     1.449E+01,
                                                                     0.266
                                                   2.329E+02,,
            , NO
                     6.187E+01,
                                    1.394E+02,
C, U-238
```

1.405E+01,

C, AM-241

, NO

-2.619E+01,

Sec. Review: Analyst: LIMS: __

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:16:35.54 TBE15 P-10635B HpGe ******** Aquisition Date/Time: 28-APR-2006 21:46:24.49

LIMS No., Customer Name, Client ID: WG L28431-18 EX BYRON

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	53.90	223	1561	1.00	93.64	1.60E-01	4.28E-03	30.0	9.39E-01
2	1	67.13	319	1864	1.31	120.26	4.55E-01	6.12E-03	23.1	2.03E+00
3	2	77.77	614	1260	0.87	141.67	7.31E-01	1.18E-02	9.8	3.85E+00
4	1	87.90*	171	1520	1.01	162.06	9.69E-01	3.28E-03	39.4	3.77E+00
5	1	140.57	260	1966	1.25	268.02	1.48E+00	4.99E-03	30.0	1.20E+00
6	1	198.88*	199	1273	1.03	385.32	1.36E+00	3.82E-03	32.5	2.78E+00
7	1	242.47	765	1095	1.26	473.00	1.21E+00	1.46E-02	8.3	3.22E+00
8	1	295.62*	1630	1142	1.29	579.89	1.05E+00	3.12E-02	5.0	1.72E+00
9	1	352.20*	2704	853	1.32	693.69	9.15E-01	5.18E-02	3.0	7.41E-01
10	1	595.85	117	322	1.47	1183.55	5.97E-01	2.25E-03	29.0	6.58E-01
11	1	609.15*	2115	438	1.49	1210.28	5.86E-01	4.05E-02	3.2	5.80E-01
12	1	768.03	210	283	2.01	1529.57	4.86E-01	4.02E-03	18.0	9.59E-01
13	1	933.52	137	213	1.94	1862.06	4.15E-01	2.63E-03	22.8	9.71E-01
14	1	1119.64*	453	227	2.04	2235.86	3.58E-01	8.68E-03	9.6	2.78E+00
15	1	1154.75	83	110	2.18	2306.35	3.50E-01	1.59E-03	26.3	1.84E+00
16	1	1237.73	141	196	1.90	2472.96	3.31E-01	2.70E-03	22.9	2.77E+00
17	1	1377.00	131	123	2.33	2752.52	3.04E-01	2.51E-03	19.0	7.68E-01
18	1	1408.26	72	105	2.65	2815.26	2.99E-01	1.38E-03	34.4	1.14E+00
19	1	1729.42	65	65	2.24	3459.61	2.57E-01	1.25E-03	27.6	
20	1	1764.06*	393	100	2.22	3529.09	2.54E-01	7.53E-03	8.5	1.69E+00
21	1	1847.13	50	68	2.16	3695.69	2.46E-01	9.52E-04	37.5	1.18E+00

Flaq: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity
Sample ID: 15L28431-18 Acquisition date : 28-APR-2006 21:46:24

Total number of lines in spectrum 21 Number of unidentified lines 18
Number of lines tentatively identified by NID 3

14.29%

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted
"A" = Nuclide specific abn. limit

Page: 3 Unidentified Energy Lines Acquisition date : 28-APR-2006 21:46:24 Sample ID : 15L28431-18

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	53.90 67.13 77.77	223 319 614	1561 1864 1260	1.00 1.31 0.87	93.64 120.26 141.67	91 117 130	7	4.28E-03 6.12E-03 1.18E-02	60.0 46.1 19.5	1.60E-01 4.55E-01 7.31E-01	
2 1 1	87.90 140.57	171 260	1520 1966	1.01 1.25	162.06 268.02	160 264	6 8	3.28E-03 4.99E-03	78.9 60.1	9.69E-01 1.48E+00	
1 1 1	198.88 242.47 295.62	199 765 1630	1273 1095 1142	1.03 1.26 1.29	385.32 473.00 579.89	382 460 575	18	3.82E-03 1.46E-02 3.12E-02	64.9 16.7 10.1	1.36E+00 1.21E+00 1.05E+00	${f T}$
1 1	352.20 595.85	2704 117	853 322	1.32 1.47	693.69 1183.55	687 1180	11 9	5.18E-02 2.25E-03	5.9 58.0	9.15E-01 5.97E-01	
1 1 1	609.15 768.03 933.52	2115 210 137	438 283 213	1.49 2.01 1.94	1210.28 1529.57 1862.06	1204 1523 1856	14 13 12	4.05E-02 4.02E-03 2.63E-03	6.4 35.9 45.7	5.86E-01 4.86E-01 4.15E-01	T
1	1119.64 1154.75	453 83	227 110	2.04 2.18	2235.86 2306.35 2472.96	2228 2302 2465		8.68E-03 1.59E-03 2.70E-03	19.2 52.6 45.8	3.58E-01 3.50E-01 3.31E-01	
1 1 1	1237.73 1377.00 1408.26	141 131 72	196 123 105	1.90 2.33 2.65	2472.96 2752.52 2815.26		12 14		38.0 68.7	3.04E-01 2.99E-01	
1 1 1	1729.42 1764.06 1847.13	65 393 50	65 100 68	2.24 2.22 2.16	3459.61 3529.09 3695.69	3453 3521 3688	12 19 13	1.25E-03 7.53E-03 9.52E-04	55.1 16.9 74.9	2.57E-01 2.54E-01 2.46E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

21 Total number of lines in spectrum Number of unidentified lines 18 Number of lines tentatively identified by NID 3
**** There are no nuclides meeting summary criteria **** 14.29%

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

"E" = Manually edited

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Non-Identified Nuclides ----

Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7	4.818E+00	1.618E+01	2.642E+01	0.000E+00	0.182
NA-24	9.421E+00	1.215E+01	1.775E+01	0.000E+00	0.531
K-40	1.470E+02	2.554E+01	4.990E+01	0.000E+00	2.947
CR-51	-1.568E+01	1.661E+01	2.700E+01	0.000E+00	-0.581
MN-54	7.083E-01	1.860E+00	3.123E+00	0.000E+00	0.227
CO-57	1.381E+00	1.881E+00	3.158E+00	0.000E+00	0.437
CO-58	-1.345E+00	1.868E+00	3.030E+00	0.000E+00	-0.444

L28431 130 of 147

FE-59	-5.385E-01	3.710E+00	6.007E+00	0.000E+00	-0.090
CO-60	1.046E+00	1.936E+00	3.268E+00	0.000E+00	0.320
ZN-65	3.318E+01	5.854E+00	1.006E+01	0.000E+00	3.298
SE-75	-1.560E+00	2.560E+00	4.231E+00	0.000E+00	-0.369
SR-85	1.442E+01	2.058E+00	3.879E+00	0.000E+00	3.719
Y-88	2.488E-01	2.154E+00	3.072E+00	0.000E+00	0.081
NB-94	-1.979E-01	1.842E+00	2.997E+00	0.000E+00	-0.066
NB-95	4.650E+00	2.037E+00	3.534E+00	0.000E+00	1.316
ZR-95	2.684E+00	3.454E+00	5.506E+00	0.000E+00	0.488
MO-99	1.288E+01	2.044E+01	3.396E+01	0.000E+00	0.379
RU-103	-1.275E+00	1.920E+00	3.146E+00	0.000E+00	-0.405
RU-106	1.067E+01	1.750E+01	2.929E+01	0.000E+00	0.364
AG-110m	-3.064E+00	1.841E+00	2.860E+00	0.000E+00	-1.072
SN-113	-9.582E-01	2.515E+00	4.084E+00	0.000E+00	-0.235
SB-124	-6.946E-01	4.094E+00	2.964E+00	0.000E+00	-0.234
SB-125	5.667E-01	5.605E+00	9.157E+00	0.000E+00	0.062
TE-129M	3.869E+01	2.153E+01	3.652E+01	0.000E+00	1.059
I-131	-2.761E+00	2.173E+00	3.474E+00	0.000E+00	-0.795
BA-133	4.845E+01	3.670E+00	6.632E+00	0.000E+00	7.305
CS-134	2.801E+01	3.375E+00	4.864E+00	0.000E+00	5.759
CS-136	-7.163E-01	1.910E+00	3.131E+00	0.000E+00	-0.229
CS-137	1.546E+00	2.060E+00	3.451E+00	0.000E+00	0.448
CE-139	1.060E+00	1.911E+00	3.168E+00	0.000E+00	0.335
BA-140	-3.778E+00	7.177E+00	1.174E+01	0.000E+00	-0.322
LA-140	2.720E-02	2.189E+00	3.637E+00	0.000E+00	0.007
CE-141	3.295E+00	3.835E+00	5.506E+00	0.000E+00	0.598
CE-144	-8.701E+00	1.647E+01	2.401E+01	0.000E+00	-0.362
EU-152	-2.719E+00	7.187E+00	9.950E+00	0.000E+00	-0.273
EU-154	-2.940E+00	4.161E+00	6.611E+00	0.000E+00	-0.445
RA-226	-4.662E+01	5.078E+01	7.926E+01	0.000E+00	-0.588
AC-228	4.925E+00	7.906E+00	1.254E+01	0.000E+00	0.393
TH-228	5.983E+00	4.484E+00	6.251E+00	0.000E+00	0.957
TH-232	4.922E+00	7.902E+00	1.253E+01	0.000E+00	0.393
U-235	2.341E+01	1.742E+01	2.523E+01	0.000E+00	0.928
U-238	1.956E+02	2.219E+02	3.752E+02	0.000E+00	0.521
AM-241	-3.242E+01	2.930E+01	3.823E+01	0.000E+00	-0.848

```
3.595E+00,WG L28431-18 E
                     ,04/29/2006 12:16,04/27/2006 16:00,
A, 15L28431-18
                                             ,03/09/2005 13:29,1535L090104
                     , LIBD
B,15L28431-18
                                    1.618E+01,
                                                   2.642E+01,,
                                                                    0.182
C, BE-7
           , NO
                     4.818E+00,
                                                   1.775E+01,,
                                                                    0.531
           , NO
C, NA-24
                     9.421E+00,
                                    1.215E+01,
                                                   4.990E+01,,
                                                                    2.947
                                    2.554E+01,
C, K-40
                     1.470E+02,
           , NO
                                                                   -0.581
           , NO
                                                   2.700E+01,,
C, CR-51
                    -1.568E+01,
                                    1.661E+01,
                                                   3.123E+00,,
                                                                    0.227
                                    1.860E+00,
C, MN-54
           , NO
                     7.083E-01,
                                                   3.158E+00,,
                                                                    0.437
                                    1.881E+00,
C, CO-57
           , NO
                     1.381E+00,
                                                   3.030E+00,,
                                                                   -0.444
C, CO-58
                                    1.868E+00,
            , NO
                    -1.345E+00,
                                                                   -0.090
                                                   6.007E+00,,
                    -5.385E-01,
                                    3.710E+00,
C, FE-59
            , NO
                                                                    0.320
                                                   3.268E+00,,
C, CO-60
           , NO
                     1.046E+00,
                                    1.936E+00,
                                    5.854E+00,
                                                   1.006E+01,,
                                                                    3.298
                     3.318E+01,
C, ZN-65
            , NO
                    -1.560E+00,
                                                                   -0.369
           ,NO
                                                   4.231E+00,,
                                    2.560E+00,
C,SE-75
                                                   3.879E+00,,
                                                                    3.719
                                    2.058E+00,
                     1.442E+01,
C, SR-85
            , NO
                                                   3.072E+00,,
                                                                    0.081
                                    2.154E+00,
C, Y-88
            , NO
                     2.488E-01,
                                                                   -0.066
                                                   2.997E+00,,
                    -1.979E-01,
                                    1.842E+00,
C, NB-94
            , NO
                                    2.037E+00,
                                                   3.534E+00,,
                                                                    1.316
                     4.650E+00,
C, NB-95
            , NO
                                                                    0.488
            , NO
                                                   5.506E+00,,
                                    3.454E+00,
C, ZR-95
                     2.684E+00,
                                                   3.396E+01,,
                                                                    0.379
C, MO-99
                     1.288E+01,
                                    2.044E+01,
            , NO
                                                                   -0.405
                                    1.920E+00,
                                                   3.146E+00,,
C, RU-103
            , NO
                    -1.275E+00,
                                                   2.929E+01,,
                                                                    0.364
                     1.067E+01,
                                    1.750E+01,
C, RU-106
            , NO
                                                   2.860E+00,,
                                                                   -1.072
                    -3.064E+00,
                                    1.841E+00,
C, AG-110m
           , NO
                                                                   -0.235
                                    2.515E+00,
                                                   4.084E+00,,
                    -9.582E-01,
C, SN-113
            , NO
                                                                   -0.234
                                                   2.964E+00,,
                                    4.094E+00,
C,SB-124
            , NO
                    -6.946E-01,
                                                                    0.062
            , NO
                                                   9.157E+00,,
C,SB-125
                     5.667E-01,
                                    5.605E+00,
                     3.869E+01,
                                    2.153E+01,
                                                   3.652E+01,,
                                                                    1.059
C, TE-129M , NO
                                                   3.474E+00,,
                                                                   -0.795
            , NO
                                    2.173E+00,
C, I-131
                    -2.761E+00,
                                                                    7.305
                                    3.670E+00,
                                                   6.632E+00,,
                     4.845E+01,
C,BA-133
            , NO
                                                                    5.759
                                                   4.864E+00,,
                                    3.375E+00,
C, CS-134
            ,NO
                     2.801E+01,
                                                   3.131E+00,,
                                                                   -0.229
C, CS-136
                    -7.163E-01,
                                    1.910E+00,
            , NO
                                    2.060E+00,
                                                   3.451E+00,,
                                                                    0.448
C, CS-137
                     1.546E+00,
            , NO
                                                   3.168E+00,,
                                                                    0.335
            , NO
                                    1.911E+00,
                     1.060E+00,
C, CE-139
                                    7.177E+00,
                                                                   -0.322
                                                   1.174E+01,,
            , NO
                    -3.778E+00,
C,BA-140
                                                   3.637E+00,,
                                                                    0.007
            , NO
C, LA-140
                     2.720E-02,
                                    2.189E+00,
                                                                    0.598
                     3.295E+00,
                                    3.835E+00,
                                                   5.506E+00,,
C, CE-141
            , NO
                                    1.647E+01,
                                                   2.401E+01,,
                                                                   -0.362
                    -8.701E+00,
C, CE-144
            , NO
                                                   9.950E+00,,
                                                                   -0.273
                                    7.187E+00,
            , NO
                    -2.719E+00,
C, EU-152
                                                                   -0.445
                                                   6.611E+00,,
                                    4.161E+00,
C, EU-154
            , NO
                    -2.940E+00,
                                                                   -0.588
                                                   7.926E+01,,
            , NO
                    -4.662E+01,
                                    5.078E+01,
C, RA-226
                     4.925E+00,
                                    7.906E+00,
                                                   1.254E+01,,
                                                                    0.393
C, AC-228
            , NO
                                                   6.251E+00,,
                                                                    0.957
                                    4.484E+00,
C, TH-228
            , NO
                     5.983E+00,
                                                                    0.393
                                    7.902E+00,
                                                   1.253E+01,,
                     4.922E+00,
C, TH-232
            , NO
                                                                    0.928
                                                   2.523E+01,,
                                    1.742E+01,
C, U-235
            ,NO
                     2.341E+01,
                                                   3.752E+02,,
                                                                    0.521
                                    2.219E+02,
C, U-238
            ,NO
                     1.956E+02,
```

2.930E+01,

C, AM-241

, NO

-3.242E+01,

3.823E+01,,

-0.848

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 29-APR-2006 12:17:53.22 TBE23 03017322 HpGe ******* Aquisition Date/Time: 28-APR-2006 21:47:50.09

LIMS No., Customer Name, Client ID: WG L28431-19 EX BYRON

Smple Date: 27-APR-2006 17:30:00. Sample ID : 23L28431-19

Geometry : 2335L090704 Sample Type : WG Quantity : 3.68470E+00 L BKGFILE : 23BG041406MT

Pk I	t	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 1	Ω	33.76*	446	498	0.98	67.68	9.34E-02	8.56E-03	13.6	1.11E+01
2 1		35.11*	465	1798	1.54		1.15E-01			
	4	41.57	158	2659	1.11	83.30	2.52E-01			
	2	74.79	2378	4403	1.20	149.66	1.29E+00	4.56E-02	5.1	3.07E+00
5	2	77.08	3894	3694	1.02	154.24	1.35E+00			
	0		1144	4166	1.25	174.33	1.59E+00			
	0	140.12*	276	4353	1.06	280.20		5.30E-03		
8	0		35	3467	1.11	371.02		6.70E-04		
9	0	198.27*	251	3315	1.22	396.41		4.81E-03		
10	2	238.85*	178	2671	1.44		1.72E+00			2.78E+00
11	2		3113	1996	1.16	483.55		5.97E-02		
12	0	258.83	287	1930	1.09	517.42		5.51E-03		
13	0	295.11*	6945	2087	1.24	589.93		1.33E-01		
14	0	351.78*	12046	2028	1.26	703.21		2.31E-01		
15	0	461.97	109	688	1.03	923.47		2.10E-03		
16	0	487.26	149	705	1.59	974.03	1.02E+00	2.85E-03	33.2	
17	0	583.39*		501		1166.23		2.57E-04		
18	0			495			8.74E-01			
19	0	609.10*		886			8.59E-01			
20	0	665.07		462			8.03E-01			
21	0	702.65		374	1.37		7.71E-01			
22	0	768.18		539			7.22E-01	I.62E-02	6.6	
23	0	785.93		330			7.10E-01			
24	0	806.05	216	400		1611.47		4.15E-03		
25	0		77	406		1676.33		1.48E-03		
26	0	933.92	543	436		1867.24		1.04E-02		
27	0	1120.25*		336		2240.00		4.22E-02 5.71E-03		
28	0	1155.25	298	280		2310.04		1.80E-03		
29	0		94	172		2414.72		1.53E-02		
30	0	1238.04		304		2475.71		4.75E-03		
31	0	1280.64	248	266		2560.97 2755.19		1.19E-02		
32	0	1377.69		246		2770.30		2.00E-03		
33	0	1385.24		231		2802.63	4.77E-01	2.00E 03	17 7	9.33E-01
34	1	1401.39	178	189		2815.37	4.72E-01	5.41E 03	11 9	J. 331 01
35	1	1407.75	278	214		2921.24		1.41E-05		
36	0	1460.65*	1	259 301		3017.35		5.05E-03		
37	0	1508.66	264	140		3323.87		2.56E-03		
38	0	1661.76	133 401	136		3459.62		7.68E-03		
39	0	1729.55 1764.40*	1642	207		3529.42		3.15E-02		
40	0	1847.07	306	83		3694.96		5.87E-03		
41	0	104/.0/	300	0.5	٠.٠٠	J J J I . J J	2.2.m 3.m			

Page: 2

Peak Search Report (continued)

Sample ID: 23L28431-19 Acquisition date: 28-APR-2006 21:47:50

Pk It Energy Area Bkgnd FWHM Channel %Eff Cts/Sec %Err Fit

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	* *				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	1	10.67*	4.595E-01	2.114E-01	2.114E-01	12455.01
RA-226	100.21	1.948E+00	7.693E+00	7.693E+00	629.29		
TH-228	238.63	178	44.60*	1.723E+00	3.254E+00	3.258E+00	110.76
	240.98	3113	3.95	1.711E+00	6.481E+02	6.491E+02	5.99

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 23L28431-19

Acquisition date : 28-APR-2006 21:47:50

Total number of lines in spectrum 41

Number of unidentified lines 31
Number of lines tentatively identified by NID 10

24.39%

Nuclide Type : natural

Hlife 1.28E+09Y 1600.00Y 1.91Y	1.00	Uncorrected pCi/L 2.114E-01 7.693E+00 3.254E+00	pĊi/L	Decay Corr 2-Sigma Erro 263.3E-01 48.41E+00 3.609E+00	r %Error 12455.01 629.29	Flags
Total Acti	vity :	1.116E+01	1.116E+01			

Grand Total Activity: 1.116E+01 1.116E+01

"M" = Manually accepted Flags: "K" = Keyline not found

"A" = Nuclide specific abn. limit "E" = Manually edited

Page: 3 Acquisition date : 28-APR-2006 21:47:50

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff l	Flags
10	33.76	446	498	0.98	67.68			8.56E-03		9.34E-02	
10	35.11	465	1798	1.54	70.39	65	10	8.91E-03		1.15E-01	
4	41.57	158	2659	1.11	83.30	75		3.02E-03	****	2.52E-01	
2	74.79	2378	4403	1.20	149.66	143		4.56E-02		1.29E+00	
2	77.08	3894	3694	1.02	154.24	143	15	7.47E-02	6.0	1.35E+00	
0	87.14	1144	4166	1.25	174.33	171	7		19.6	1.59E+00	
0	140.12	276	4353	1.06	280.20	277	8			2.05E+00	
0	198.27	251	3315	1.22	396.41	393	8	4.81E-03		1.90E+00	
0	258.83	287	1930	1.09	517.42	514	8	5.51E-03		1.64E+00	
0	295.11	6945	2087	1.24	589.93	585		1.33E-01	3.5	1.50E+00	
0	351.78	12046	2028	1.26	703.21	696		2.31E-01	2.5	1.32E+00	
0	461.97	109	688	1.03	923.47	920	8	2.10E-03		1.07E+00	${\mathtt T}$
0	487.26	149	705	1.59	974.03	970	9			1.02E+00	${f T}$
0	583.39	13	501	1.59		1163		2.57E-04		8.88E-01	${f T}$
0	595.67	169	495	1.21	1190.77			3.25E-03		8.74E-01	
0	609.10	9413	886	1.44				1.81E-01	2.5	8.59E-01	
0	665.07	326	462	1.61				6.25E-03		8.03E-01	
0	702.65	143	374	1.37	1404.68			2.73E-03		7.71E-01	
0	768.18	845	539	1.43				1.62E-02		7.22E-01	
0	785.93	276	330	1.83	1571.23			5.30E-03		7.10E-01	
0	806.05	216	400	1.31				4.15E-03		6.97E-01	
0	838.48	77	406	1.05	1676.33			1.48E-03		6.77E-01	
0	933.92	543	436	2.03				1.04E-02	18.8	6.27E-01	
0	1120.25	2202	336	1.77				4.22E-02	5.7	5.52E-01	
0	1155.25	298	280	1.98				5.71E-03		5.41E-01	
0	1207.57	94	172	1.39	2414.72			1.80E-03		5.25E-01	
0	1238.04	800	304	1.79				1.53E-02		5.16E-01	
0	1280.64	248	266	2.28				4.75E-03		5.04E-01	
0	1377.69	620	246	1.91				1.19E-02		4.79E-01	
0	1385.24	104	231	1.55				2.00E-03		4.77E-01	
1	1401.39	178	189	2.02				3.41E-03		4.73E-01	
1	1407.75	278	214	2.03				5.33E-03		4.72E-01	
0	1508.66	264	301	2.10				5.05E-03		4.49E-01	
0	1661.76	133	140	1.78				2.56E-03		4.19E-01	
0	1729.55	401	136	1.91				7.68E-03		4.07E-01	
0	1764.40	1642	207	2.32				3.15E-02	6.9	4.00E-01	
0	1847.07	306	83	2.01	3694.96	3687	15	5.87E-03	17.3	3.87E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum	41	
Number of unidentified lines	31	
Number of lines tentatively identified by NID	10 24.39%	

Nuclide Type : natural Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/L pCi/L 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 2.114E-01 2.114E-01 263.3E-01 12455.01 RA-226 1600.00Y 1.00 7.693E+00 7.693E+00 48.41E+00 629.29 RA-226 1600.00Y 3.609E+00 110.76 1.00 3.254E+00 3.258E+00 TH-228 1.91Y

______ Total Activity : 1.116E+01 1.116E+01

-0.339

0.284

0.000E+00

0.000E+00

Grand Total Activity: 1.116E+01 1.116E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

CE-139

BA-140

-1.120E+00

3.081E+00

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

1001101					
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226 TH-228	2.114E-01 7.693E+00 3.258E+00	2.633E+01 4.841E+01 3.609E+00	2.599E+01 7.907E+01 5.724E+00	0.000E+00 0.000E+00 0.000E+00	0.008 0.097 0.569
Non-Id	entified Nuclides	3			
Nuclide	Key-Line Activity K.L. (pCi/L) Ideo		MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125	1.637E+01 -2.121E+00 -1.026E+01 2.728E+00 -1.085E-02 5.836E-01 3.535E+00 -1.183E+00 7.860E+01 1.010E+00 1.102E+01 2.862E+00 2.600E+00 +1.690E+01 -3.552E-01 -1.174E+01 -1.414E+00 -4.320E+00 1.128E+00 1.155E+00 -1.518E+00 3.078E+00	1.507E+01 9.905E+00 1.505E+01 1.954E+00 1.972E+00 1.951E+00 3.101E+00 1.667E+00 5.561E+00 2.906E+00 1.748E+00 1.724E+00 1.344E+00 2.176E+00 2.970E+01 1.742E+01 1.742E+01 1.745E+01 1.765E+00 2.296E+00 3.639E+00 5.171E+00	2.460E+01 1.394E+01 2.512E+01 2.943E+00 3.214E+00 2.756E+00 5.357E+00 2.759E+00 1.080E+01 4.085E+00 3.176E+00 2.769E+00 2.769E+00 2.716E+00 2.769E+00 2.759E+00 3.748E+00 4.696E+00 2.834E+01 2.728E+00 2.457E+01 2.565E+00 3.863E+00 8.678E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.665 -0.152 -0.408 0.927 -0.003 0.212 0.660 -0.429 7.275 0.247 3.470 1.034 0.957 4.508 -0.076 -0.414 -0.518 -0.176 0.440 0.299 -0.571 0.355
TE-129M I-131 BA-133 CS-134 CS-136 CS-137	5.347E+00 3.760E-01 5.902E+01 7.835E+01 1.212E+00 4.569E+00	1.986E+01 1.967E+00 3.402E+00 3.169E+00 1.745E+00 2.124E+00	3.307E+01 3.305E+00 6.169E+00 5.955E+00 2.943E+00 3.222E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.162 0.114 9.567 13.157 0.412 1.418

1.985E+00

6.343E+00

3.306E+00

1.084E+01

L28431 137 of 147

LA-140 CE-141 CE-144 EU-152 EU-154 AC-228 TH-232 U-235 U-238 AM-241	3.568E+00 3.726E+00 1.818E+00 -4.600E+00 5.315E-01 1.030E+00 1.029E+00 1.944E+01 1.391E+01 -1.845E+01	1.951E+00 4.036E+00 1.740E+01 6.571E+00 4.167E+00 6.458E+00 6.455E+01 1.835E+01 1.913E+02 1.122E+01	3.496E+00 5.879E+00 2.521E+01 9.249E+00 6.796E+00 1.075E+01 1.075E+01 2.641E+01 3.132E+02 1.848E+01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1.021 0.634 0.072 -0.497 0.078 0.096 0.736 0.044 -0.998
--	--	--	--	--	---

```
3.685E+00,WG L28431-19 E
                     ,04/29/2006 12:17,04/27/2006 17:30,
A,23L28431-19
                                             ,06/24/2005 07:59,2335L090704
                     , LIBD
B,23L28431-19
                     2.114E-01,
                                                   2.599E+01,,
                                                                    0.008
                                    2.633E+01,
C, K-40
            , YES,
                                                                    0.097
                                                   7.907E+01,,
           , YES,
                     7.693E+00,
                                    4.841E+01,
C, RA-226
                                                   5.724E+00,,
                                                                    0.569
                                    3.609E+00,
                     3.258E+00,
C, TH-228
            , YES,
                                                   2.460E+01,,
                                                                    0.665
C, BE-7
                     1.637E+01,
                                    1.507E+01,
            , NO
                                                                   -0.152
                                                   1.394E+01,,
                                    9.905E+00,
                    -2.121E+00,
C, NA-24
            , NO
                                                   2.512E+01,,
                                                                   -0.408
                                    1.505E+01,
C, CR-51
            , NO
                    -1.026E+01,
                                                                    0.927
                                                   2.943E+00,,
                                    1.954E+00,
C, MN-54
            , NO
                     2.728E+00,
                                                   3.214E+00,,
                                                                   -0.003
                                    1.972E+00,
                    -1.085E-02,
C, CO-57
            , NO
                                                   2.756E+00,,
                                                                    0.212
                     5.836E-01,
                                    1.951E+00,
C, CO-58
            , NO
                     3.535E+00,
                                    3.101E+00,
                                                   5.357E+00,,
                                                                    0.660
C, FE-59
            , NO
                                                   2.759E+00,,
                                                                   -0.429
                                    1.667E+00,
C, CO-60
                    -1.183E+00,
            , NO
                                                   1.080E+01,,
                                                                    7.275
                     7.860E+01,
                                    5.561E+00,
C, ZN-65
           , NO
                                                   4.085E+00,,
                                                                    0.247
                                    2.906E+00,
C, SE-75
            , NO
                     1.010E+00,
                                                                    3.470
                                                   3.176E+00,,
            , NO
                     1.102E+01,
                                    1.748E+00,
C, SR-85
                                                                    1.034
                                    1.724E+00,
                                                   2.769E+00,,
C, Y-88
                     2.862E+00,
            , NO
                                    1.344E+00,
                                                   2.716E+00,,
                                                                    0.957
C, NB-94
            , NO
                     2.600E+00,
                                                                    4.508
                                                   3.748E+00,,
                     1.690E+01,
                                    2.176E+00,
C, NB-95
            , NO
                                                                   -0.076
                    -3.552E-01,
                                    2.970E+00,
                                                   4.696E+00,,
C, ZR-95
            , NO
                                                                   -0.414
                                                   2.834E+01,,
            , NO
                    -1.174E+01,
                                    1.729E+01,
C, MO-99
                                                                   -0.518
                    -1.414E+00,
                                                   2.728E+00,,
                                    1.742E+00,
C, RU-103
            , NO
                                                   2.457E+01,,
                                                                   -0.176
                                    1.469E+01,
            , NO
                    -4.320E+00,
C, RU-106
                                                                    0.440
                                                   2.565E+00,,
                                    1.765E+00,
C, AG-110m
           , NO
                     1.128E+00,
                                                                    0.299
            , NO
                                    2.296E+00,
                                                   3.863E+00,,
                     1.155E+00,
C, SN-113
                                                                   -0.571
                    -1.518E+00,
                                    3.639E+00,
                                                   2.660E+00,,
C,SB-124
            , NO
                                                                    0.355
                                    5.171E+00,
                                                   8.678E+00,,
                     3.078E+00,
C,SB-125
            , NO
                                                                     0.162
                                    1.986E+01,
                                                   3.307E+01,,
                     5.347E+00,
C, TE-129M
            , NO
                                                   3.305E+00,,
                                                                     0.114
                                    1.967E+00,
C, I-131
            , NO
                     3.760E-01,
                                                   6.169E+00,,
                                                                     9.567
            , NO
                     5.902E+01,
                                    3.402E+00,
C, BA-133
                                                                   13.157
                                    3.169E+00,
                                                   5.955E+00,,
            , NO
                     7.835E+01,
C, CS-134
                                                   2.943E+00,,
                                                                     0.412
                                    1.745E+00,
                     1.212E+00,
C, CS-136
            , NO
                                                                     1.418
                                                   3.222E+00,,
                                    2.124E+00,
                     4.569E+00,
C, CS-137
            , NO
                                                                    -0.339
                                                   3.306E+00,,
                                    1.985E+00,
C, CE-139
            , NO
                    -1.120E+00,
                                                                     0.284
                     3.081E+00,
                                    6.343E+00,
                                                   1.084E+01,,
C, BA-140
            , NO
                                    1.951E+00,
                                                   3.496E+00,,
                                                                     1.021
                     3.568E+00,
C, LA-140
            , NO
                                                   5.879E+00,,
                                                                     0.634
                                    4.036E+00,
            , NO
                     3.726E+00,
C, CE-141
                                                                     0.072
                                                   2.521E+01,,
                                    1.740E+01,
C, CE-144
            , NO
                     1.818E+00,
                                                   9.249E+00,,
                                                                    -0.497
            , NO
                    -4.600E+00,
                                    6.571E+00,
C, EU-152
                                                                     0.078
                     5.315E-01,
                                    4.167E+00,
                                                   6.796E+00,,
C, EU-154
            ,NO
                                    6.458E+00,
                                                   1.075E+01,,
                                                                     0.096
                     1.030E+00,
C, AC-228
            , NO
                                                   1.075E+01,,
                                                                     0.096
                                    6.455E+00,
                     1.029E+00,
C, TH-232
            , NO
                                                   2.641E+01,,
                                                                     0.736
                                    1.835E+01,
C, U-235
            , NO
                     1.944E+01,
                                                   3.132E+02,,
                                                                     0.044
C, U-238
                     1.391E+01,
                                    1.913E+02,
            , NO
                                                                    -0.998
                                    1.122E+01,
                                                   1.848E+01,,
C, AM-241
                    -1.845E+01,
```

, NO

LIMS: Sec. Review: Aņalyst:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 30-APR-2006 10:13:31.10 TBE07 P-10768B HpGe ******** Aquisition Date/Time: 29-APR-2006 13:03:35.88

LIMS No., Customer Name, Client ID: WG L28431-20 EX BYRON

Smple Date: 27-APR-2006 17:40:00. : 07L28431-20 Sample ID

Geometry : 0735L090904 Sample Type : WG BKGFILE : 07BG041406MT Quantity : 3.58270E+00 L

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	1	52.69	318	4082	1.40	106.22	2.76E-01	4.17E-03	35.1	1.74E+00
2	7	66.11*	717	5213	1.32	133.05	7.17E-01	9.42E-03	18.6	2.25E+00
3	i	74.77*	332	6513	0.70	150.40	1.03E+00	4.35E-03	40.8	1.13E+02
4	1	77.02*	2811	4532	0.82	154.89	1.10E+00	3.69E-02	4.5	7.41E+00
5	5	87.21*	1210	3684	1.05	175.28	1.42E+00			3.46E+00
6	1	89.78	590	3651	0.90	180.42		7.75E-03		
7	1	139.75*	474	4904	0.88	280.41		6.23E-03		8.55E-01
8	1	198.31*	530	3386	1.15	397.56		6.96E-03	20.1	2.90E+00
9	1	241.93*	3830	2141	1.04	484.82		5.03E-02		1.59E+00
10	1	258.89	274	2536	0.98	518.74		3.59E-03		
11	1	274.45	326	2051	1.52	549.87		4.28E-03		
12	1	295.14*	8562	2959	1.10	591.28		1.12E-01		
13	1	351.85*	15282	2364	1.16	704.72		2.01E-01		3.46E+00
14	1	454.69	261	832	1.35	910.44		3.43E-03		
15	3	579.93	136	846		1160.95	1.02E+00	1.79E-03	38.8	1.69E+00
16	1	595.84	334	975		1192.77		4.39E-03		
17	1	609.22*	12568	1388		1219.54		1.65E-01		1.40E+00
18	1	665.33	384	632		1331.76		5.04E-03		
19	1	702.53	149	633		1406.16		1.96E-03		
20	1	768.19	1361	734		1537.48	8.29E-01	1.79E-02	4.9	5.78E+00
21	1	785.98	273	681		1573.06		3.58E-03		
22	1	806.19	294	712		1613.48		3.86E-03		1.45E+00
23	1	838.85	103	706		1678.79		1.35E-03		1.96E+00
24	1	867.64	102	650		1736.37		1.34E-03		2.58E+00
25	1	933.90	691	615		1868.87		9.07E-03		1.45E+00
26	1	964.49	99	439		1930.05	7.00E-01	1.31E-03		
27	1	1120.14*	2798	570		2241.30	6.26E-UI	3.67E-02		8.48E-01
28	1	1154.90	262	411	1.99			3.43E-03		1.46E+00
29	1	1238.02	1098	425		2477.01		1.44E-02 2.50E-03		
30	1	1280.74	191	340	1.83					1.01E+00
31	1	1377.58	864	484		2756.05		1.13E-02 2.11E-03		
32	1	1385.22	161	331		2771.33		3.56E-03		1.44E+00
33	3	1401.33	271	396		2803.54		6.43E-03		T.44ETOO
34	3	1407.94*	490	342		2816.74	5.23E-01	5.45E-03	14 9	1.35E+00
35	1	1509.28	415	496		3019.34 3164.83	0.03E-01	1.71E-03		
36	1	1582.06	130	270		3164.83	4.0/E-U1	1.71E-03 1.70E-03	36 4	1 28E+00
37		1661.06	129	332		3459.57		6.71E-03		1.07E+00
38	1	1729.50	511	301		3459.57		3.08E-02		1.95E+00
39		1764.27*	2348	199		3695.15		5.16E-03		1.26E+00
40	1	1847.35	393	182	∠.65	2022.T2	4.420-01	J. TOE-03	7.5	_ · _ O _ I O O

Nuclide Line Activity Report

Flag: "*" = Keyline

L28431 141 of 147

Page: 2 Summary of Nuclide Activity
Sample ID: 07L28431-20 Acquisition date : 29-APR-2006 13:03:35

40 Total number of lines in spectrum Number of unidentified lines 34
Number of lines tentatively identified by NID 6

15.00%

**** There are no nuclides meeting summary criteria ****

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Page: 3

Acquisition date : 29-APR-2006 13:03:35

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1	52.69	318	4082	1.40	106.22	103	8	4.17E-03	70.2	2.76E-01	
7	66.11	717	5213	1.32	133.05	124	14	9.42E-03	37.1	7.17E-01	
1	74.77	332	6513	0.70	150.40	148	6	4.35E-03	81.7	1.03E+00	
1	77.02	2811	4532	0.82	154.89	153	6	3.69E-02	9.0	1.10E+00	
5	87.21	1210	3684	1.05	175.28	164	15	1.59E-02	17.6	1.42E+00	
1	89.78	590	3651	0.90	180.42	178	6	7.75E-03	33.3	1.49E+00	
1	139.75	474	4904	0.88	280.41	277	8	6.23E-03	54.4	2.09E+00	
1	198.31	530	3386	1.15	397.56	394	7	6.96E-03	40.1	1.98E+00	
1	241.93	3830	2141	1.04	484.82	473	16	5.03E-02	5.2	1.80E+00	${f T}$
1	258.89	274	2536	0.98	518.74	515	8	3.59E-03	65.0	1.74E+00	
1	274.45	326	2051	1.52	549.87	547	7	4.28E-03	47.3	1.68E+00	${f T}$
1	295.14	8562	2959	1.10	591.28	586		1.12E-01	3.4	1.61E+00	
1	351.85	15282	2364	1.16	704.72	698	12	2.01E-01	2.1	1.43E+00	
1	454.69	261	832	1.35	910.44	907	7	3.43E-03	38.3	1.21E+00	
3	579.93	136	846	1.56	1160.95	1153	19	1.79E-03	77.7	1.02E+00	
1	595.84	334	975	1.45				4.39E-03		9.96E-01	
1	609.22	12568	1388	1.36	1219.54	1212	14	1.65E-01	2.3	9.81E-01	
1	665.33	384	632	1.44	1331.76			5.04E-03	25.7	9.20E-01	
1	702.53	149	633	1.72	1406.16	1402	10	1.96E-03	65.4	8.85E-01	${f T}$
ī	768.19	1361	734	1.79	1537.48	1530	13	1.79E-02	9.8	8.29E-01	
1	785.98	273	681	1.66	1573.06	1567	12	3.58E-03	40.5	8.15E-01	
1	806.19	294	712	1.34	1613.48	1608	11	3.86E-03	37.1	8.00E-01	
1	838.85	103	706	2.44	1678.79	1676	11	1.35E-03	****	7.77E-01	
1	867.64	102	650	1.56	1736.37	1730	12	1.34E-03	****	7.58E-01	
1	933.90	691	615	1.72	1868.87	1863	13	9.07E-03		7.17E-01	
1	964.49	99	439	1.96	1930.05	1926	9	1.31E-03	78.9	7.00E-01	
1	1120.14	2798	570	1.78				3.67E-02	5.5	6.26E-01	
1	1154.90	262	411	1.99				3.43E-03		6.12E-01	
1	1238.02	1098	425	1.94	2477.01	2470	14	1.44E-02	10.0	5.81E-01	
1	1280.74	191	340	1.83				2.50E-03		5.66E-01	
1	1377.58	864	484	2.24	2756.05	2747	19	1.13E-02		5.37E-01	
1	1385.22	161	331	2.84	2771.33	2766	14	2.11E-03		5.35E-01	
3	1401.33	271	396	2.88				3.56E-03		5.31E-01	
3	1407.94	490	342	2.88				6.43E-03		5.29E-01	
1	1509.28	415	496	2.29	3019.34	3009	23	5.45E-03		5.03E-01	
1	1582.06	130	270	3.18				1.71E-03		4.87E-01	
1	1661.06	129	332	2.69				1.70E-03		4.72E-01	
1	1729.50	511	301	2.26				6.71E-03		4.60E-01	
1	1764.27	2348	199	2.32				3.08E-02	5.4	4.54E-01	
1	1847.35	393	182	2.65	3695.15	3689	17	5.16E-03	19.0	4.42E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

```
Total number of lines in spectrum 40
Number of unidentified lines 34
Number of lines tentatively identified by NID 6 15.00%
**** There are no nuclides meeting summary criteria ****
```

```
Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit
```

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Non-Identified Nuclides ----

	Key-Line					
	Activity	K.L.	Act error	MDA	MDA error	Act/MDA
Nuclide	(pCi/L)	Ided		(pCi/L)		
BE-7	7.941E+00		1.091E+01	1.834E+01	0.000E+00	0.433
NA-24	-3.764E+00		1.921E+01	2.631E+01	0.000E+00	-0.143
K-40	-7.086E+00		1.816E+01	3.050E+01	0.000E+00	-0.232
CR-51	-2.408E+01		1.208E+01	1.903E+01	0.000E+00	-1.265
MN-54	9.769E-01		1.565E+00	2.229E+00	0.000E+00	0.438
CO-57	-4.290E-01		1.329E+00	2.220E+00	0.000E+00	-0.193
CO-58	2.506E+00		1.551E+00	2.223E+00	0.000E+00	1.128
FE-59	2.542E+00		2.490E+00	4.207E+00	0.000E+00	0.604
CO-60	6.672E-01		1.365E+00	2.286E+00	0.000E+00	0.292
ZN-65	8.858E+01		4.620E+00	8.921E+00	0.000E+00	9.929
SE-75	-7.397E-01		2.193E+00	3.054E+00	0.000E+00	-0.242
SR-85	1.729E+01		1.438E+00	2.711E+00	0.000E+00	6.376
Y-88	5.341E-01		1.563E+00	2.162E+00	0.000E+00	0.247
NB-94	1.669E+00	+	1.092E+00	2.045E+00	0.000E+00	0.816
NB-95	1.532E+01		1.518E+00	2.864E+00	0.000E+00	5.347
ZR-95	1.750E+00		2.420E+00	3.659E+00	0.000E+00	0.478
MO-99	8.743E+00		1.635E+01	2.710E+01	0.000E+00	0.323
RU-103	1.760E+00		1.284E+00	2.173E+00	0.000E+00	0.810
RU-106	-2.065E+00		1.166E+01	1.886E+01	0.000E+00	-0.109
AG-110m	-4.734E-01		1.425E+00	1.976E+00	0.000E+00	-0.239
SN-113	9.455E-01		1.758E+00	2.909E+00	0.000E+00	0.325
SB-124	-1.447E+00		3.022E+00	2.115E+00	0.000E+00	-0.684
SB-125	-4.420E-01		3.859E+00	6.281E+00	0.000E+00	-0.070
TE-129M	1.332E+01		1.802E+01	2.510E+01	0.000E+00	0.531
I-131	-6.181E-01		1.577E+00	2.594E+00	0.000E+00	-0.238
BA-133	5.440E+01		2.572E+00	4.665E+00	0.000E+00	11.660
CS-134	7.729E+01		2.864E+00	4.691E+00	0.000E+00	16.476
CS-136	-2.586E-01		1.423E+00	2.272E+00	0.000E+00	-0.114
CS-137	5.135E+00		1.627E+00	2.465E+00	0.000E+00	2.083
CE-139	-5.016E-01		1.415E+00	2.312E+00	0.000E+00	-0.217
BA-140	2.524E+00		5.033E+00	8.351E+00	0.000E+00	0.302
LA-140	2.112E+00		1.867E+00	3.002E+00	0.000E+00	0.704
CE-141	4.525E-01		2.870E+00	4.092E+00	0.000E+00	0.111
CE-144	5.203E+00		1.163E+01	1.744E+01	0.000E+00	0.298
EU-152	-8.562E+00		4.997E+00	6.850E+00	0.000E+00	-1.250
EU-154	-9.610E-01		2.802E+00	4.678E+00	0.000E+00	-0.205
RA-226	2.023E+01		3.757E+01	5.898E+01	0.000E+00	0.343
AC-228	2.158E+00		5.392E+00	8.546E+00	0.000E+00	0.252 5.419
TH-228	2.776E+01		3.349E+00	5.123E+00	0.000E+00 0.000E+00	0.252
TH-232	2.156E+00		5.388E+00	8.540E+00	0.000E+00 0.000E+00	-0.015
U-235	-2.713E-01		1.291E+01	1.799E+01		-0.150
U-238	-3.543E+01		1.559E+02	2.363E+02	0.000E+00	0.854
AM-241	1.667E+01		1.394E+01	1.953E+01	0.000E+00	0.654

0.854

1.953E+01,,

```
3.583E+00,WG L28431-20 E
                     ,04/30/2006 10:13,04/27/2006 17:40,
A,07L28431-20
                                             ,06/23/2005 07:26,0735L090904
                     ,LIBD
B,07L28431-20
                                    1.091E+01,
                                                  1.834E+01,,
                                                                    0.433
                    7.941E+00,
C, BE-7
            , NO
                                                                   -0.143
                                                   2.631E+01,,
                   -3.764E+00,
                                    1.921E+01,
C, NA-24
           ,NO
                                                   3.050E+01,,
                                                                   -0.232
           , NO
                                    1.816E+01,
C, K-40
                   -7.086E+00,
                                                                   -1.265
                                                   1.903E+01,,
                   -2.408E+01,
                                    1.208E+01,
C, CR-51
            , NO
                                                   2.229E+00,,
                                                                    0.438
                                    1.565E+00,
           ,NO
                     9.769E-01,
C, MN-54
                                                  2.220E+00,,
                                                                   -0.193
                                    1.329E+00,
                    -4.290E-01,
C, CO-57
            , NO
                                                                    1.128
                                                   2.223E+00,,
                                    1.551E+00,
                     2.506E+00,
C, CO-58
            , NO
                                                                    0.604
                                                   4.207E+00,,
                                    2.490E+00,
            , NO
                     2.542E+00,
C, FE-59
                                                                    0.292
                                                   2.286E+00,,
                     6.672E-01,
                                    1.365E+00,
C, CO-60
            , NO
                                    4.620E+00,
                                                   8.921E+00,,
                                                                    9.929
                     8.858E+01,
C, ZN-65
            , NO
                                                   3.054E+00,,
                                                                   -0.242
                    -7.397E-01,
                                    2.193E+00,
C, SE-75
            ,NO
                                                   2.711E+00,,
                                                                    6.376
                                    1.438E+00,
                     1.729E+01,
C, SR-85
            , NO
                                                   2.162E+00,,
                                                                    0.247
                                    1.563E+00,
C, Y-88
            , NO
                     5.341E-01,
                                                                    0.816
                                                   2.045E+00,,
C, NB-94
                                    1.092E+00,
                     1.669E+00,
            , NO
                                                                    5.347
                                                   2.864E+00,,
                     1.532E+01,
                                    1.518E+00,
C, NB-95
            , NO
                                                   3.659E+00,,
                                                                    0.478
            ,NO
                                    2.420E+00,
C, ZR-95
                     1.750E+00,
                                                                    0.323
                                                   2.710E+01,,
                     8.743E+00,
                                    1.635E+01,
C, MO-99
            ,NO
                                                                    0.810
                     1.760E+00,
                                    1.284E+00,
                                                   2.173E+00,,
            , NO
C, RU-103
                                                                   -0.109
                                                   1.886E+01,,
            ,NO
                    -2.065E+00,
                                    1.166E+01,
C, RU-106
                                                                   -0.239
                                                   1.976E+00,,
                                    1.425E+00,
           , NO
                    -4.734E-01,
C, AG-110m
                                                   2.909E+00,,
                                                                    0.325
            , NO
                                    1.758E+00,
C, SN-113
                     9.455E-01,
                                                                   -0.684
                                                   2.115E+00,,
                                    3.022E+00,
C,SB-124
            ,NO
                    -1.447E+00,
                                                                   -0.070
                                    3.859E+00,
                                                   6.281E+00,,
            , NO
                    -4.420E-01,
C,SB-125
                                                                    0.531
                                    1.802E+01,
                                                   2.510E+01,,
C,TE-129M
            ,NO
                     1.332E+01,
                                                                   -0.238
                                                   2.594E+00,,
                                    1.577E+00,
                    -6.181E-01,
C, I-131
            , NO
                                                                   11.660
                                                   4.665E+00,,
                                    2.572E+00,
                     5.440E+01,
C,BA-133
            , NO
                                                   4.691E+00,,
                                                                   16.476
C, CS-134
            ,NO
                     7.729E+01,
                                    2.864E+00,
                                                   2.272E+00,,
                                                                   -0.114
            ,NO
                    -2.586E-01,
                                    1.423E+00,
C, CS-136
                                                                    2.083
                                    1.627E+00,
                                                   2.465E+00,,
                     5.135E+00,
            , NO
C, CS-137
                                                   2.312E+00,,
                                                                   -0.217
                                    1.415E+00,
                    -5.016E-01,
C, CE-139
            , NO
                                                                    0.302
                                                   8.351E+00,,
                                    5.033E+00,
C, BA-140
            , NO
                     2.524E+00,
                                                                    0.704
                                                   3.002E+00,,
C, LA-140
            , NO
                     2.112E+00,
                                    1.867E+00,
                                                                    0.111
                     4.525E-01,
                                    2.870E+00,
                                                   4.092E+00,,
C, CE-141
            ,NO
                                    1.163E+01,
                                                   1.744E+01,,
                                                                    0.298
                     5.203E+00,
C, CE-144
            , NO
                                                   6.850E+00,,
                                                                   -1.250
                                    4.997E+00,
            ,NO
                    -8.562E+00,
C, EU-152
                                                                   -0.205
                                                   4.678E+00,,
                                    2.802E+00,
                    -9.610E-01,
C, EU-154
            ,NO
                                                   5.898E+01,,
                                                                    0.343
            , NO
                     2.023E+01,
                                    3.757E+01,
C, RA-226
                                                                    0.252
                     2.158E+00,
                                    5.392E+00,
                                                   8.546E+00,,
C, AC-228
            , NO
                                                   5.123E+00,,
                                                                    5.419
                                    3.349E+00,
                     2.776E+01,
C, TH-228
            , NO
                                                                    0.252
                                    5.388E+00,
                                                   8.540E+00,,
                     2.156E+00,
C, TH-232
            , NO
                ,
                                                   1.799E+01,,
                                                                   -0.015
                                    1.291E+01,
                    -2.713E-01,
C, U-235
            , NO
                                                   2.363E+02,,
                                                                   -0.150
            , NO
                                    1.559E+02,
C, U-238
                    -3.543E+01,
```

1.394E+01,

1.667E+01,

, NO

C, AM-241

Raw Data Sheet (rawdata) May 05 2006, 02:46 pm

瓦

双

EJ

ΒJ

欧

ВJ

因

取

ΕJ

瓦

EJ

Š

DW

M

Analyst Decay & Ingrowth Factor .215 .216 .216 .222 .216 .218 .215 .218 .217 .217 .224 .217 . 22 .234 .214 .221 Bff. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 dt (min) Bkg 1.5 1.5 1.5 1.5 1.5 1,5 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 counts Page: 1 9 9 9 9 9 9 09 9 9 9 9 9 9 9 9 20.88 dt (min) Sample counts 116 385 115 Total 103 115 115 121 153 111 113 123 8 98 77 98 87 Counter LS7 LS7 LS7 LS7 LS7 LS7 LS7 LS7 LS7 rs_{7} LS7 LS7 LS7 LS7 LS7 LS7 밁 04-may-06 14:28 03-may-06 18:17 03-may-06 19:21 03-may-06 21:28 03-may-06 22:31 03-may-06 23:35 04-may-06 00:38 04-may-06 01:42 04-may-06 02:46 04-may-06 03:50 04-may-06 09:50 04-may-06 11:57 04-may-06 13:01 04-may-06 13:25 04-may-06 03-may-06 Weight Recovery Date/time 10:53 Count 20:24 Mount 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Date/time Milking Scavenge N Date/time I Project : EX001-3ESPBYRON-06 Customer: Exelon 10 ml MDC: 1.54E+02 MDC: 1.59E+02 MDC: 1.53E+02 10 ml MDC: 1.51E+02 10 ml MDC: 1.55E+02 10 ml MDC: 1.58E+02 10 ml MDC: 1.58E+02 MDC: 1.57E+02 MDC: 1.59E+02 10 ml MDC: 1.57E+02 10 ml MDC: 1.52E+02 1.58E+02 10 ml MDC: 1.53E+02 10 ml MDC: 1.59E+02 10 ml MDC: 2.4E+02 10 ml MDC: 1.5E+02 Volume/ Aliquot 10 ml MDC: 1.5 10 ml 10 ml 10 ml 10 ml Reference Date/time Activity: 3.26E+03 * Error: 3.67E+02 Activity: 6.72E+01 Error: 1.01E+02 Error: 9.83E+01 Error: 1.03E+02 Error: 1.01E+02 WG-BYN-042706-KD-28 Activity: -1.02E+01 Error: 9.05E+01 Activity: -6.43E+01 Error: 9.07E+01 Error: 9.87E+01 Activity: 2.01E+02 * Error: 1.1E+02 Error: 9.84E+01 Error: 9.76E+01 Error: 9.44E+01 Error: 9.69E+01 Activity: -8.31E+00 Error: 9.5E+01 L28431-2 H-3 Error: 9.8E+01 Activity: 7.24E+01 Error: 1E+02 Analysis H-3 H-3 WG-BYN-042706-SS-36 WG-BYN-042706-SS-38 WG-BYN-042706-SS-40 WG-BYN-042706-SS-41 WG-BYN-042706-KD-26 WG-BYN-042606-SS-29 WG-BYN-042606-SS-33 WG-BYN-042706-SS-35 WG-BYN-042706-SS-37 WG-BYN-042706-SS-39 WG-BYN-042706-SS-42 WG-BYN-042706-SS-43 WG-BYN-042606-SS-31 WG-BYN-042706-SS-34 WG-BYN-042706-SS-44 Activity: 6.71E+01 L28431-7 Activity: 8.46E+01 Activity: 7.29E+01 Activity: 8.84E+01 Activity: 9.62E+01 Activity: 8.01E+01 Activity: 2.69E+01 Activity: 1.04E+01 Activity: 2.71E+01 Work Order: <u>L28431</u> Run # Nuclide: H-3 L28431-11 L28431-12 L28431-13 L28431-6 L28431-8 L28431-5 Sample ID L28431-1 L28431-3 L28431-4

L28431 145 of 147

Raw Data Sheet (rawdata) May 05 2006, 02:46 pm

		nalyst	DW			MCI			DW			DW		
	Decay &		21			21			16			23		
		BEE.	.221			.221			.216			.223		-
		Bkg dt (min)	09			09			09			09		***************************************
73		Bkg	1.71			1.71			60 1.71			1.71		***************************************
Page: 2		Sample Bkg Bkg dt(min)	09			09			09			09		***************************************
		Total	110			149			9.			126		
		Counter Total	LS7			LS7			LS7			LS7		
		Mount Count Count Weight Recovery Date/time ID	04-may-06	16:35		04-may-06	17:39		04-may-06	18:42		04-may-06	19:45	
		Recove												
		Mount	0			0			0			0		-
		Milking Date/time												
	3ESPBYRON-06	Scavenge Date/time			*			*			*			*
Customer: <u>Exelon</u>	Project : EX001-3ESPBYRON-06	Volume/ Aliquot		10 ml	MDC: 1.61E+02		10 ml	MDC: 1.6E+02		10 ml	MDC: 1.64E+02 *		10 ml	MDC: 1.59E+02 *
Ū	Ä [Reference Date/time			9.95E+01			1.08E+02			9.31E+01			1.02E+02
ļ		Sample ID Run Analysis	H-3	_	Activity: 2.66E+01 Error: 9.95E+01	H-3	•	Activity: 1.59E+02 Error: 1.08E+02	H-3	,,	Activity: -9.19E+01 Error: 9.31E+01	H-3	,,	Activity: 7.88E+01 Error: 1.02E+02
,28431		Run Ar		3-KD-3(36E+01		5-KD-32	59医+02		3-KD-4!	19E+0		5-KD-4(38E+01
der: 1	:: H-3	88	1-17	042706	y: 2.6	L28431-18	042706	y: 1.5	L28431-19	042706	.y: -9.	L28431-20	042706	.y: 7.8
Work Order: <u>128431</u>	Nuclide: H-3	Sample ID	L28431-17	WG-BYN-042706-KD-30	Activit	L2843	WG-BYN-042706-KD-32	Activit	L2843	WG-BYN-042706-KD-45	Activit	L2843	WG-BYN-042706-KD-46	Activit

Raw Data Sheet (rawdata) May 05 2006, 02:46 pm

Customer: Exelon Work Order: <u>L28431</u>

Page: 3

ĢĶ

βĶ

GK

GK

ĢĶ

ĢĶ

GK

GK

ĢĶ

GK

GK

ĢĶ

Analyst Ŗ Ingrowth Decay & .999 Factor 999 Н Н H Н .346 .345 .345 .343 .344 .343 .345 .335 .354 .354 .358 .344 .343 .343 .344 ,354 BÉÉ. 400 100 100 100 100 100 400 400 400 100 100 100 100 100 100 100 dt (min) Bkg 16 289 75 93 82 95 86 75 72 83 100 83 81 264 277 307 counts Bkg 300 100 300 300 100 100 100 100 100 100 100 300 100 100 100 100 dt (min) Sample counts Counter Total 200 106 216 223 231 86 73 83 94 92 95 83 88 75 99 83 X3C X2A X1A X2B XIB XIC X1D X4A X2B X2C X3A X2C X2D X2A X2D хзв E 04-may-06 21:40 04-may-06 21:40 04-may-06 21:40 04-may-06 21:40 04-may-06 21:40 05-may-06 04-may-06 04-may-06 04-may-06 04-may-06 05-may-06 05-may-06 05-may-06 04-may-06 04-may-06 04-may-06 Weight Recovery Date/time 21:40 21:40 21:40 14:11 Count 14:11 21:40 21:40 14:11 14:11 21:40 21:40 107.80 101.61 102.15 107.53 85.22 85.75 83.33 55.38 54.84 88.17 71.17 51.88 91.13 91.13 38.17 78.23 Mount 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Date/time Date/time Milking 04-may-06 15:25 04-may-06 15:25 04-may-06 15:25 04-may-06 04-may-06 04-may-06 04-may-06 04-may-06 04-may-06 15:25 04-may-06 15:25 04-may-06 15:25 04-may-06 04-may-06 04-may-06 15:25 04-may-06 15:25 04-may-06 15:25 15:25 15:25 15:25 15:25 15:25 15:25 15:25 Project : EX001-3ESPBYRON-06 Scavenge MDC: 1.45E+00 MDC: 1.13E+00 MDC: 1.19E+00 MDC: 1.31E+00 MDC: 1.54E+00 MDC: 1.12E+00 MDC: 1.15E+00 MDC: 1.58E+00 MDC: 1.73E+00 MDC: 1.44E+00 MDC: 1.74E+00 MDC: 1.18E+00 MDC: 1.25E+00 MDC: 1.07E+00 MDC: 1.58E+00 Aliquot Volume/ 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 450 ml 27-apr-06 11:20 27-apr-06 13:35 27-apr-06 14:55 27-apr-06 16:00 27-apr-06 12:25 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 27-apr-06 Reference Date/time 10:15 13:35 Activity: 2.02E-01 Error: 8.97E-01 14:05 00:60 Activity: 3.63E-02 Error: 6.78E-01 12:35 Activity: -3.39E-02 Error: 9.33E-01 16:15 Activity: 1.33E-02 Error: 7.13E-01 17:45 10:57 Activity: 2.27E-01 Error: 7.14E-01 Error: 6.85E-01 16:00 17:30 Error: 1.05E+00 Error: 8.25E-01 Error: 7.98E-01 Error: 9.87E-01 Activity: 2.67E-01 Error: 6.82E-01 Activity: 5.568-01 Error: 7.25E-01 Activity: -3.39E-02 Error: 9.56E-01 Error: 9.16E-01 Activity: -2.98E-01 Error: 9.37E-01 Activity: 1.35E-01 Error: 6.96E-01 TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR TOTAL SR Run Analysis Nuclide: SR-90 (FAST) WG-BYN-042706-SS-40 Activity: 4.33E-01 WG-BYN-042706-KD-46 WG-BYN-042706-SS-35 WG-BYN-042706-SS-36 WG-BYN-042706-SS-38 WG-BYN-042706-SS-39 WG-BYN-042706-SS-41 WG-BYN-042706-SS-42 WG-BYN-042706-SS-43 WG-BYN-042706-SS-44 WG-BYN-042706-KD-26 WG-BYN-042706-KD-28 WG-BYN-042706-KD-30 WG-BYN-042706-KD-32 WG-BYN-042706-KD-45 WG-BYN-042706-SS-37 Activity: -1.9E-02 Activity: 1.02E+00 Activity: 3.11E-02 Activity: -6.4E-01 Activity: 0E+00 L28431-18 L28431-15 L28431-16 L28431-10 L28431-13 L28431-17 L28431-12 L28431-5 Sample ID

L28431

ĞĶ

GK

ĢK

147 of 147

A Teledyne Technologies Company

2508 Quality Lane Knoxville, TN 37931 865-690-6819 (Phone)

Work Order #: L28439
Exelon
May 8, 2006

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Kathy Shaw Conestoga-Rovers & Associates 45 Farmington Valley Drive Plainville CT 06062

Case Narrative - L28439 EX001-3ESPBYRON-06

05/08/2006 11:39

Sample Receipt

The following samples were received on April 29, 2006 in good condition, unless otherwise noted.

Cross Reference Table

	<i>j</i>	
Client ID	Laboratory ID	Station ID(if applicable)
WG-BYR-042706-SS-47	L28439-1	
WG-BYR-042806-SS-49	L28439-2	
WG-BYR-042806-KD-48	L28439-3	

Analytical Method Cross Reference Table

	12,700,700	
Radiological Parameter	TBE Knoxville Method	Reference Method
Gamma Spectrometry	TBE-2007	EPA 901.1
H-3	TBE-2010	EPA 906.0
SR-90 (FAST)	TBE-2018	EPA 905.0

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28439 EX001-3ESPBYRON-06

05/08/2006 11:39

Gamma Spectroscopy

Quality Control

Quality control samples were analyzed as WG3925.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	Laboratory ID	QC Sample #
WG-BYR-042706-SS-	L28439-1	WG3925-3
47		

H-3

Quality Control

Quality control samples were analyzed as WG3933.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

Duplicate Sample

Duplicates were analyzed for the following samples. All duplicate results were within acceptance limits, unless otherwise noted.

Client ID	<u>Laboratory ID</u>	QC Sample #
WG-BYN-042706-KD-	L28431-19	WG3933-3
45		

SR-90

Quality Control

Quality control samples were analyzed as WG3946.

Method Blank

All blanks were within acceptance limits, unless otherwise noted.

Laboratory Control Sample

All laboratory control samples were within acceptance limits, unless otherwise noted.

2508 Quality Lane Knoxville, TN 37931-3133

Case Narrative - L28439 EX001-3ESPBYRON-06

05/08/2006 11:39

Certification

This is to certify that Teledyne Brown Engineering - Environmental Services, located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

Sample Receipt

05/01/06 10:21

SR08103

SR #:

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

Client: Exelon Project #: EX001-3ESPBYRON-06 LIMS #: L28439

Initiated By: PMARSHALL 04/29/06 Receive Date: Init Date: 05/01/06 Notification of Variance Contacted By: Person Notified: Notify Date: Notify Method: Notify Comment: Client Response Person Responding: Response Date: Response Method: Response Comment Yes No NA Comment Criteria 1 Shipping container custody seals present and intact. 2 Sample container custody seals present NA and intact. 3 Sample containers received in good Υ condition 4 Chain of custody received with samples Υ 5 All samples listed on chain of custody received Υ Sample container labels present and legible. 7 Information on container labels Υ correspond with chain of custody 8 Sample(s) properly preserved and in appropriate container(s) Ν 9 Other (Describe) pH of Gamma containers at or below 2.

Exelon-Byron Genorating Station REMARKS 13635 MS/MSD DATE: DATE: TIME TIME: DATE TIME Teledyne Brown Engineering RECEIVED FOR LABORATORY BY: DATE: 4/29/06 TIME: 0930 AIR BILL NO. 713539 PROJECT NAME: **PARAMETERS** RECEIVED BY: RECEIVED BY: RECEIVED BY: CONTAINERS ио. ОF SAMPLE WHS. 900 B Water 100 m REFERENCE NUMBER: DATE: 14 2/2 06 (Laboratory Name): S'rana Spencer 45136-21 SAMPLE TEAM 5. Spence SHIPPED TO TIME: DATE: DATE: SAMPLE IDENTIFICATION No. TIME: TIME: D.Tyran TOTAL NUMBER OF CONTAINERS WG-BNN-04366-55-49 WG-BYN-043706-SS-47 CONESTOGA-ROVERS & ASSOCIATES PRINTED NAME: 4 hana Jana CHAIN-OF-CUSTODY RECORD Receiving Laboratory Copy 8615 W. Bryn Mawr Avenue SAMPLER'S NOVAG SERVER Chicago, Illinois 60631 Fully Executed Copy (773)380-9933 phone (773)380-6421 fax -Sampler Copy -Shipper Copy **METHOD OF SHIPMENT:** 1001-00(SOURCE)GN-CO004 0400 20/98/h TIME 4137106 1920 RELINQUISHED BY: RELINQUISHED BY: RELINQUISHED BY: DATE Goldenrod Yellow White **3** Pink SEQ. 2

Internal Chain of Custody

Teledyne Brown Engineering Internal Chain of Custody

Page: 1 of 2

******************** Containernum 1 Sample # L28439-1 Analyst Prod H-3DW DW **GELI** SR-90 (FAST) GK Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/29/2006 00:00 029964 Erin Jenkins Sample Custodian 099999 05/02/2006 14:12 ********************** Containernum 2 Sample # L28439-1 Analyst Prod DWH-3 DW **GELI** GK SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/29/2006 00:00 Donna Webb 030854 Sample Custodian 099999 05/01/2006 11:45 Donna Webb 030854 Sample Custodian 05/01/2006 11:46 099999 Sample Custodian 099999 Donna Webb 030854 05/01/2006 11:46 029965 Kelly Wright Donna Webb 05/01/2006 11:47 030854 Donna Webb 030854 Kelly Wright 05/02/2006 14:15 029965 099999 Sample Custodian Donna Webb 05/02/2006 14:16 030854 Greg Kinard 030591 Sample Custodian 05/05/2006 12:51 099999 099999 Sample Custodian Greg Kinard 05/05/2006 12:55 030591 ******************* Containernum 1 Sample # L28439-2 Analyst Prod H-3 Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/29/2006 00:00 Erin Jenkins 029964 Sample Custodian 05/02/2006 14:12 099999 ******************* Sample # L28439-3 Containernum 1 Analyst Prod DW H-3DW GELI SR-90 (FAST) Received By Relinquish Date Relinquish By 099999 Sample Custodian 04/29/2006 00:00 Erin Jenkins 029964 Sample Custodian 05/02/2006 14:12 099999 ****************** Containernum 2 Sample # L28439-3 Analyst Prod H-3 DWDW GELI

GK

SR-90 (FAST)

Internal Chain of Custody

Page: 2 of 2 Teledyne Brown Engineering

**************************************		**************************************	******	****
Relinguish Date Reli	inguish By		Received By	
04/29/2006 00:00	4		099999	Sample Custodian
05/01/2006 11:45	099999	Sample Custodian	030854	Donna Webb
05/01/2006 11:46	099999	Sample Custodian	030854	Donna Webb
05/01/2006 11:46	030854	Donna Webb	099999	Sample Custodian
05/01/2006 11:47	030854	Donna Webb	029965	Kelly Wright
05/03/2006 11:40	029965	Kelly Wright	030854	Donna Webb
05/03/2006 11:42	030854	Donna Webb	099999	Sample Custodian
05/05/2006 12:51	099999	Sample Custodian	030591	Greg Kinard
05/05/2006 12:55	030591	Greg Kinard	099999	Sample Custodian
**************************************		**************************************	*****	****
Prod	Analys	st		
н-3	D W			
GELI	DW			
SR-90 (FAST)	GK			
Relinquish Date Rel	inquish By		Received By	
04/29/2006 00:00			099999	Sample Custodian
05/02/2006 14:12	099999	Sample Custodian	029964	Erin Jenkins
**************************************		**************************************	******	****
Prod H-3	Analys DW	st		
GELI	D W			
SR-90 (FAST)	GK			
Relinquish Date Rel	inquish By		Received By	
04/29/2006 00:00			099999	Sample Custodian

Sample Custodian

099999

05/02/2006 14:12

029964

Erin Jenkins

Teledyne Brown Engineering Internal Chain of Custody Supplemental Sheet

L28439

		L28439		
*****	****	******	*****	*******
L28439-1	WG	WG-BYR-042706-SS-47		
Process step	Prod		Analyst	<u>Date</u>
Login			RCHARLES	04/29/06
Aliquot	GELI		DW	05/01/06
Aliquot	H-3		DW	05/03/06
Aliquot	SR-90	(FAST)	GK	05/05/06
Count Room	GELI		KPW	05/01/06
Count Room	H-3		KOJ	05/04/06
Count Room	SR-90	(FAST)	KOJ	05/05/06
******	*****	*****	******	*******
L28439-2	WG	WG-BYR-042806-SS-49		
Process step	Prod		<u>Analyst</u>	<u>Date</u>
Login			RCHARLES	04/29/06
Aliquot	H-3		DW	05/03/06
Count Room	H-3		KOJ	05/04/06
******	*****	******	*****	*******
L28439-3	WG	WG-BYR-042806-KD-48		
Process step	Prod		Analyst	Date
Login			RCHARLES	04/29/06
Aliquot	GELI		DW	05/01/06
Aliquot	H-3		DW	05/03/06
Aliquot	SR-90	(FAST)	GK	05/05/06
Count Room	GELI		KPW	05/01/06
Count Room	H-3		KOJ	05/04/06
Count Room	SR-90	(FAST)	KOJ	05/05/06

Analytical Results and QC Summary

Report of Analysis 05/08/06 11:22

TELEDYNE
BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28439

Byron Station

EX001-3ESPBYRON-06

Edward Steinke

Matrix: Ground Water Volume: % Moisture: Collect Start: 04/27/2006 19:20 Receive Date: 04/29/2006 Collect Stop: WG-BYR-042706-SS-47 Sample ID: Description: Station:

(MG)

LIMS Number: L28439-1	39-1													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Count Time Units	Count Units	Flag Values	alues
H-3	2010	-2.02E+00	9.62E+01	1.59E+02	pCi/L		10	lm		05/04/06	09	M	n	
TOTAL SR	2018	.00E+00	6.57E-01	1.16E+00	pCi/L		450	国	04/27/06 19:20 05/05/06	90/50/50	300	Σ	n	
MN-54	2007	4.62E-01	1.61E+00	2.64E+00	pCi/L		3569.7	m	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	n	No
CO-58	2007	1.03E-01	1.63E+00	2.67E+00	pCi/L		3569.7	m	04/27/06 19:20 05/01/06	02/01/06	53648	Sec	ח	No
FE-59	2007	3.72E+00	3.25E+00	5.54E+00	pCi/L		3569.7	ш	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	n	No
ZN-65	2007	2.14E+01	4.75E+00	7.88E+00	pCi/L		3569.7	m	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	*	No
NB-95	2007	3.50E+00	1.96E+00	2.93E+00	pCi/L		3569.7	m	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	*	No
ZR-95	2007	-1.53E+00	3.17E+00	4.72E+00	pCi/L		3569.7	m	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	ם	No
CS-134	2007	2.19E+01	3.21E+00	4.02E+00	pCi/L		3569.7	E E	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	*n	No
CS-137	2007	1.41E+00	1.71E+00	2.90E+00	pCi/L		3569.7	田	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	Þ	No
BA-140	2007	-5.14E+00	7.08E+00	1.14E+01	pCi/L		3569.7	ml	04/27/06 19:20 05/01/06	02/01/06	53648	Sec	n	No
LA-140	2007	-2.92E-01	2.19E+00	3.60E+00	pCi/L		3569.7	m	04/27/06 19:20 05/01/06	05/01/06	53648	Sec	n	No
Sample ID: WG-BYR-042806-SS-49	BYR-04280	6-SS-49			Collect	t Start: 04	Collect Start: 04/28/2006 09:40	01		Matrix: Ground Water	ound Wate	Lu,		(MG)
Station:					Collec	Collect Stop:				Volume:				
Description:					Receive	Receive Date: 04/29/2006	1/29/2006		W %	% Moisture:				
LIMS Number: L28439-2	39-2													

Flag Values

Compound/Analyte not detected or less than 3 sigma

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification li

High Spec

Low recovery

Bolded text indicates reportable value.

Jo Page 1

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

Flag Values

Count Units

Count Time

Count Date

Reference

Aliquot Units

Aliquot Volume

Run

Units pCi/L

1.60E+02 MDC

1.06E+02

1.30E+02

Uncertainty

Activity Conc

> SOP# 2010

Radionuclide

H-3

핌

 Ξ

9

05/04/06

MDC - Minimum Detectable Concentration

Report of Analysis 05/08/06 11:22

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28439

Byron Station

EX001-3ESPBYRON-06

Collect Start: 04/28/2006 09:38 Collect Stop: Receive Date: 04/29/2006

Volume: % Moisture:

Matrix: Ground Water

(MG)

WG-BYR-042806-KD-48 Sample ID: Station:

Edward Steinke

Description:

LIMS Number: L28439-3

	Flag Values			Yes	No	No	No	No	No	No	No	No	No	No
	Flag	n	n	+	n n	D D	D	*	*	D	*5	n	n	0
Count	Units	M	Σ	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec	Sec
Count	Time	09	300	54479	54479	54479	54479	54479	54479	54479	54479	54479	54479	54479
Count	Date	05/04/06	90/50/50	05/01/06	05/01/06	05/01/06	02/01/06	05/01/06	05/01/06	05/01/06	05/01/06	05/01/06		05/01/06
Defendance	Date		04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38	04/28/06 09:38
A 15	Anquor Units	lm	m	m	m	lm	m	ш	lm	ш	m	E	m	lm
	Anquot Volume	10	450	3606.54	3606.54	3606.54	3606.54	3606.54	3606.54	3606.54	3606.54	3606.54	3606.54	3606.54
-	Kun #													
	Units	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L
	MDC	1.59E+02	7.76E-01	2.02E+01	2.25E+00		4.39E+00	6.83E+00	2.61E+00	3.87E+00	3.75E+00	2.45E+00	9.81E+00	3.07E+00
	Activity Uncertainty Conc 2 Sigma	9.84E+01		2.33E+01	1.28E+00	-2.28E+00 1.38E+00	2.63E+00	3.97E+00			2.79E+00	1	5.71E+00	1.75E+00
	Activity Conc	2.83E+01	-2.63E-01	4.04E+01	1.11E+00	-2.28E+00	-6.52E-01	2.18E+01	4.16E+00	3.94E-01	2.50E+01	1.52E+00	2.77E+00	1.41E+00
	SOP#	2010	2018	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007	2007
	Radionuclide	H_3	TOTAL SR	K-40	MN-54	CO-58	FE-59	78-NZ	NR-05	7R-95	CS-134	CS-137	BA-140	LA-140

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis unless otherwise noted No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

Activity concentration exceeds MDC and 3 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 3 sigma Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Low recovery

High recovery Compound/Analyte not detected or less than 3 sigma High Spec

Flag Values

Jo Page 2

7

Bolded text indicates reportable value.

QC Summary Report

L28439

for

5/8/2006

11:40:09AM

H-3

				Method Blank Summary	ary			:
TBE Sample ID WG3933-1	<u>Radionuclide</u> H-3	Matrix WO	Count Date/Time 05/04/2006 7:33		Blank Result < 1.460E+00	<u>Units</u> pCi/Total		Qualifier P/F U P
				LCS Sample Summary	ıry			
TBE Sample ID WG3933-2	Radionuclide H-3	Matrix WO	Count Date/Time 05/04/2006 8:37	Spike Value 5.05E+002	LCS Result 5.110E+02	Units Spike pCi/Total	Spike Recovery 101.2	Range Qualifier P/E 70-130 + P
Spike ID: 3H-041706-1 Spike conc: 5.05E+002 Spike Vol: 1.00E+000	1706-1 +002 +000							
				Duplicate Summary	Ą			
TBE Sample ID WG3933-3 L28431-19	Radionuclide H-3	<u>Matrix</u> WG	Count Date/Time 05/04/2006 8:47	Original Result < 1.640E+02	DUP Result < 1.530E+02	Units PCi/L	RPD	Range Qualifier P/F <30 *** NE

Positive Result Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Nuclide not detected

Page:

+ > * *

Spiking level < 5 times activity
Pass
Fail
Not evaluated

ж К К К К К

L28439

for

5/8/2006

QC Summary Report

11:40:09AM

H-3 L28439 WG3933 Associated Samples for

CLIENTID SAMPLENUM

WG-BYR-042806-SS-49 WG-BYR-042706-SS-47

WG-BYR-042806-KD-48

L28439-2 L28439-3 L28439-1

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

7

Page:

Nuclide not detected

Spiking level < 5 times activity
Pass
Fail
Not evaluated

+ > * *

QC Summary Report

5/8/2006

11:40:09AM

for

L28439

TELEDYNE BROWN ENGINEERING A Teledyne Technologies Company

SR-90

Method Blank Summary

05/05/2006 22:18

Count Date/Time

Matrix

Radionuclide

TBE Sample ID

SR-90

WG3946-1

WO

pCi/Total Units Blank Result < 4.170E-01

Oualifier P/F U P

Range Qualifier P/F

Д

Radionuclide TBE Sample ID WG3946-2

SR-90

05/05/2006 22:18 Count Date/Time Matrix WO W

Spike Value 5.84E+001

LCS Result 5.830E+01

pCi/Total

Units

LCS Sample Summary

Spike Recovery

6.66

70-130

Spike ID: 90SR-011905

Spike conc: 2.34E+002 Spike Vol: 2.50E-001

SR-90 (FAST)

L28439

WG3946 Associated Samples for CLIENTID SAMPLENUM

WG-BYR-042806-KD-48 WG-BYR-042706-SS-47

> L28439-3 L28439-1

Page:

3

Positive Result

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated

+ > * *

Nuclide not detected

Spiking level < 5 times activity

*

Pass

P F NE

Fail Not evaluated

QC Summary Report

L28439

for

11:40:09AM

5/8/2006

BROWN ENGINEERING A Teledyne Technologies Company

TOTAL SR

Duplicate Summary

DUP Result Original Result < 1.160E+00

> 05/05/2006 22:18 Count Date/Time

> <u>Matrix</u> WG

Radionuclide

TBE Sample ID

WG3946-3 L28439-1

TOTAL SR

WG-BYR-042806-KD-48 WG-BYR-042706-SS-47

CLIENTID

WG3946

Associated Samples for

SAMPLENUM

L28439-3 L28439-1

SR-90 (FAST)

L28439

RPD

Units

pCi/L

< 7.280E-01

Range Qualifier P/F <30 ** NE

Page:

4

Compound/analyte was analyzed, peak not identified and/or not detected above MDC < 5 times the MDC are not evaluated Positive Result

Nuclide not detected

+>* *

Spiking level < 5 times activity

P **

Pass Fail Not evaluated

Raw Data

Raw Data Sheet (rawdata) May 08 2006, 11:35 am

Customer: Exelon

Work Order: <u>L28439</u>

Eff. Ingrowth Analyst Factor DW ΜΩ DΨ Decay & .224 . 222 .223 9 9 9 Sample Bkg Bkg dt(min) counts dt(min) 1.71 1.71 9 9 9 counts 102 141 Counter Total 111 LS7 LS7 ID LS7 04-may-06 22:56 04-may-06 21:52 Mount Count
Weight Recovery Date/time
0 04-may-06
20:49 0 0 Scavenge Milking Date/time Date/time Project : EX001-3ESPBYRON-06 10 ml MDC: 1.59E+02 * 10 ml MDC: 1.59E+02 * 10 ml MDC: 1.6E+02 Volume/ Aliquot Reference Date/time Error: 1.06E+02 MG-BYR-042806-KD-48 Activity: 2.83E+01 Error: 9.84E+01 WG-BYR-042706-SS-47 Activity: -2.02E+00 Error: 9.62E+01 L28439-2 Run Analysis H-3 H-3 WG-BYR-042806-SS-49 Activity: 1.3E+02 Nuclide: H-3 Sample ID Client ID L28439-1 L28439-3

Page: 1

Work Order: L28439

Customer: Exelon

Decay & Eff. Ingrowth Analyst Factor .349 .999 GK .356 1 400 400 Bkg dt (min) 280 315 Sample Bkg dt(min) counts Bkg 300 300 counts 210 212 Counter Total ID Y2A YZB 05-may-06 22:18 05-may-06 22:18 Mount Count Weight Recovery Date/time 86.56 55.91 0 Scavenge Milking
Date/time Date/time
05-may-06
14:45 05-may-06 14:45 Project : EX001-3ESPBYRON-06 450 ml MDC: 7.76E-01 * MDC: 1.16E+00 Volume/ Aliquot 450 ml 27-apr-06 19:20 Activity: 0E+00 Error: 6.57E-01 M
L28439-3 TOTAL SR 28-apr-06
WG-BYR-042806-KD-48 09:38
Activity: -2.63E-01 Error: 4.27E-01 M Reference Date/time TOTAL SR Run Analysis Nuclide: SR-90 (FAST) WG-BYR-042706-SS-47 Sample ID Client ID L28439-1

GK

Page: 2

Sec. Review: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 2-MAY-2006 08:20:18.13 TBE10 12892256 HpGe ******** Aquisition Date/Time: 1-MAY-2006 17:25:53.47

LIMS No., Customer Name, Client ID: WG L28439-1 BYRON

Smple Date: 27-APR-2006 19:20:00. Sample ID : 10L28439-1

Geometry : 1035L091004 : WG Sample Type BKGFILE : 10BG041406MT : 3.56970E+00 L Quantity Start Channel: 80 Energy Tol: 1.30000 Real Time : 0 14:54:17.73 Pk Srch Sens: 5.00000 Live time : 0 14:54:07.98 End Channel : 4090

Library Used: LIBD MDA Constant : 0.00

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 2 2 5 1 1 1 1 1 1 1 1	53.23 66.33* 74.92* 77.06 87.17* 92.76* 139.86 186.02* 198.41* 238.64* 242.14 295.31* 351.96* 596.15 609.32* 768.50 868.27 911.27*	217 373 187 594 155 50 514 142 75 654 1310 2035 178 1721 160 79 32	1449 2172 2029 1498 1398 1921 1988 1630 1483 1047 990 1204 925 391 463 334 220 234	1.27 1.45 1.26 0.94 1.00 1.16 1.47 1.69 1.13 1.30 1.40 1.52 1.27 1.94 1.53 2.12 1.78 2.42	105.69 131.89 149.09 153.38 173.60 184.79 279.06 371.44 396.23 476.75 483.74 590.17 703.56 1192.35 1218.71 1537.38 1737.10 1823.21	2.69E-01 6.34E-01 8.84E-01 9.42E-01 1.19E+00 1.30E+00 1.68E+00 1.55E+00 1.55E+00 1.40E+00 1.39E+00 1.21E+00 1.07E+00 7.06E-01 6.94E-01 5.79E-01 5.26E-01	4.05E-03 6.95E-03 3.49E-03 1.11E-02 2.89E-03 9.33E-04 9.57E-03 2.65E-03 1.35E-03 1.41E-03 1.22E-02 2.44E-02 3.79E-02 3.79E-02 3.31E-03 3.21E-02 2.98E-03 1.47E-03 6.05E-04	29.7 23.4 46.7 11.2 42.5 167.0 16.2 56.9 107.2 85.4 9.3 4.0 22.9 27.0 41.0 109.8	1.32E+00 1.29E+00 2.55E+00 1.40E+00 2.58E+00 2.49E+00 1.51E+00 1.65E+00 1.56E+00 6.62E+00 6.86E-01 2.09E+00 9.30E-01 1.28E+00 1.68E+00 2.41E+00
19 20 21	1 1 1	934.82 1120.37* 1238.16	122 362 208	275 198 184	3.10 2.16 2.01	1870.35 2241.88 2477.74	4.33E-01		11.8	2.32E+00
22 23 24 25 26 27	1 1 1 1 1	1377.83 1408.44 1460.97* 1729.64 1764.65* 1847.96	100 78 37 89 252 62	185 102 131 104 155	2.02 3.28 2.37 2.53 1.97	2757.44 2818.74 2923.96 3462.06		1.86E-03 1.46E-03 6.86E-04 1.66E-03 4.69E-03	31.8 28.7 100.5 27.9 14.3	1.43E+00 2.97E+00 1.51E+00 1.63E+00

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

	<i>1</i>				Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pĊi/L	%Error
K-40	1460.81	37	10.67*		1.368E+01	1.368E+01	200.98
RA-226	186.21	142			3.836E+01	3.836E+01	113.76
AC-228			1.75	5.422E-01	Li	ne Not Found	

	911.07	32	27.70*	5.069E-01	3.262E+00 3.266E+00	219.56
TH-228	238.63	75	44.60*	1.401E+00	1.705E+00 1.712E+00	170.70
	240.98	654	3.95	1.388E+00	1.683E+02 1.690E+02	18.51
U-235	143.76		10.50*		HILL NOC LOUILA	
	163.35		4.70	1.659E+00	Line Not Found	
	185.71	142			2.330E+00 2.330E+00	113.76
	205.31		4.70	1.524E+00	Line Not Found	

Flag: "*" = Keyline

Page: 2 Summary of Nuclide Activity Acquisition date : 1-MAY-2006 17:25:53 Sample ID : 10L28439-1

Total number of lines in spectrum Number of unidentified lines 27 21 Number of lines tentatively identified by NID 6 22.22%

Nuclide Type : natural

			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pĊi/L	2-Sigma Error	%Error Flags
	1.28E+09Y	1.00	1.368E+01	1.368E+01	2.749E+01	200.98
RA-226	1600.00Y	1.00	3.836E+01	3.836E+01	4.364E+01	113.76
AC-228	5.75Y	1.00	3.262E+00	3.266E+00	7.171E+00	219.56
TH-228	1.91Y	1.00	1.705E+00	1.712E+00	2.923E+00	170.70
U-235	7.04E+08Y	1.00	2.330E+00	2.330E+00	2.651E+00	113.76 K

Total Activity : 5.934E+01 5.935E+01

Grand Total Activity: 5.934E+01 5.935E+01

"M" = Manually accepted Flags: "K" = Keyline not found "A" = Nuclide specific abn. limit

"E" = Manually edited

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
1 1 2 2 5 1	53.23 66.33 74.92 77.06 87.17 92.76	217 373 187 594 155 50	1449 2172 2029 1498 1398 1921	1.27 1.45 1.26 0.94 1.00 1.16	105.69 131.89 149.09 153.38 173.60 184.79	103 128 142 142 163 181	8 16 16 14 8	4.05E-03 6.95E-03 3.49E-03 1.11E-02 2.89E-03 9.33E-04	46.8 93.5 22.3 85.1 ****	2.69E-01 6.34E-01 8.84E-01 9.42E-01 1.19E+00 1.30E+00	
1 1 1 1	139.86 198.41 295.31 351.96	514 72 1310 2035	1988 1483 1204 925	1.47 1.13 1.52 1.27	279.06 396.23 590.17 703.56	275 393 584 698	9 8 13 13	2.44E-02 3.79E-02	32.4 **** 12.6 8.0	1.68E+00 1.55E+00 1.21E+00 1.07E+00	
1 1 1 1	596.15 609.32 768.50 868.27	178 1721 160 79	391 463 334 220	1.94 1.53 2.12 1.78	1192.35 1218.71 1537.38 1737.10	1187 1210 1530 1730	11 16 16 13	3.31E-03 3.21E-02 2.98E-03 1.47E-03	45.7 7.8 53.9 82.0	7.06E-01 6.94E-01 5.79E-01 5.26E-01	
1 1 1 1	934.82 1120.37 1238.16 1377.83 1408.44 1729.64	122 362 208 100 78 89	275 198 184 185 102 104	3.10 2.16 2.01 2.02 3.28 2.53	1870.35 2241.88 2477.74 2757.44 2818.74 3462.06	2468 2750	16 19 18 16 13	2.27E-03 6.74E-03 3.87E-03 1.86E-03 1.46E-03	33.8 63.7 57.4	4.97E-01 4.33E-01 4.01E-01 3.71E-01 3.65E-01 3.17E-01	Т
1 1	1764.65 1847.96	252 62	155 59	1.97 1.86	3532.20 3699.08		19 10	4.69E-03 1.15E-03	28.6 53.2	3.13E-01 3.04E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 27
Number of unidentified lines 21
Number of lines tentatively identified by NID 6 22.22%

Nuclide Type : natural

Nucriue	Type . Hace	ırar	Wtd Mean	Wtd Mean		
			Uncorrected	Decay Corr	Decay Corr	2-Sigma
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error	%Error Flags
K-40	1.28E+09Y	1.00	1.368E+01	1.368E+01	2.749E+01	200.98
RA-226	1600.00Y	1.00	3.836E+01	3.836E+01	4.364E+01	113.76
AC-228	5.75Y	1.00	3.262E+00	3.266E+00	7.171E+00	219.56
TH-228	1.91Y	1.00	1.705E+00	1.712E+00	2.923E+00	170.70
	Total Act	ivity :	5.701E+01	5.702E+01		

Grand Total Activity: 5.701E+01 5.702E+01

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226 AC-228 TH-228	1.368E+01 3.836E+01 3.266E+00 1.712E+00	2.749E+01 4.364E+01 7.171E+00 2.923E+00	2.774E+01 6.561E+01 9.441E+00 4.972E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.493 0.585 0.346 0.344
Non-Ide	ntified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59 CO-60 ZN-65 SE-75 SR-85 Y-88 NB-94 NB-95 ZR-95 MO-99 RU-103 RU-106 AG-110m SN-113 SB-124 SB-125 TE-129M I-131 BA-133 CS-134 CS-136 CS-137 CE-139 BA-140 LA-140 CE-141 CE-144 EU-152 EU-154 TH-232 U-235 U-238 AM-241	3.875E+00 -2.520E+02 -1.365E+01 4.618E-01 -3.435E-01 1.028E-01 3.723E+00 5.118E-02 2.144E+01 -2.049E+00 1.811E+01 -3.298E-02 -9.202E-01 3.500E+00 -1.532E+00 -2.196E+01 2.315E+00 -4.459E+00 -2.044E+00 6.151E-01 -3.954E-01 7.190E-01 1.943E+01 -1.506E+00 2.838E+01 2.191E+01 2.298E-01 1.410E+00 1.926E+00 -5.138E+00 -2.922E-01 3.664E+00 -1.087E+01 -8.684E+00 -1.087E+01 -8.684E+00 -1.087E+01 -8.684E+00 -1.087E+01 -8.684E+00 -2.92E-01 3.664E+00 -1.087E+01 -8.684E+00 -2.92E-01 3.664E+00 -1.087E+01 -8.684E+00 -2.92E-01 3.664E+00 -1.087E+01	1.410E+01 2.177E+02 1.509E+01 1.608E+00 1.620E+00 1.634E+00 3.247E+00 1.636E+00 4.754E+00 1.850E+00 1.852E+00 1.852E+00 1.963E+00 1.963E+01 1.967E+01 1.567E+00 2.103E+00 3.733E+00 2.103E+00 3.733E+00 2.103E+00 1.967E+01 2.363E+00 2.194E+00 1.892E+00 1.892E+00 1.892E+00 3.214E+00 1.892E+00 3.214E+00 1.892E+00	2.336E+01 2.750E+02 2.428E+01 2.644E+00 2.681E+00 2.673E+00 5.538E+00 2.698E+00 3.612E+00 3.645E+00 2.737E+00 2.737E+00 2.541E+00 2.930E+01 2.930E+01 2.840E+01 2.840E+01 2.840E+01 2.324E+01 2.495E+00 3.525E+00 3.525E+00 3.786E+00 3.786E+00 3.786E+00 3.100E+00 4.015E+00 3.100E+00 2.766E+00 1.135E+01 3.604E+00 5.034E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01 3.604E+01	O.000E+00 O.000E+00	0.166 -0.916 -0.575 -0.128 0.679 -0.7668 -0.7668 -0.362 -0.362 -0.362 -0.364 -0.324 -0.404 -0.819 -0.149 -0.149 -0.5898 -0.149 -0.5898 -0.695 -0.3898 -0.486 -0.486 -0.486 -0.486 -0.486 -0.486 -0.481 -0.526 -0.315 -0.315 -0.534 -1.774

```
,05/02/2006 08:20,04/27/2006 19:20,
                                                                 3.570E+00,WG L28439-1 BY
A,10L28439-1
                                             ,06/09/2005 08:04,1035L091004
B,10L28439-1
                     , LIBD
                                    2.749E+01,
                                                   2.774E+01,,
                                                                    0.493
C, K-40
           , YES,
                     1.368E+01,
                                                   6.561E+01,,
                                                                    0.585
           , YES,
                                    4.364E+01,
C, RA-226
                     3.836E+01,
                                                   9.441E+00,,
                                                                    0.346
C, AC-228
           , YES,
                     3.266E+00,
                                    7.171E+00,
                                                                    0.344
                                                   4.972E+00,,
            , YES,
                                    2.923E+00,
C, TH-228
                     1.712E+00,
                                                   2.336E+01,,
                                                                    0.166
C, BE-7
            ,NO,
                     3.875E+00,
                                    1.410E+01,
                                    2.177E+02,
                                                   2.750E+02,,
                                                                   -0.916
C, NA-24
           , NO
                    -2.520E+02,
                                                   2.428E+01,,
                                                                   -0.562
                                    1.509E+01,
C, CR-51
            , NO
                    -1.365E+01,
                                                   2.644E+00,,
                                                                    0.175
            , NO
                     4.618E-01,
                                    1.608E+00,
C, MN-54
                    -3.435E-01,
                                                   2.681E+00,,
                                                                   -0.128
                                    1.620E+00,
C, CO-57
            , NO
                                                                    0.038
C, CO-58
            , NO
                     1.028E-01,
                                    1.634E+00,
                                                   2.673E+00,,
            , NO
                                    3.247E+00,
                                                   5.538E+00,,
                                                                    0.672
                     3.723E+00,
C, FE-59
                                    1.636E+00,
                                                   2.698E+00,,
                                                                    0.019
C, CO-60
            , NO
                     5.118E-02,
                                                                    2.722
                                    4.754E+00,
                                                   7.876E+00,,
C, ZN-65
            , NO
                     2.144E+01,
                                                   3.612E+00,,
                                                                   -0.567
                    -2.049E+00,
                                    2.217E+00,
C, SE-75
            , NO
                                                   3.645E+00,,
                                                                    4.968
C, SR-85
            , NO
                     1.811E+01,
                                    1.890E+00,
                                    1.852E+00,
                                                   2.737E+00,,
                                                                   -0.012
            , NO
                    -3.298E-02,
C, Y-88
                                                   2.541E+00,,
                                                                   -0.362
                    -9.202E-01,
                                    1.568E+00,
C, NB-94
            , NO
                                                   2.930E+00,,
                                                                    1.194
            ,NO
                     3.500E+00,
                                    1.963E+00,
C, NB-95
                                                   4.720E+00,,
                                                                   -0.324
                    -1.532E+00,
                                    3.169E+00,
C, ZR-95
            ,NO
                                                   5.440E+01,,
                                                                   -0.404
            , NO
                    -2.196E+01,
                                    3.382E+01,
C, MO-99
                                                   2.840E+00,,
                                                                    0.815
C, RU-103
                     2.315E+00,
                                    1.672E+00,
            , NO
                                                                   -0.192
                                                   2.324E+01,,
                                    1.450E+01,
C, RU-106
                    -4.459E+00,
            , NO
                                                   2.495E+00,,
                                                                   -0.819
                    -2.044E+00,
                                    1.567E+00,
C, AG-110m
           , NO
                                                   3.525E+00,,
                                                                    0.174
C, SN-113
            , NO
                     6.151E-01,
                                    2.103E+00,
                                                                   -0.149
                    -3.954E-01,
                                    3.733E+00,
                                                   2.648E+00,,
C, SB-124
            , NO
                                                   7.572E+00,,
                                                                     0.095
                     7.190E-01,
                                    4.551E+00,
C, SB-125
            , NO
                                                                    0.585
                                    1.967E+01,
                                                   3.320E+01,,
                     1.943E+01,
C, TE-129M
            , NO
                                                   3.786E+00,,
                                                                   -0.398
                                    2.363E+00,
C, I-131
            , NO
                    -1.506E+00,
                                                   5.071E+00,,
                                                                    5.598
C, BA-133
            ,NO
                     2.838E+01,
                                    2.980E+00,
            ,NO
                     2.191E+01,
                                    3.214E+00,
                                                   4.015E+00,,
                                                                     5.456
C, CS-134
                                                   3.100E+00,,
                                                                    0.074
                                    1.892E+00,
C, CS-136
                     2.298E-01,
            , NO
                                                   2.904E+00,,
                                                                     0.486
                                    1.714E+00,
C, CS-137
                     1.410E+00,
            , NO
                     1.926E+00,
                                                   2.766E+00,,
                                                                     0.696
C, CE-139
            , NO
                                    1.664E+00,
                                                   1.135E+01,,
            , NO
                    -5.138E+00,
                                    7.083E+00,
                                                                   -0.453
C, BA-140
                                    2.191E+00,
                                                   3.604E+00,,
                                                                   -0.081
                    -2.922E-01,
C, LA-140
            , NO
                                                   5.034E+00,,
                                                                    0.728
            , NO
                                    3.514E+00,
C, CE-141
                     3.664E+00,
                                                                   -0.526
                                                   2.065E+01,,
            , NO
                    -1.087E+01,
                                    1.482E+01,
C, CE-144
                                                                   -1.039
                                                   8.360E+00,,
C, EU-152
            , NO
                    -8.684E+00,
                                    6.311E+00,
C, EU-154
                    -2.520E+00,
                                    3.390E+00,
                                                   5.573E+00,,
                                                                   -0.452
            , NO
                                                   1.034E+01,,
                                                                     0.315
                     3.262E+00,
                                    7.161E+00,
C, TH-232
            , NO
                                                   2.144E+01,,
                                                                     0.919
                     1.971E+01,
                                    1.488E+01,
C, U-235
            , NO
                ,
                                                   3.027E+02,,
                                                                     0.534
                                    1.781E+02,
C, U-238
            , NO
                     1.615E+02,
```

1.890E+01,

, NO

C, AM-241

-3.999E+01,

2.254E+01,,

-1.774

Sec. Review: Ana/lyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 2-MAY-2006 08:21:09.85 TBE23 03017322 HpGe ******** Aquisition Date/Time: 1-MAY-2006 17:12:20.68

LIMS No., Customer Name, Client ID: WG L28439-3 BYRON

Smple Date: 28-APR-2006 09:38:00. : 23L28439-3 Sample ID

Geometry : 2335L090704 Sample Type : WG Quantity : 3.60650E+00 L BKGFILE : 23BG041406MT

MDA Constant : 0.00 Library Used: LIBD

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
1	9	33.83*	218	62	1.12	67.83		4.00E-03		7.87E+00
2	9	35.49*	565	662	2.16	71.14		1.04E-02		
3	9	37.05	454	877	1.80	74.25		8.33E-03		
4	9	39.39*	282	1544	2.18	78.93		5.17E-03		
5	9	42.12	115	1234	1.13	84.39		2.12E-03		
6	0	66.30	226	2380	0.98	132.69		4.15E-03		
7	2	74.75	701	2319	1.18	149.59		1.29E-02		1.00E+00
8	2	77.10	1230	2283	1.09	154.28		2.26E-02	7.1	
9	0	86.80	165	2782	1.07	173.66		3.02E-03		
10	0	92.68*	66	2659	1.29	185.40		1.21E-03		
11	0	139.66*	298	2390	1.05	279.27		5.47E-03		
12	0	185.43*	39	1935	1.15	370.75		7.12E-04		
13	0	198.46*	223	1856	1.30	396.79		4.09E-03		
14	2	238.53*	104	1356	1.26	476.85		1.92E-03		9.13E-01
15	2	241.81	886	1164	1.15	483.40		1.63E-02		
16	0	295.08*	1945	1384	1.33	589.88		3.57E-02		
17	0	351.78*	3328	1051	1.26	703.22		6.11E-02		
18	0	583.31*	6	459		1166.06		1.15E-04		
19	0	595.64	222	561	1.25	1190.71		4.07E-03		
20	0	609.01*	2823	541		1217.45		5.18E-02		
21	0	665.57	63	303		1330.54		1.16E-03		
22	0	768.35	312	411		1536.08		5.72E-03		
23	0	785.46	46	291		1570.29	7.10E-01	8.40E-04	71.2	
24	0	911.23*	17	234		1821.86	6.38E-01	3.16E-04	189.7	
25	0	933.80	229	238		1867.00		4.20E-03		
26	0	1120.05*	614	208		2239.60	5.53E-01	1.13E-02	6.8	
27	0	1238.23	246	162		2476.08	5.16E-01	4.52E-03	12.2	
28	0	1377.79	204	134		2755.39	4.79E-01	3.75E-03	13.4	
29	0	1408.72	116	152		2817.30		2.13E-03		
30	0	1460.60*	144	162		2921.16		2.65E-03		
31	0	1508.58	68	94		3017.19	4.49E-01	1.25E-03	28.8	
32	0	1729.28	122	82		3459.08	4.07E-01	2.24E-03	T7.0	
33	0	1764.05*	531	61		3528.71	4.01E-01	9.74E-03	5.9	
34	0	1848.59	99	84	2.35	3698.02	3.86E-01	1.82E-03	∠5.4	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Type: natural

Nucliae	Type: nacura	аı			Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/L	pCi/L	%Error
K-40	1460.81	144	10.67*	4.595E-01	4.044E+01	4.044E+01	57.53
RA-226	186.21	39	3.28*	1.948E+00	8.346E+00	8.346E+00	449.09
AC-228	835.50		1.75	6.790E-01	Li	ne Not Found	
	911.07	17	27.70*	6.382E-01	1.341E+00	1.342E+00	379.38
TH-228	238.63	104	44.60*	1.725E+00	1.868E+00	1.875E+00	138.74
	240.98	886	3.95	1.711E+00	1.804E+02	1.810E+02	14.48
TH-232	583.14	6	30.25	8.882E-01	3.214E-01	3.214E-01	1437.81
111 232	911.07	17	27.70*	6.382E-01	1.341E+00	1.341E+00	379.38
	969.11		16.60	6.111E-01	Li	ne Not Found	

Flag: "*" = Keyline

Summary of Nuclide Activity
Sample ID: 23L28439-3

Acquisition date: 1-MAY-2006 17:12:20

Total number of lines in spectrum 34
Number of unidentified lines 27

Number of lines tentatively identified by NID 7 20.59%

Nuclide Type : natural

Nuclide K-40 RA-226 AC-228	Hlife 1.28E+09Y 1600.00Y 5.75Y	Decay 1.00 1.00	Uncorrected pCi/L 4.044E+01 8.346E+00 1.341E+00	Decay Corr pCi/L 4.044E+01 8.346E+00 1.342E+00	Decay Corr 2-Sigma Error 2.327E+01 37.48E+00 5.092E+00	2-Sigma %Error F 57.53 449.09 379.38	lags
TH-228 TH-232	1.91Y 1.41E+10Y	1.00 1.00	1.868E+00 1.341E+00	1.875E+00 1.341E+00	2.601E+00 5.086E+00	138.74 379.38	
	Total Acti	vity:	5.334E+01	5.335E+01			

Grand Total Activity: 5.334E+01 5.335E+01

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

1	•										
It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
9	33.83	218	62	1.12	67.83	65	24	4.00E-03	37.3	9.45E-02	
9	35.49	565	662	2.16	71.14	65	24	1.04E-02	30.8	1.21E-01	
9	37.05	454	877	1.80	74.25	65	24	8.33E-03	33.4	1.50E-01	
9	39.39	282	1544	2.18	78.93	65	24	5.17E-03	63.0	1.99E-01	
9	42.12	115	1234	1.13	84.39	65	24	2.12E-03	93.2	2.66E-01	
Ó	66.30	226	2380	0.98	132.69	130		4.15E-03		1.04E+00	
2	74.75	701	2319	1.18	149.59	144		1.29E-02		1.29E+00	
2	77.10	1230	2283	1.09	154.28	144		2.26E-02		1.35E+00	
0	86.80	165	2782	1.07	173.66	171		3.02E-03		1.58E+00	
0	92.68	66	2659	1.29	185.40			1.21E-03		1.70E+00	
0	139.66	298	2390	1.05	279.27			5.47E-03		2.05E+00	
0	198.46	223	1856	1.30	396.79			4.09E-03		1.90E+00	
0	295.08	1945	1384	1.33	589.88			3.57E-02		1.50E+00	
0	351.78	3328	1051	1.26	703.22			6.11E-02		1.32E+00	
0	595.64	222	561	1.25	1190.71	1184	14	4.07E-03	47.3	8.74E-01	
0	609.01	2823	541	1.48				5.18E-02	5.5		
0	665.57	63	303	1.34	1330.54			1.16E-03			
0	768.35	312	411	1.69	1536.08	1528	16	5.72E-03	31.2	7.22E-01	
0	785.46	46	291	0.85	1570.29	1567	10	8.40E-04	***	7.10E-01	
0	933.80	229	238	1.98	1867.00	1861	13	4.20E-03	30.8	6.27E-01	
0	1120.05	614	208	1.65	2239.60	2234	14	1.13E-02	13.6	5.53E-01	
0	1238.23	246	162	1.69	2476.08	2470	12	4.52E-03	24.4	5.16E-01	
0	1377.79	204	134	2.15	2755.39	2749	12	3.75E-03	26.9	4.79E-01	
0	1408.72	116	152	4.66	2817.30	2809	16	2.13E-03	51.4	4.71E-01	
0	1508.58	68	94	2.11	3017.19	3014	10	1.25E-03	57.7	4.49E-01	
0	1729.28	122	82	2.18	3459.08	3453	11	2.24E-03	34.0	4.07E-01	
0	1764.05	531	61	1.77	3528.71	3522	15	9.74E-03	11.8	4.01E-01	
0	1848.59	99	84	2.35	3698.02	3689	19	1.82E-03	50.8	3.86E-01	L

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 34 27 Number of unidentified lines 27
Number of lines tentatively identified by NID 7 20.59%

Nuclide Type : natural

Nucliae	Type: Hacu	ıraı	Wtd Mean	Wtd Mean	D	o Giamo	
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/L	pCi/L	2-Sigma Error		
	1.28E+09Y	1.00	4.044E+01	4.044E+01	2.327E+01	57.53	
RA-226	1600.00Y	1.00	8.346E+00	8.346E+00	37.48E+00	449.09	
AC-228	5.75Y	1.00	1.019E+00	1.020E+00	6.881E+00	674.28	
TH-228	1.91Y	1.00	1.868E+00	1.875E+00	2.601E+00	138.74	
		1.00	3.214E-01	3.214E-01	46.22E-01	1437.81	
TH-232	1.41E+10Y	1.00	J.ZITH OI				
	Total Acti	vity:	5.200E+01	5.201E+01			

Grand Total Activity: 5.200E+01 5.201E+01

Flags: "K" = Keyline not found
"E" = Manually edited

"M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

Interfe	ring	Interf	ered
Nuclide	Line	Nuclide	Line
TH-232	911.07	AC-228	911.07

Combined Activity-MDA Report

-6.517E-01

1.817E-01

2.179E+01

9.559E+00

5.125E-01

7.190E-01

4.162E+00

3.944E-01

6.480E+00

1.425E+00

5.298E-01

-1.406E-01

-3.370E-01

-1.636E+00

4.381E-01

1.683E+00

8.376E-01

1.441E+01

2.497E+01

1.662E+00

1.515E+00

2.768E+00

1.409E+00

9.832E-01

-6.831E-01

-8.844E-01

FE-59

CO-60

ZN-65

SE-75

SR-85

NB-94

NB-95

ZR-95

MO-99

RU-103

RU-106

SN-113

SB-124

SB-125

I - 131

BA-133

CS-134

CS-136

CS-137

CE-139

BA-140

LA-140

CE-141

TE-129M

AG-110m

Y-88

Identif	fied Nuclides				
Nuclide	Activity (pCi/L)	Act error	MDA (pCi/L)	MDA error	Act/MDA
K-40 RA-226 AC-228 TH-228 TH-232	4.044E+01 8.346E+00 1.020E+00 1.875E+00 3.214E-01	2.327E+01 3.748E+01 6.881E+00 2.601E+00 4.622E+00	2.017E+01 5.874E+01 7.906E+00 4.227E+00 8.607E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	2.005 0.142 0.129 0.444 0.037
Non-Ide	entified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/L) Ided	Act error	MDA (pCi/L)	MDA error	Act/MDA
BE-7 NA-24 CR-51 MN-54 CO-57 CO-58 FE-59	8.762E+00 -3.002E+01 -1.470E+01 1.113E+00 -5.642E-01 -2.281E+00 -6.517E-01	1.154E+01 8.573E+01 1.266E+01 1.283E+00 1.478E+00 1.381E+00 2.634E+00	1.950E+01 1.200E+02 2.097E+01 2.246E+00 2.404E+00 2.179E+00 4.387E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.449 -0.250 -0.701 0.495 -0.235 -1.047 -0.149

1.346E+00

3.974E+00

1.912E+00

1.534E+00

1.459E+00

1.275E+00

1.690E+00

2.460E+00

2.399E+01

1.435E+00

1.163E+01

1.471E+00

1.792E+00

3.158E+00

4.016E+00

1.620E+01

1.865E+00

2.379E+00

2.794E+00

1.538E+00

1.659E+00

1.469E+00

5.705E+00

1.750E+00

3.088E+00

2.309E+00

6.833E+00

3.127E+00

2.825E+00

2.261E+00

2.172E+00

2.614E+00

3.870E+00

4.050E+01

2.431E+00

1.970E+01

2.088E+00

2.991E+00

2.279E+00

6.713E+00

2.700E+01

3.161E+00

3.880E+00

3.747E+00

2.649E+00

2.452E+00

2.451E+00

9.806E+00

3.065E+00

4.482E+00

0.079

3.189

3.384

0.227

0.331

1.592

0.102

0.160

0.586

0.027

-0.067

-0.113

-0.718

0.065

0.062

0.265

3.713

6.663

0.627

0.618

0.282

0.459

0.219

-0.279

-0.283

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

```
3.606E+00,WG L28439-3 BY
                     ,05/02/2006 08:21,04/28/2006 09:38,
A,23L28439-3
                                             ,06/24/2005 07:59,2335L090704
                     , LIBD
B,23L28439-3
                                                                    2.005
                                    2.327E+01,
                                                   2.017E+01,,
           ,YES,
                    4.044E+01,
C, K-40
                                                                    0.142
                                                   5.874E+01,,
                    8.346E+00,
                                    3.748E+01,
           , YES,
C, RA-226
                                                                    0.129
                                                   7.906E+00,,
                    1.020E+00,
                                    6.881E+00,
C, AC-228
           , YES,
                                                                    0.444
                                    2.601E+00,
                                                   4.227E+00,,
                    1.875E+00,
C, TH-228
           ,YES,
                                                                    0.037
                                                   8.607E+00,,
                     3.214E-01,
                                    4.622E+00,
C, TH-232
           , YES,
                                                                    0.449
                                                   1.950E+01,,
                                    1.154E+01,
C, BE-7
                     8.762E+00,
           , NO
                                                   1.200E+02,,
                                                                   -0.250
                                    8.573E+01,
                    -3.002E+01,
C, NA-24
           , NO
                                                                   -0.701
                                                   2.097E+01,,
                                    1.266E+01,
                    -1.470E+01,
C, CR-51
           , NO
                                                                    0.495
                                                   2.246E+00,,
                                    1.283E+00,
                     1.113E+00,
C, MN-54
            , NO
                                                   2.404E+00,,
                                                                   -0.235
                                    1.478E+00,
C, CO-57
            , NO
                    -5.642E-01,
                                    1.381E+00,
                                                   2.179E+00,,
                                                                   -1.047
                    -2.281E+00,
C, CO-58
            , NO
                                                   4.387E+00,,
                                                                   -0.149
                                    2.634E+00,
            , NO
                    -6.517E-01,
C, FE-59
                                                   2.309E+00,,
                                                                    0.079
            , NO
                                    1.346E+00,
                     1.817E-01,
C, CO-60
                                                                    3.189
                                                   6.833E+00,,
                     2.179E+01,
                                    3.974E+00,
            ,NO
C, ZN-65
                                                                   -0.283
                                                   3.127E+00,,
                                    1.912E+00,
            , NO
                    -8.844E-01,
C, SE-75
                                                                    3.384
                                                   2.825E+00,,
                     9.559E+00,
                                    1.534E+00,
C, SR-85
            , NO
                                                                    0.227
                                                   2.261E+00,,
                                    1.459E+00,
            , NO
                     5.125E-01,
C, Y-88
                                                                    0.331
                                                   2.172E+00,,
                     7.190E-01,
                                    1.275E+00,
C, NB-94
            , NO
                                                   2.614E+00,,
                                                                    1.592
                                    1.690E+00,
                     4.162E+00,
            , NO
C, NB-95
                                                                    0.102
                                    2.460E+00,
                                                   3.870E+00,,
                     3.944E-01,
C, ZR-95
            , NO
                                                                    0.160
                                                   4.050E+01,,
                                    2.399E+01,
            , NO
                     6.480E+00,
C, MO-99
                                                                    0.586
                                    1.435E+00,
                                                   2.431E+00,,
            ,NO
                     1.425E+00,
C, RU-103
                                                                    0.027
                                                   1.970E+01,,
                                    1.163E+01,
                     5.298E-01,
C, RU-106
            , NO
                                                                   -0.067
                                    1.471E+00,
                                                   2.088E+00,,
            , NO
                    -1.406E-01,
C, AG-110m
                                                   2.991E+00,,
                                                                   -0.113
                                    1.792E+00,
                    -3.370E-01,
C, SN-113
            , NO
                                                                   -0.718
                                                   2.279E+00,,
                                    3.158E+00,
C,SB-124
            , NO
                    -1.636E+00,
                                                                     0.065
                                                   6.713E+00,,
            , NO
                     4.381E-01,
                                    4.016E+00,
C,SB-125
                                                   2.700E+01,,
                                                                     0.062
                                    1.620E+01,
                     1.683E+00,
C, TE-129M
            , NO
                                                                     0.265
                                                   3.161E+00,,
                     8.376E-01,
                                    1.865E+00,
            , NO
C, I-131
                                                   3.880E+00,,
                                                                     3.713
                                    2.379E+00,
            , NO
                     1.441E+01,
C,BA-133
                                                                     6.663
                                                   3.747E+00,,
            , NO
                                    2.794E+00,
C, CS-134
                     2.497E+01,
                                                                     0.627
                                                   2.649E+00,,
                     1.662E+00,
                                    1.538E+00,
C, CS-136
            , NO
                                                                     0.618
                                    1.659E+00,
                                                   2.452E+00,,
                     1.515E+00,
            , NO
C, CS-137
                                                   2.451E+00,,
                                                                    -0.279
                                    1.469E+00,
                    -6.831E-01,
            , NO
C, CE-139
                                                   9.806E+00,,
                                                                     0.282
                                    5.705E+00,
            , NO
C, BA-140
                     2.768E+00,
                                                                     0.459
                                    1.750E+00,
                                                   3.065E+00,,
                     1.409E+00,
C, LA-140
            , NO
                                                                     0.219
                                                   4.482E+00,,
                     9.832E-01,
                                    3.088E+00,
C, CE-141
            , NO
                                                                     0.168
                                    1.346E+01,
                                                   1.878E+01,,
            , NO
                     3.155E+00,
C, CE-144
                                                   7.156E+00,,
                                                                    -0.940
                                    5.170E+00,
                    -6.725E+00,
C, EU-152
            , NO
                                                                     0.072
                                                   5.048E+00,,
                                    3.087E+00,
                     3.652E-01,
C, EU-154
            , NO
                                                                    -0.090
                                                   1.914E+01,,
                    -1.721E+00,
                                    1.365E+01,
C, U-235
            , NO
                                                                     0.246
                                                   2.473E+02,,
                                    1.515E+02,
                     6.094E+01,
C, U-238
            , NO
```

8.468E+00,

-1.089E+01,

C, AM-241

, NO

1.330E+01,,

-0.819

A Teledyne Technologies Company 2508 Quality Lane Knoxville, TN 37931-3133

Edward Steinke Byron Station Exelon Nuclear 4450 N. German Church Road Byron IL 31010

Report of Analysis/Certificate of Conformance

06/22/2006

LIMS #: L28642

Project ID#: EX001-3EREMPBYRON-05

Received: 05/16/2006 Delivery Date: 06/20/2006

P.O. #: 01000298 REL.#00011

Release #: SDG #:

This is to certify that Teledyne Brown Engineering - Environmental Services located at 2508 Quality Lane, Knoxville, Tennessee, 37931, has analyzed, tested and documented samples as specified in the applicable purchase order.

This also certifies that requirements of applicable codes, standards and specifications have been fully met and that any quality assurance documentation which verified conformance to the purchase order is on file and may be examined upon request.

I hereby certify that the above statements are true and correct.

Keith Jeter

Operations Manager

Cross Reference Table

Client ID	Laboratory ID	Station ID(if applicable)
UPSTREAM (CONTROL)	L28642-1	BY-29
UPSTREAM (CONTROL)	L28642-2	BY-29
DISCHARGE AREA	L28642-3	BY-31
DISCHARGE AREA	L28642-4	BY-31

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28642

Byron Station

EX001-3EREMPBYRON-05

Edward Steinke

on: BY-29 on: L28642-1	7)	UPSTREAM (CONTROL)			Collec	t Start: U	Collect Start: 05/10/2006 09:00	99:		Matrix: Fish	sn			(F)
and the first of t					Collec Receiva	t Stop: 0 e Date: 0	Collect Stop: 05/10/2006 09:00 Receive Date: 05/16/2006	00:	V %	Volume: % Moisture:				
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count	Count Time	Count Units	Flag	Flag Values
BE-7	2007	-4.85E+01	4.46E+02	7.62E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	n	No
K-40	2007	3.03E+03	6.72E+02	4.88E+02	pCi/kg		281.44	g wet	05/10/06 09:00	90/16/190	5804	Sec	+	Yes
MN-54	2007	-5.33E+00	3.52E+01	6.10E+01	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	U	No
CO-58	2007	-2.86E+01	4.40E+01	7.32E+01	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	Ω	No
FE-59	2007	-5.07E+01	9.98E+01	1.71E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	n	No
	2007	-3.08E+01	3.53E+01	5.71E+01	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	n	No
29-NZ	2007	1.79E+02	9.45E+01	1.74E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	*h	No
ZRNB-95	2007	6.72E+00	4.85E+01	8.61E+01	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	n	%
RU-103	2007	2.41E+01	6.12E+01	1.08E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	n	No
RU-106	2007	6.76E+01	3.21E+02	5.73E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	Ω	%
I-131	2007	9.87E+02	9.54E+02	1.74E+03	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	Ω	No
CS-134	2007	1.71E+02	4.72E+01	8.72E+01	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	*n	No
CS-137	2007	-9.05E+00	3.28E+01	5.68E+01	pCi/kg		281.44	g wet	05/10/06 09:00	90/61/90	5804	Sec	n	S N
Ba-La-140	2007	1.09E+02	3.12E+02	5.98E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	Ω	No
CE-141	2007	1.41E+01	1.03E+02	1.76E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	Ω	No
CE-144	2007	-1.26E+02	2.10E+02	3.48E+02	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	Ω	No
	2007	-4.10E+02	7.20E+02	1.20E+03	pCi/kg		281.44	g wet	05/10/06 09:00	06/19/06	5804	Sec	n	No
TH-232	2002	7.30E+00	1.17E+02	2.04E+02	pCi/kg		281.44	g wet	05/10/06 09:00	90/61/90	5804	Sec	n	%

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

unless otherwise noted

of Page 1

Compound/Analyte not detected or less than 2 sigma
Activity concentration exceeds MDC and 2 sigma, peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 2 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification

High recovery

Bolded text indicates reportable value. High Spec L H

Low recovery

Flag Values U = +

TELEDYNE BROWN ENGINEERING, INC. A Teledyne Technologies Company

L28642

Byron Station

EX001-3EREMPBYRON-05

Edward Steinke

Sample ID: UPSTRE Station: BY-29 Description: LIMS Number: L28642-2	UPSTREAM (CONTROL) BY-29 L28642-2	ONTROL)			Collect Collect Receive	t Start: 0 t Stop: 0. Date: 0.	Collect Start: 05/10/2006 09:00 Collect Stop: 05/10/2006 09:00 Receive Date: 05/16/2006	00:	W %	Matrix: Fish Volume: % Moisture:	ls.			(FI)
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count	Count Units	Flag Values	alues
BE-7	2007	4.16E+01	6.33E+02	1.04E+03	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	n	No
K-40	2007	4.09E+03	7.71E+02	6.64E+02	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	+	Yes
MN-54	2007	-3.61E+01	5.22E+01	8.31E+01	pCi/kg		167.63	g wet	05/10/06 09:00	90/11/90	16202	Sec	n	No
CO-58	2007	1.17E+01	6.69E+01	1.11E+02	pCi/kg		167.63	g wet	05/10/06 09:00	06/19/06	16202	Sec	n	No
FE-59	2007	-6.12E+01	1.57E+02	2.54E+02	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	l N	No
09-02	2007	1.15E+01	4.65E+01	7.77E+01	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	n	No
ZN-65	2007	1.41E+02	1.13E+02	1.99E+02	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	n	No
ZRNB-95	2007	2.03E+01	6.96E+01	1.16E+02	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	n	No
RU-103	2007	-5.76E+02	1.09E+02	1.47E+02	pCi/kg		167.63	g wet	05/10/06 09:00	06/19/06	16202	Sec	Ω	No
RU-106	2007	1.79E+02	5.36E+02	7.70E+02	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	n l	No
1-131	2007	-2.13E+02	1.69E+03	2.45E+03	pCi/kg		167.63	g wet	05/10/06 09:00	06/19/06	16202	Sec	n	No
CS-134	2007	1.72E+02	5.14E+01	9.34E+01	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	*n	No
CS-137	2007	-2.14E+01	5.13E+01	8.34E+01	pCi/kg		167.63	g wet	05/10/06 09:00	90/11/90	16202	Sec	n	No
Ba-La-140	2007	-9.63E+01	3.79E+02	6.13E+02	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	n	No
CE-141	2007	1.39E+02	1.48E+02	2.49E+02	pCi/kg		167.63	g wet	05/10/06 09:00	06/19/06	16202	Sec	n	No
CE-144	2007	1.28E+02	3.13E+02	5.23E+02	pCi/kg		167.63	g wet	05/10/06 09:00	06/19/06	16202	Sec	l U	No
RA-226	2007	-9.05E+02	1.06E+03	1.66E+03	pCi/kg		167.63	g wet	05/10/06 09:00	90/61/90	16202	Sec	U	No
TH-232	2007	-2.47E+02	1.83E+02	2.77E+02	pCi/kg		167.63	g wet	05/10/06 09:00	06/19/06	16202	Sec	n	No

Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis No = Peak not identified in gamma spectrum unless otherwise noted

MDC - Minimum Detectable Concentration

Page 2

Compound/Analyte not detected or less than 2 sigma
Activity concentration exceeds MDC and 2 sigma, peak identified(gamma only)
Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 2 sigma
Activity concentration exceeds customer reporting value
MDC exceeds customer technical specification
Low recovery of

Freshwater Drum

Comment:

Bolded text indicates reportable value.

Flag Values U =

High Spec L

TELEDYNE
BROWN ENGINEERING, INC.
A Teledyne Technologies Company

00:60 00/77/0

L28642

Byron Station

Dyron Station

EX001-3EREMPBYRON-05

Edward Steinke

Sample ID: DISCHARGE AREA Station: RV-31	HARGE A	\REA			Collect	t Start: 05	Collect Start: 05/10/2006 14:30	30		Matrix: Fish	ls.			(FI)
	-				Collec	Collect Stop: 05/10/2006 Receive Date: 05/16/2006	Collect Stop: 05/10/2006 14:30 Seceive Date: 05/16/2006	30	W %	Volume. % Moisture:				
LIMS Number: L28642-3	42-3													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Run #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count Units	Flag	Flag Values
BE-7	2007	-1.09E+02	5.86E+02	9.41E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
K-40	2007	5.12E+03	1.02E+03	6.71E+02	pCi/kg		184.94	g wet	05/10/06 14:30	90/61/90	6601	Sec	+	Yes
MN-54	2007	1.26E+01	5.03E+01	8.44E+01	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
CO-58	2007	4.02E+01	6.95E+01	1.20E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
FE-59	2007	1.84E+01	1.40E+02	2.36E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
09-02	2007	-1.15E+01	5.31E+01	8.45E+01	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	1099	Sec	n	No
ZN-65	2007	2.38E+02	1.30E+02	2.33E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	*1	No
ZRNB-95	2007	3.31E+00	6.66E+01	1.10E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
RU-103	2007	6.18E+01	9.06E+01	1.55E+02	pCi/kg		184.94	g wet	05/10/06 14:30	90/61/90	6601	Sec	n	No
RU-106	2007	2.09E+02	4.61E+02	7.85E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
1-131	2007	4.84E+01	1.47E+03	2.42E+03	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
CS-134	2007	4.62E+01	6.30E+01	9.48E+01	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
CS-137	2007	2.47E+01	5.11E+01	8.80E+01	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
Ba-La-140	2007	-8.57E+01	3.65E+02	5.78E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
CE-141	2007	1.74E+02	1.47E+02	2.54E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
CE-144	2007	1.04E+02	3.10E+02	5.18E+02	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	n	No
RA-226	2007	-5.05E+01	1.07E+03	1.74E+03	pCi/kg		184.94	g wet	05/10/06 14:30	06/19/06	6601	Sec	Ω	No
TH-232	2007	-1.67E+02	2.06E+02	3.12E+02	pCi/kg		184.94	g wet	05/10/06 14:30	90/61/90	6601	Sec	n	No
Comment: 1 C	Channel Catfish	fish												

No = Peak not identified in gamma spectrum
Yes = Peak identified in gamma spectrum
**** Results are reported on an as received basis
unless otherwise noted

MDC - Minimum Detectable Concentration

Page 3 of 4

Activity concentration exceeds MDC and 2 signa; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 2 sigma Activity concentration exceeds customer reporting value

MDC exceeds customer technical specification

Compound/Analyte not detected or less than 2 sigma

Flag Values U = H = High recoveryBolded text indicates reportable value.

Low recovery

High Spec

TELEDYNE BROWN ENGINEERING, INC.

A Teledyne Technologies Company

L28642

Byron Station

EX001-3EREMPBYRON-05

Collect Stop: 05/10/2006 14:30 Collect Start: 05/10/2006 14:30 Sample ID: DISCHARGE AREA Station: BY-31 Description:

Edward Steinke

Receive Date: 05/16/2006

Matrix: Fish Volume: % Moisture:

(FI)

LIMS Number: L28642-4	542-4													
Radionuclide	SOP#	Activity Conc	Uncertainty 2 Sigma	MDC	Units	Rum #	Aliquot Volume	Aliquot Units	Reference Date	Count Date	Count Time	Count	Flag	Flag Values
BE-7	2007	-7.65E+01	6.48E+02	1.04E+03	pCi/kg		239.78	g wet	05/10/06 14:30	90/11/90	4321	Sec		No
K-40	2007	2.56E+03	7.99E+02	6.92E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	+	Yes
MN-54	2007	1.50E+01	5.04E+01	8.55E+01	pCi/kg		239.78	g wet	05/10/06 14:30	90/61/90	4321	Sec	n	No
CO-58	2007	-1.92E+01	6.38E+01	1.01E+02	pCi/kg		239.78	g wet	05/10/06 14:30	90/61/90	4321	Sec	n	No
FE-59	2007	-1.08E+02	1.70E+02	2.56E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	n	οN
09-02	2007	-6.65E+00	4.90E+01	7.93E+01	pCi/kg		239.78	g wet	05/10/06 14:30	90/11/90	4321	Sec	n l	No
ZN-65	2007	9.77E+01	1.26E+02	2.24E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/16/06	4321	Sec	Ω	No
ZRNB-95	2007	3.59E+01	5.87E+01	1.04E+02	pCi/kg		239.78	g wet	05/10/06 14:30	90/61/90	4321	Sec	Ω	No
RU-103	2007	-2.02E+00	8.37E+01	1.39E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	Ω	No
RU-106	2007	2.27E+02	4.76E+02	8.13E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	n	No
1-131	2007	9.90E+02	1.46E+03	2.51E+03	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	n	No
CS-134	2007	4.78E+01	5.67E+01	9.88E+01	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	Ω	No
CS-137	2007	2.34E+01	5.29E+01	8.96E+01	pCi/kg		239.78	g wet	05/10/06 14:30	90/61/90	4321	Sec	U	No
Ba-La-140	2007	2.52E+02	3.54E+02	6.61E+02	pCi/kg		239.78	g wet	05/10/06 14:30	90/11/90	4321	Sec	n	No
CE-141	2007	5.26E+00	1.35E+02	2.20E+02	pCi/kg		239.78	g wet	05/10/06 14:30	90/11/90	4321	Sec	Ω	No
CE-144	2007	-7.41E+01	2.63E+02	4.22E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	n	No
RA-226	2007	2.43E+02	8.17E+02	1.39E+03	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	n	Yes
TH-232	2007	1.59E+02	1.68E+02	3.22E+02	pCi/kg		239.78	g wet	05/10/06 14:30	06/19/06	4321	Sec	Ω	No
Comment: 1 F	Freshwater Drum	rum												

Yes = Peak identified in gamma spectrum **** Results are reported on an as received basis No = Peak not identified in gamma spectrum

MDC - Minimum Detectable Concentration

unless otherwise noted

 $_{\text{of}}$ Page 4

Activity concentration exceeds MDC and 2 sigma; peak identified(gamma only)

Compound/Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 2 sigma

Activity concentration exceeds customer reporting value MDC exceeds customer technical specification

Compound/Analyte not detected or less than 2 sigma

Flag Values U =

High Spec L H

Low recovery

Bolded text indicates reportable value.

Byron Generating Station

Fish Samples

Sample Collection/Receipt Sheet

EXELON NUCLEAR

Comments	GAMMA Channel Catfish	GAMMA Freshwater Drum	GAMMA Channel Catfish	GAMMA Freshwater Drum							
Analysis		GAMMA	GAMMA	GAMMA							
Stop time Sample Size	3100 gr.	2340 gr.	2480 gr.	2840 gr.					-		
Stop time	9:00	9:00	14:30	14:30							
Stop date	05/10/2006	05/10/2006	05/10/2006	05/10/2006							
Start time	9:00	9:00	14:30	14:30				H-mar		 	
Start date	05/10/2006	05/10/2006	05/10/2006	05/10/2006							
Sample Medium	AQF	AQF	AQF	AQF							
Station Code	BY-29	BY-29	BY-31	BY-31							
Client ID	化ルン/ Upstream (Control)	-2 Upstream (Control)	Discharge Area	- V Discharge Area							
Lab. No.	1-2718	-2	. 3	<i>→ →</i>	-						

Collected by: EA Engineering, Science & Technology Shipped by: FedEx

Received by:

Date: 05/10/2006

Date: 05/15/2006

BY-29; BY-31

Date:

L28642 7 of 28

Environmental, **Inc.** Midwest Laboratory

An Allegheny Technologies Company

SR NO. 2213 Shipping Request

MIDWEST LABORATORY 700 LANDWEHR ROAD • NORTHBROOK, IL 60062-2310 • (847) 564-0700 FAX (847) 564-4517

NOTE!! When returning or replacing this material, please reference S/R No. on all documents.

PART I (To be completed by originator)	D. Control Data:
A. Description of items (Include, Quantity, Model No.,	
Type, Serial No., and Gov't Property No.)	Vendor
BYRON:	P.O. No
4 BAGS OF FISH	W.O./Acct. No.
	l applies of materials
	Ship no later than
	Ship via Collect
	Prepaid
3. Purpose of Shipment:	No. Pcs./ctns Cu. Ft
	WeightEst. Val
Return for credit-No replacement:	
☐ Return for rework or replacement at Vendor's expense.	Part II (To be completed by Shipping Dept.)
☐ Return for rework or replacement at Environmental, Inc's expense.	Astual mathed of alcience of Fodoral Evarona
☐ Furnished on Consignment for use on P.O. No.	Actual method of shipment Federal Express
Other (explain)	Date Shipped 05-15-2006
C. Comments or instructions to Vendor:	Collect Prepaid
	FOB point
	Waybill No.
	Misc
	sнір то: ТВЕ
	Sim 10. The
L.B.	
DRIGINATOR'S INITIALS	ATTN:

05/16/06 16:06 SR #: SR08408

Teledyne Brown Engineering Sample Receipt Verification/Variance Report

Client: Exelon Project #: EX001-3EREMPBYRON-05 LIMS #:L28642

Initiated By: PMARSHALL Init Date: 05/16/06 Receive Date: 05/16/06 Notification of Variance Person Notified: Contacted By: Notify Date: Notify Method: Notify Comment: Client Response Person Responding: Response Date: Response Method: Response Comment Criteria Yes No NA Comment Shipping container custody seals present NA and intact. Sample container custody seals present NA and intact. 3 Sample containers received in good Υ condition 4 Chain of custody received with samples Y 5 All samples listed on chain of custody received 6 Sample container labels present and Υ legible. 7 Information on container labels Y correspond with chain of custody 8 Sample(s) properly preserved and in NA appropriate container(s) 9 Other (Describe) NA

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-JUN-2006 13:06:27.15 TBE23 03017322 HpGe ******** Aquisition Date/Time: 19-JUN-2006 11:29:31.99

LIMS No., Customer Name, Client ID: L28642-1 FI EXELON/BYRON

Sample ID : 23L28642-1 Smple Date: 10-MAY-2006 09:00:00.

Sample Type : FI Geometry : 23B300082404
Quantity : 2.81440E-01 KG WET BKGFILE : 23BG060306MT
Start Channel : 50 Energy Tol : 1.50000 Real Time : 0 01:36:47.67
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 01:36:43.96

MDA Constant : 0.00 Library Used: EXELONFSSDVG

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1	8	34.72*	14	17	1.94	69.77	2.93E-01	2.46E-03128.0	5.18E+00
2	8	38.82*	37	73	2.47	77.95		6.29E-03 68.4	0.101
3	8	41.60*	60	113	2.61	83.52		1.03E-02 44.8	
4	8	44.85*	11	66	1.22	90.00		1.87E-03141.7	
5	8	46.35*	13	74	1.22	93.00		2.20E-03118.8	
6	0	77.04	77	167	1.27	154.35		1.33E-02 32.6	
7	0	92.73*	32	220	1.10	185.69		5.57E-03 97.5	
8	0	295.06*	149	113	1.39	590.09		2.56E-02 17.9	
9	0	351.85*	201	114	1.22	703.61		3.46E-02 13.7	
10	0	609.02*	197	20	1.55	1217.72		3.39E-02 8.8	
11	0	1120.40*	42	22	1.99	2240.32		7.32E-03 30.1	
12	0	1377.54	18	5	0.74	2754.67		3.04E-03 35.0	
13	0	1460.76*	151	10	1.80	2921.15		2.60E-02 11.1	
14	0	1764.93*	27	7	0.90	3529.75		4 70E-03 31 8	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Nuclide Energy Area %Abn %Eff pCi/KG WET pCi/KG WET %Error K-401460.81 151 10.67* 7.723E-01 3.033E+03 3.033E+03 22.16

Flag: "*" = Keyline

Page: 2

Summary of Nuclide Activity Sample ID: 23L28642-1

Acquisition date : 19-JUN-2006 11:29:31

14

Total number of lines in spectrum Number of unidentified lines

Number of unidentified lines 13
Number of lines tentatively identified by NID 1 7.14%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/KG WET pCi/KG WET 2-Sigma Error %Error Flags
K-40 1.28E+09Y 1.00 3.033E+03 3.033E+03 0.672E+03 22.16

Total Activity: 3.033E+03 3.033E+03

Grand Total Activity: 3.033E+03 3.033E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID : 23L28642-1

Page: 3 Acquisition date : 19-JUN-2006 11:29:31

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
8	34.72	14	17	1.94	69.77	65	32	2.46E-03	***	2.93E-01	
8	38.82	37	73	2.47	77.95	65	32	6.29E-03	***	4.89E-01	
8	41.60	60	113	2.61	83.52	65	32	1.03E-02	89.7	6.49E-01	
8	44.85	11	66	1.22	90.00			1.87E-03	****	8.57E-01	
8	46.35	13	74	1.22	93.00				****	9.59E-01	
0	77.04	77	167	1.27	154.35	152		1.33E-02	65.2	3.03E+00	
0	92.73	32	220	1.10	185.69	182		5.57E-03	****	3.67E+00	
0	295.06	149	113	1.39	590.09			2.56E-02		2.82E+00	
0	351.85	201	114	1.22	703.61			3.46E-02		2.44E+00	
0	609.02	197	20	1.55		1213			17.7	1.53E+00	
0	1120.40	42	22	1.99				7.32E-03	60.3		
0	1377.54	18	5	0.74				3.04E-03	70.0	9.47E-01	
0	1764.93	27	7	0.90	3529.75					8.08E-01	
_		/	,	0.50	3323.73	3343	T.4	4.70E-03	63.5	6.62E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 14 Number of unidentified lines 13 Number of lines tentatively identified by NID 1

7.14%

Nuclide Type : natural

Nuclide K-40	Hlife 1.28E+09Y	Decay	Wtd Mean Uncorrected pCi/KG WET 3.033E+03	pCi/KG WET	 2-Sigma %Error 22.16	
	Total Act	ivity :	3.033E+03	3.033E+03		

Grand Total Activity: 3.033E+03 3.033E+03

Flags: "K" = Keyline not found "M" = Manually accepted "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/KG WET)	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA
K-40	3.033E+03	6.720E+02	4.880E+02	0.000E+00	6.215
Non-	Identified Nuclidea				

Non-Identified Nuclides ----

Key-Line Activity K.L. Act error MDAMDA error Act/MDA

Nuclide	(pCi/KG WET)Ided		(pCi/KG WET)		, ,
BE-7	-4.851E+01	4.461E+02	7.619E+02	0.000E+00	-0.064
NA-24	3.495E+14	2.939E+14	Half-Life to	o short	
CR-51	1.664E+02	6.642E+02	1.161E+03	0.000E+00	0.143
MN-54	-5.328E+00	3.515E+01	6.097E+01	0.000E+00	-0.087
CO-57	1.276E+01	2.705E+01	4.684E+01	0.000E+00	0.272
CO-58	-2.855E+01	4.398E+01	7.317E+01	0.000E+00	-0.390
FE-59	-5.066E+01	9.980E+01	1.712E+02	0.000E+00	-0.296
CO-60	-3.080E+01	3.525E+01	5.713E+01	0.000E+00	-0.539
ZN-65	1.794E+02	9.446E+01	1.744E+02	0.000E+00	1.029
SE-75	-1.482E+01	4.676E+01	7.984E+01	0.000E+00	-0.186
SR-85	1.508E+02	5.150E+01	1.011E+02	0.000E+00	1.491
Y-88	-4.951E+01	4.975E+01	7.929E+01	0.000E+00	-0.624
NB-94	-2.676E+00	3.069E+01	5.362E+01	0.000E+00	-0.050
ZRNB-95	6.723E+00	4.847E+01	8.611E+01	0.000E+00	0.078
MO-99	-2.505E-01	2.623E+00	Half-Life to	short	
RU-103	2.406E+01	6.118E+01	1.081E+02	0.000E+00	0.223
RU-106	6.757E+01	3.207E+02	5.731E+02	0.000E+00	0.118
AG-110m	-1.713E+01	3.357E+01	5.698E+01	0.000E+00	-0.301
SN-113	6.400E+01	4.763E+01	8.850E+01	0.000E+00	0.723
SB-124	-2.805E-01	5.578E+01	8.300E+01	0.000E+00	-0.003
SB-125	2.838E+00	8.371E+01	1.452E+02	0.000E+00	0.020
TE-129M	3.558E+02	7.117E+02	1.274E+03	0.000E+00	0.279
I-131	9.871E+02	9.535E+02	1.737E+03	0.000E+00	0.568
BA-133	1.495E+02	5.260E+01	9.128E+01	0.000E+00	1.638
CS-134	1.712E+02	4.721E+01	8.723E+01	0.000E+00	1.963
CS-136	-4.991E+01	2.511E+02	4.352E+02	0.000E+00	-0.115
CS-137	-9.045E+00	3.281E+01	5.678E+01	0.000E+00	-0.159
CE-139	-3.995E+00	3.259E+01	5.487E+01	0.000E+00	-0.073
BALA140	1.086E+02	3.118E+02	5.981E+02	0.000E+00	0.182
CE-141	1.411E+01	1.032E+02	1.759E+02	0.000E+00	0.080
CE-144	-1.261E+02	2.097E+02	3.484E+02	0.000E+00	-0.362
EU-152	-6.897E+01	1.107E+02	1.537E+02	0.000E+00	-0.449
EU-154	2.891E+01	5.218E+01	9.060E+01	0.000E+00	0.319
RA-226	-4.100E+02	7.200E+02	1.198E+03	0.000E+00	-0.342
AC-228	7.393E+00	1.183E+02	2.065E+02	0.000E+00	0.036
TH-228	4.113E+01	5.855E+01	1.012E+02	0.000E+00	0.406
TH-232	7.296E+00	1.168E+02	2.037E+02	0.000E+00	0.036
U-235	-5.512E+00	2.050E+02	3.444E+02	0.000E+00	-0.016
U-238	-9.159E+02	3.344E+03	5.770E+03	0.000E+00	-0.159
AM-241	3.904E+00	1.227E+02	2.054E+02	0.000E+00	0.019

```
A,23L28642-1
                     ,06/19/2006 13:06,05/10/2006 09:00,
                                                                 2.814E-01,L28642-1 FI EX
B,23L28642-1
                     , EXELONFSSDVG
                                              ,06/01/2006 10:14,23B300082404
C, K-40
            ,YES,
                     3.033E+03,
                                    6.720E+02,
                                                   4.880E+02,,
                                                                     6.215
C, BE-7
            , NO
                    -4.851E+01,
                                    4.461E+02,
                                                   7.619E+02,,
                                                                    -0.064
C, CR-51
            , NO
                     1.664E+02,
                                    6.642E+02,
                                                   1.161E+03,,
                                                                     0.143
C, MN-54
            , NO
                    -5.328E+00,
                                    3.515E+01,
                                                   6.097E+01,,
                                                                    -0.087
C, CO-57
            , NO
                                    2.705E+01,
                     1.276E+01,
                                                   4.684E+01,,
                                                                     0.272
C, CO-58
            , NO
                    -2.855E+01,
                                    4.398E+01,
                                                   7.317E+01,,
                                                                    -0.390
C, FE-59
            , NO
                    -5.066E+01,
                                    9.980E+01,
                                                   1.712E+02,,
                                                                    -0.296
C, CO-60
            , NO
                    -3.080E+01,
                                    3.525E+01,
                                                   5.713E+01,,
                                                                    -0.539
C, ZN-65
            , NO
                     1.794E+02,
                                    9.446E+01,
                                                   1.744E+02,,
                                                                     1.029
C, SE-75
            , NO
                    -1.482E+01,
                                    4.676E+01,
                                                   7.984E+01,,
                                                                    -0.186
C, SR-85
            , NO
                     1.508E+02,
                                    5.150E+01,
                                                   1.011E+02,,
                                                                     1.491
C, Y-88
            , NO
                    -4.951E+01,
                                    4.975E+01,
                                                   7.929E+01,,
                                                                   -0.624
            , NO
                    -2.676E+00,
C, NB-94
                                    3.069E+01,
                                                   5.362E+01,,
                                                                   -0.050
C, ZRNB-95
            , NO
                     6.723E+00,
                                    4.847E+01,
                                                   8.611E+01,,
                                                                     0.078
            , NO
C,RU-103
                     2.406E+01,
                                    6.118E+01,
                                                   1.081E+02,,
                                                                     0.223
C, RU-106
            , NO
                     6.757E+01,
                                    3.207E+02,
                                                   5.731E+02,,
                                                                     0.118
C, AG-110m
            , NO
                    -1.713E+01,
                                    3.357E+01,
                                                   5.698E+01,,
                                                                   -0.301
C, SN-113
            , NO
                     6.400E+01,
                                    4.763E+01,
                                                   8.850E+01,,
                                                                    0.723
C,SB-124
            , NO
                    -2.805E-01,
                                    5.578E+01,
                                                   8.300E+01,,
                                                                   -0.003
C,SB-125
            , NO
                                    8.371E+01,
                     2.838E+00,
                                                   1.452E+02,,
                                                                    0.020
            ,NO
C, TE-129M
                     3.558E+02,
                                    7.117E+02,
                                                   1.274E+03,,
                                                                    0.279
C, I-131
            , NO
                     9.871E+02,
                                    9.535E+02,
                                                   1.737E+03,,
                                                                    0.568
C,BA-133
            , NO
                     1.495E+02,
                                    5.260E+01,
                                                   9.128E+01,,
                                                                    1.638
C, CS-134
            , NO
                     1.712E+02,
                                    4.721E+01,
                                                   8.723E+01,,
                                                                    1.963
C, CS-136
                    -4.991E+01,
            , NO
                                    2.511E+02,
                                                   4.352E+02,,
                                                                   -0.115
C,CS-137
            , NO
                    -9.045E+00,
                                    3.281E+01,
                                                   5.678E+01,,
                                                                   -0.159
C,CE-139
            , NO
                   -3.995E+00,
                                    3.259E+01,
                                                   5.487E+01,,
                                                                   -0.073
C,BALA140
           , NO
                     1.086E+02,
                                    3.118E+02,
                                                   5.981E+02,,
                                                                    0.182
C, CE-141
           , NO
                     1.411E+01,
                                    1.032E+02,
                                                   1.759E+02,,
                                                                    0.080
C,CE-144
            , NO
                   -1.261E+02,
                                    2.097E+02,
                                                   3.484E+02,,
                                                                   -0.362
C, EU-152
            , NO
                   -6.897E+01,
                                    1.107E+02,
                                                   1.537E+02,,
                                                                   -0.449
C,EU-154
            , NO
                     2.891E+01,
                                    5.218E+01,
                                                   9.060E+01,,
                                                                    0.319
C, RA-226
            , NO
                   -4.100E+02,
                                    7.200E+02,
                                                   1.198E+03,,
                                                                   -0.342
C, AC-228
           , NO
                     7.393E+00,
                                    1.183E+02,
                                                   2.065E+02,,
                                                                    0.036
C, TH-228
           , NO
                    4.113E+01,
                                    5.855E+01,
                                                   1.012E+02,,
                                                                    0.406
C, TH-232
           , NO
                    7.296E+00,
                                    1.168E+02,
                                                   2.037E+02,,
                                                                    0.036
C, U-235
           , NO
                   -5.512E+00,
                                                   3.444E+02,,
                                    2.050E+02,
                                                                   -0.016
C, U-238
           , NO
                   -9.159E+02,
                                    3.344E+03,
                                                   5.770E+03,,
                                                                   -0.159
```

1.227E+02,

2.054E+02,,

0.019

C, AM-241

, NO

3.904E+00,

Sec. Review: Analyst: LIMS: ____

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-JUN-2006 15:45:20.82 TBE14 P-10933A HpGe ******* Aquisition Date/Time: 19-JUN-2006 11:15:08.20

LIMS No., Customer Name, Client ID: L28642-2 FI EXELON/BYRON

Sample ID : 14L28642-2 Smple Date: 10-MAY-2006 09:00:00.

Sample Type : FI Geometry : 14B300082004
Quantity : 1.67630E-01 KG WET BKGFILE : 14BG060306MT
Start Channel : 90 Energy Tol : 1.50000 Real Time : 0 04:30:03.91
End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 04:30:01.62

MDA Constant : 0.00 Library Used: EXELONFSSDVG

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec	%Err	Fit
	1 1	01.50	57 48				1.87E+00 1.79E+00			
_		609.69*	41				1.79E+00 1.18E+00			
4	1	1461.55*	258				5.88E-01			

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

Uncorrected Decay Corr 2-Sigma Nuclide Energy Area %Abn %Eff pCi/KG WET pCi/KG WET %Error 258 K-40 1460.81 10.67* 5.885E-01 4.090E+03 4.090E+03 18.86

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID: 14L28642-2

Page: \2 Acquisition date: 19-JUN-2006 11:15:08

25.00%

Total number of lines in spectrum 4
Number of unidentified lines 3
Number of lines tentatively identified by NID 1

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma
Nuclide Hlife Decay pCi/KG WET pCi/KG WET 2-Sigma Error %Error Flags
K-40 1.28E+09Y 1.00 4.090E+03 4.090E+03 0.771E+03 18.86

Total Activity: 4.090E+03 4.090E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Page :

1.18E+00

Unidentified Energy Lines Sample ID: 14L28642-2

Acquisition date : 19-JUN-2006 11:15:08

25.00%

Energy FWHM Channel Left Pw Cts/Sec %Err Ιt Area Bkgnd %Eff Flags 84.95 57 1 340 1.64 171.20 167 8 3.51E-03 **** 1.87E+00 1 352.61 48 201 1.64 708.12 702 11 2.96E-03 **** 1.79E+00

2.16 1222.76 1216 13 2.52E-03 ****

Flags: "T" = Tentatively associated

41

Summary of Nuclide Activity

Total number of lines in spectrum 4
Number of unidentified lines 3
Number of lines tentatively identified by NID 1

166

Nuclide Type : natural

609.69

1

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/KG WET pCi/KG WET 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 4.090E+03 4.090E+03 0.771E+03 18.86 _____ ______

Total Activity: 4.090E+03 4.090E+03

Grand Total Activity: 4.090E+03 4.090E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

CO-60

No interference correction performed

1.154E+01

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/KG WET)	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA
K-40	4.090E+03	7.714E+02	6.644E+02	0.000E+00	6.156
Non-Id	dentified Nuclides				
Nuclide	Key-Line Activity K.L. (pCi/KG WET)Ided	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA
BE-7 NA-24	4.157E+01 -5.101E+14	6.331E+02 5.175E+14	1.042E+03 Half-Life too	0.000E+00 short	0.040
CR-51 MN-54	3.306E+02 -3.611E+01	1.045E+03 5.222E+01	1.747E+03 8.309E+01	0.000E+00 0.000E+00	0.189 -0.435
CO-57 CO-58 FE-59	-3.392E-01 1.170E+01 -6.122E+01	4.048E+01 6.686E+01	6.700E+01 1.109E+02	0.000E+00 0.000E+00	-0.005 0.105
CO CO	-0.122E+U1	1.571E+02	2.541E+02	0.000E+00	-0.241

7.769E+01

0.000E+00

0.149

4.650E+01

ZN-65	1.413E+02	1.130E+02	1.987E+02	0.000E+00	0.711
SE-75	1.927E+01	7.676E+01	1.263E+02	0.000E+00	0.153
SR-85	5.443E+02	7.800E+01	1.520E+02	0.000E+00	3.581
Y-88	5.809E+00	5.371E+01	8.931E+01	0.000E+00	0.065
NB-94	3.097E+01	4.592E+01	7.789E+01	0.000E+00	0.398
ZRNB-95	2.030E+01	6.961E+01	1.162E+02	0.000E+00	0.175
MO-99	3.960E+00	4.421E+00	Half-Life to	oo short	0.1.70
RU-103	-5.757E+02	1.090E+02	1.474E+02	0.000E+00	-3.905
RU-106	1.788E+02	5.356E+02	7.700E+02	0.000E+00	0.232
AG-110m	-1.038E+01	5.146E+01	8.447E+01	0.000E+00	-0.123
SN-113	-7.513E-01	7.531E+01	1.242E+02	0.000E+00	-0.006
SB-124	2.108E+02	9.183E+01	1.401E+02	0.000E+00	1.505
SB-125	7.094E+01	1.390E+02	2.325E+02	0.000E+00	0.305
TE-129M	-7.514E+02	1.137E+03	1.824E+03	0.000E+00	-0.412
I-131	-2.132E+02	1.690E+03	2.449E+03	0.000E+00	-0.087
BA-133	1.371E+02	6.588E+01	1.151E+02	0.000E+00	1.192
CS-134	1.721E+02	5.144E+01	9.342E+01	0.000E+00	1.843
CS-136	-3.995E+01	3.759E+02	6.151E+02	0.000E+00	-0.065
CS-137	-2.137E+01	5.127E+01	8.339E+01	0.000E+00	-0.256
CE-139	4.497E+01	4.839E+01	8.134E+01	0.000E+00	0.553
BALA140	-9.627E+01	3.786E+02	6.130E+02	0.000E+00	-0.157
CE-141	1.393E+02	1.477E+02	2.489E+02	0.000E+00	0.560
CE-144	1.278E+02	3.133E+02	5.226E+02	0.000E+00	0.245
EU-152	-3.953E+01	1.738E+02	2.378E+02	0.000E+00	-0.166
EU-154	-1.005E+01	7.782E+01	1.285E+02	0.000E+00	-0.078
RA-226	-9.047E+02	1.055E+03	1.659E+03	0.000E+00	-0.545
AC-228	-2.498E+02	1.854E+02	2.806E+02	0.000E+00	-0.890
TH-228	3.674E+01	8.755E+01	1.416E+02	0.000E+00	0.259
TH-232	-2.465E+02	1.829E+02	2.769E+02	0.000E+00	-0.890
U-235	1.235E+02	2.906E+02	4.845E+02	0.000E+00	0.255
U-238	-1.184E+02	5.231E+03	8.537E+03	0.000E+00	-0.014
AM-241	-7.186E+02	5.191E+02	8.271E+02	0.000E+00	-0.869
				3.0002.00	0.000

-0.014

-0.869

8.271E+02,,

```
,06/19/2006 15:45,05/10/2006 09:00,
A,14L28642-2
                                                                 1.676E-01,L28642-2 FI EX
B,14L28642-2
                     , EXELONFSSDVG
                                             ,06/14/2006 10:50,14B300082004
C, K-40
            ,YES,
                     4.090E+03,
                                    7.714E+02,
                                                   6.644E+02,,
                                                                    6.156
C, BE-7
            , NO
                     4.157E+01,
                                    6.331E+02,
                                                   1.042E+03,,
                                                                    0.040
C, CR-51
            , NO
                     3.306E+02,
                                    1.045E+03,
                                                   1.747E+03,,
                                                                    0.189
            , NO
C, MN-54
                    -3.611E+01,
                                    5.222E+01,
                                                   8.309E+01,,
                                                                   -0.435
            ,NO
C, CO-57
                    -3.392E-01,
                                    4.048E+01,
                                                   6.700E+01,,
                                                                   -0.005
           , NO
C, CO-58
                     1.170E+01,
                                    6.686E+01,
                                                   1.109E+02,,
                                                                    0.105
C, FE-59
            , NO
                    -6.122E+01,
                                    1.571E+02,
                                                   2.541E+02,,
                                                                   -0.241
C, CO-60
            ,NO
                     1.154E+01,
                                    4.650E+01,
                                                   7.769E+01,,
                                                                    0.149
C, ZN-65
            , NO
                     1.413E+02,
                                    1.130E+02,
                                                   1.987E+02,,
                                                                    0.711
C, SE-75
            , NO
                     1.927E+01,
                                                   1.263E+02,,
                                    7.676E+01,
                                                                    0.153
                     5.443E+02,
C,SR-85
            , NO
                                    7.800E+01,
                                                   1.520E+02,,
                                                                    3.581
C, Y-88
            , NO
                     5.809E+00,
                                    5.371E+01,
                                                   8.931E+01,,
                                                                    0.065
C, NB-94
            , NO
                     3.097E+01,
                                    4.592E+01,
                                                   7.789E+01,,
                                                                    0.398
C, ZRNB-95
           , NO
                     2.030E+01,
                                                   1.162E+02,,
                                    6.961E+01.
                                                                    0.175
                    -5.757E+02,
C, RU-103
            , NO
                                    1.090E+02,
                                                   1.474E+02,,
                                                                   -3.905
           ,NO
C, RU-106
                     1.788E+02,
                                    5.356E+02,
                                                   7.700E+02,,
                                                                    0.232
C, AG-110m
           , NO
                    -1.038E+01,
                                    5.146E+01,
                                                   8.447E+01,,
                                                                   -0.123
C, SN-113
            , NO
                    -7.513E-01,
                                    7.531E+01,
                                                   1.242E+02,,
                                                                   -0.006
C,SB-124
           , NO
                     2.108E+02,
                                    9.183E+01,
                                                   1.401E+02,,
                                                                    1.505
C,SB-125
           , NO
                     7.094E+01,
                                    1.390E+02,
                                                   2.325E+02,,
                                                                    0.305
C, TE-129M
           , NO
                    -7.514E+02,
                                    1.137E+03
                                                   1.824E+03,,
                                                                   -0.412
C, I-131
           , NO
                   -2.132E+02,
                                                   2.449E+03,,
                                    1.690E+03,
                                                                   -0.087
C,BA-133
           , NO
                     1.371E+02,
                                    6.588E+01,
                                                   1.151E+02,,
                                                                    1.192
C, CS-134
           ,NO
                     1.721E+02,
                                    5.144E+01,
                                                   9.342E+01,,
                                                                    1.843
C, CS-136
           , NO
                   -3.995E+01,
                                    3.759E+02,
                                                   6.151E+02,,
                                                                   -0.065
           , NO
C, CS-137
                   -2.137E+01,
                                    5.127E+01,
                                                   8.339E+01,,
                                                                   -0.256
C, CE-139
           , NO
                     4.497E+01,
                                    4.839E+01,
                                                   8.134E+01,,
                                                                    0.553
C,BALA140
           , NO
                   -9.627E+01,
                                    3.786E+02,
                                                   6.130E+02,,
                                                                   -0.157
           , NO
C,CE-141
                    1.393E+02,
                                    1.477E+02,
                                                   2.489E+02,,
                                                                    0.560
C, CE-144
           , NO
                    1.278E+02,
                                    3.133E+02,
                                                   5.226E+02,,
                                                                    0.245
C, EU-152
           , NO
                                   1.738E+02,
                   -3.953E+01,
                                                  2.378E+02,,
                                                                   -0.166
C, EU-154
           , NO
                   -1.005E+01,
                                                  1.285E+02,,
                                    7.782E+01,
                                                                   -0.078
C, RA-226
           , NO
                   -9.047E+02
                                   1.055E+03,
                                                  1.659E+03,,
                                                                   -0.545
C, AC-228
                   -2.498E+02,
           , NO
                                    1.854E+02,
                                                  2.806E+02,,
                                                                   -0.890
C, TH-228
           ,NO
                    3.674E+01,
                                   8.755E+01,
                                                  1.416E+02,,
                                                                    0.259
C, TH-232
           , NO
                   -2.465E+02,
                                   1.829E+02,
                                                  2.769E+02,,
                                                                   -0.890
C, U-235
           , NO
                    1.235E+02,
                                   2.906E+02,
                                                  4.845E+02,,
                                                                    0.255
C, U-238
           , NO
                   -1.184E+02,
                                   5.231E+03,
                                                  8.537E+03,,
```

5.191E+02,

C, AM-241

,NO ,

-7.186E+02

Sec. Review: Analyst: LIMS:

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-JUN-2006 13:05:15.41 TBE11 P-20610B HpGe ******* Aquisition Date/Time: 19-JUN-2006 11:15:10.15

LIMS No., Customer Name, Client ID: L28642-3 FI EXELON

Sample ID : 11L28642-3 Smple Date: 10-MAY-2006 14:30:00.

Sample Type : FI Geometry : 11B300082404

Quantity : 1.84940E-01 KG WET BKGFILE : 11BG060306MT

Start Channel : 40 Energy Tol : 1.00000 Real Time : 0 01:50:03.08

End Channel : 4090 Pk Srch Sens: 5.00000 Live time : 0 01:50:01.07

MDA Constant : 0.00 Library Used: EXELONFSSDVG

Pk	It	Energy	Area	Bkgnd	FWHM (Channel	%Eff	Cts/Sec	%Err	Fit
1	0	85.24*	47	239	0.64	169.59	2.44E+00	7.15E-03	72.8	
2	0	238.38*	58	80	1.32	476.72	2.63E+00	8.83E-03	35.9	
3	0	352.16*	14	67				2.18E-031		
4	0	608.67*	47	49				7.19E-03		
5	0	1120.36*	30					4.61E-03		
6	0	1237.39	15					2.33E-03		
7	0	1460.00*	144					2.18E-02		

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected	Decay Corr	2-Sigma
Nuclide	Energy	Area	%Abn	%Eff	pCi/KG WET	pCi/KG WET	
K-40	1460.81	144	10.67*				19.99
TH-228	238.63	58	44.60*	2.634E+00	1.098E+02	1.143E+02	71.78

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID : 11L28642-3

Page: 2 Acquisition date : 19-JUN-2006 11:15:10

7

5

Total number of lines in spectrum Number of unidentified lines

Number of lines tentatively identified by NID 2 28.57%

Nuclide Type : natural

Uncorrected Decay Corr Decay Corr 2-Sigma Decay pCi/KG WET pCi/KG WET 2-Sigma Error %Error Flags Hlife Nuclide

K-40 1.28E+09Y 1.00 5.118E+03 5.118E+03 1.023E+03 19.99 TH-228 1.91Y 1.04 1.098E+02 1.143E+02 0.820E+02 71.78 _____

Total Activity: 5.227E+03 5.232E+03

Grand Total Activity : 5.227E+03 5.232E+03

Flags: "K" = Keyline not found

"M" = Manually accepted
"A" = Nuclide specific abn. limit "E" = Manually edited

Unidentified Energy Lines Sample ID: 11L28642-3

Page: 3
Acquisition date: 19-JUN-2006 11:15:10

28.57%

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
0	85.24	47	239	0.64	169.59	163	14	7.15E-03	***	2.44E+00	
0	352.16	14	67	1.39						1.96E+00	
0	608.67	47	49	1.22						1.24E+00	
0	1120.36	30								7.34E-01	
0	1237.39	15	15	2.94	2475.98	2471	9	2.33E-03	****	6.73E-01	

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 7
Number of unidentified lines 5
Number of lines tentatively identified by NID 2

Nuclide Type : natural

Wtd Mean Wtd Mean Uncorrected Decay Corr Decay Corr 2-Sigma Nuclide Hlife Decay pCi/KG WET pCi/KG WET 2-Sigma Error %Error Flags K-40 1.28E+09Y 1.00 5.118E+03 5.118E+03 1.023E+03 19.99 TH-228 1.91Y 1.04 1.098E+02 1.143E+02 0.820E+02 71.78 Total Activity: 5.227E+03 5.232E+03

Grand Total Activity: 5.227E+03 5.232E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

BE-7

NA-24

CR-51

MN-54

No interference correction performed

-1.085E+02

2.852E+12

-4.130E+02

1.255E+01

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/KG WET)	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA
K-40 TH-228	5.118E+03 1.143E+02	1.023E+03 8.203E+01	6.710E+02 1.213E+02	0.000E+00 0.000E+00	7.627 0.942
Non-I	dentified Nuclides	and the day			
Nuclide	Key-Line Activity K.L. (pCi/KG WET)Ided	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA

9.407E+02

8.440E+01

Half-Life too short

1.650E+03 0.000E+00

0.000E+00

0.000E+00

-0.115

-0.250

0.149

5.855E+02

3.708E+14

1.020E+03

5.026E+01

					**
CO-57	1.202E+01	3.983E+01	6.652E+01	0.000E+00	0.181
CO-58	4.020E+01	6.946E+01	1.202E+02	0.000E+00	0.334
FE-59	1.838E+01	1.403E+02	2.364E+02	0.000E+00	0.078
CO-60	-1.147E+01	5.308E+01	8.445E+01	0.000E+00	-0.136
ZN-65	2.376E+02	1.296E+02	2.333E+02	0.000E+00	1.019
SE-75	5.273E+01	7.372E+01	1.269E+02	0.000E+00	0.415
SR-85	3.120E+02	8.787E+01	1.693E+02	0.000E+00	1.843
Y-88	-1.829E+01	5.909E+01	9.109E+01	0.000E+00	-0.201
NB-94	-1.504E+01	4.685E+01	7.517E+01	0.000E+00	-0.200
ZRNB-95	3.309E+00	6.657E+01	1.100E+02	0.000E+00	0.030
MO-99	3.365E+00	4.185E+00	Half-Life to		0.000
RU-103	6.178E+01	9.060E+01	1.553E+02	0.000E+00	0.398
RU-106	2.088E+02	4.613E+02	7.847E+02	0.000E+00	0.266
AG-110m	-7.340E-01	5.099E+01	8.425E+01	0.000E+00	-0.009
SN-113	4.103E+01	7.385E+01	1.257E+02	0.000E+00	0.326
SB-124	-5.387E+01	9.127E+01	1.195E+02	0.000E+00	-0.451
SB-125	1.050E+02	1.322E+02	2.286E+02	0.000E+00	0.459
TE-129M	2.396E+02	1.186E+03	1.966E+03	0.000E+00	0.122
I-131	4.844E+01	1.467E+03	2.422E+03	0.000E+00	0.020
BA-133	5.640E+01	7.944E+01	1.173E+02	0.000E+00	0.481
CS-134	4.623E+01	6.295E+01	9.483E+01	0.000E+00	0.487
CS-136	-3.443E+01	3.487E+02	5.653E+02	0.000E+00	-0.061
CS-137	2.474E+01	5.109E+01	8.796E+01	0.000E+00	0.281
CE-139	-8.060E+00	4.597E+01	7.462E+01	0.000E+00	-0.108
BALA140	-8.567E+01	3.654E+02	5.780E+02	0.000E+00	-0.148
CE-141	1.739E+02	1.473E+02	2.542E+02	0.000E+00	0.684
CE-144	1.035E+02	3.104E+02	5.181E+02	0.000E+00	0.200
EU-152	-1.032E+02	1.614E+02	2.264E+02	0.000E+00	-0.456
EU-154	4.285E+01	7.654E+01	1.292E+02	0.000E+00	0.332
RA-226	-5.049E+01	1.068E+03	1.737E+03	0.000E+00	-0.029
AC-228	-1.693E+02	2.083E+02	3.163E+02	0.000E+00	-0.535
TH-232	-1.671E+02	2.055E+02	3.122E+02	0.000E+00	-0.535
U-235	4.606E+02	2.884E+02	5.060E+02	0.000E+00	0.910
U-238	2.568E+03	4.979E+03	8.752E+03	0.000E+00	0.293
AM-241	-6.680E+01	4.300E+02	6.914E+02	0.000E+00	-0.097
				0.0001100	-0.057

```
A,11L28642-3
                     ,06/19/2006 13:05,05/10/2006 14:30,
                                                                 1.849E-01,L28642-3 FI EX
B,11L28642-3
                     , EXELONFSSDVG
                                             ,06/07/2006 09:40,11B300082404
C, K-40
           , YES,
                     5.118E+03,
                                    1.023E+03,
                                                   6.710E+02,,
                                                                     7.627
C, TH-228
           , YES,
                     1.143E+02,
                                    8.203E+01,
                                                   1.213E+02,,
                                                                     0.942
C, BE-7
           ,NO
                    -1.085E+02,
                                    5.855E+02,
                                                   9.407E+02,,
                                                                   -0.115
C, CR-51
                                    1.020E+03,
           , NO
                    -4.130E+02,
                                                   1.650E+03,,
                                                                   -0.250
C, MN-54
           , NO
                     1.255E+01,
                                    5.026E+01,
                                                   8.440E+01,,
                                                                     0.149
C, CO-57
           , NO
                     1.202E+01,
                                    3.983E+01,
                                                   6.652E+01,,
                                                                     0.181
           , NO
C, CO-58
                     4.020E+01,
                                    6.946E+01,
                                                   1.202E+02,,
                                                                    0.334
C,FE-59
           , NO
                     1.838E+01,
                                    1.403E+02,
                                                   2.364E+02,,
                                                                    0.078
C, CO-60
           , NO
                    -1.147E+01,
                                                   8.445E+01,,
                                    5.308E+01,
                                                                   -0.136
C, ZN-65
            , NO
                     2.376E+02,
                                    1.296E+02,
                                                   2.333E+02,,
                                                                    1.019
C, SE-75
           , NO
                     5.273E+01,
                                    7.372E+01,
                                                   1.269E+02,,
                                                                    0.415
C, SR-85
           , NO
                     3.120E+02,
                                    8.787E+01,
                                                   1.693E+02,,
                                                                    1.843
C, Y-88
           , NO
                   -1.829E+01,
                                    5.909E+01,
                                                   9.109E+01,,
                                                                   -0.201
C, NB-94
           ,NO
                   -1.504E+01,
                                    4.685E+01,
                                                   7.517E+01,,
                                                                   -0.200
C, ZRNB-95
           , NO
                     3.309E+00,
                                    6.657E+01,
                                                   1.100E+02,,
                                                                    0.030
C, RU-103
           , NO
                     6.178E+01,
                                    9.060E+01,
                                                   1.553E+02,,
                                                                    0.398
C, RU-106
           , NO
                     2.088E+02,
                                    4.613E+02,
                                                   7.847E+02,,
                                                                    0.266
C, AG-110m
           , NO
                   -7.340E-01,
                                                   8.425E+01,,
                                    5.099E+01,
                                                                   -0.009
C,SN-113
           , NO
                    4.103E+01,
                                    7.385E+01,
                                                   1.257E+02,,
                                                                    0.326
C,SB-124
           , NO
                   -5.387E+01,
                                                   1.195E+02,,
                                    9.127E+01,
                                                                   -0.451
C,SB-125
           , NO
                    1.050E+02,
                                    1.322E+02,
                                                   2.286E+02,,
                                                                    0.459
C, TE-129M
           , NO
                    2.396E+02,
                                    1.186E+03,
                                                   1.966E+03,,
                                                                    0.122
           , NO
C, I-131
                    4.844E+01,
                                    1.467E+03,
                                                   2.422E+03,,
                                                                    0.020
C,BA-133
           , NO
                    5.640E+01,
                                    7.944E+01
                                                   1.173E+02,,
                                                                    0.481
           , NO
C, CS-134
                    4.623E+01,
                                    6.295E+01,
                                                   9.483E+01,,
                                                                    0.487
C, CS-136
           , NO
                   -3.443E+01,
                                    3.487E+02,
                                                   5.653E+02,,
                                                                   -0.061
C,CS-137
           , NO
                    2.474E+01,
                                    5.109E+01,
                                                   8.796E+01,,
                                                                    0.281
C,CE-139
           , NO
                   -8.060E+00,
                                    4.597E+01,
                                                   7.462E+01,,
                                                                   -0.108
C, BALA140
           , NO
                   -8.567E+01,
                                    3.654E+02,
                                                   5.780E+02,,
                                                                   -0.148
C, CE-141
           , NO
                    1.739E+02,
                                    1.473E+02,
                                                   2.542E+02,,
                                                                    0.684
C, CE-144
           , NO
                    1.035E+02,
                                                   5.181E+02,,
                                    3.104E+02,
                                                                    0.200
C, EU-152
           , NO
                   -1.032E+02,
                                    1.614E+02,
                                                   2.264E+02,,
                                                                   -0.456
C, EU-154
           , NO
                    4.285E+01,
                                    7.654E+01,
                                                   1.292E+02,,
                                                                    0.332
C, RA-226
           , NO
                   -5.049E+01,
                                    1.068E+03,
                                                   1.737E+03,,
                                                                   -0.029
C, AC-228
           , NO
                   -1.693E+02,
                                   2.083E+02,
                                                   3.163E+02,,
                                                                   -0.535
C, TH-232
           , NO
                   -1.671E+02,
                                   2.055E+02,
                                                   3.122E+02,,
                                                                   -0.535
C, U-235
           , NO
                    4.606E+02,
                                    2.884E+02,
                                                   5.060E+02,,
                                                                    0.910
C, U-238
           , NO
                    2.568E+03,
                                   4.979E+03,
                                                   8.752E+03,,
                                                                    0.293
```

4.300E+02,

6.914E+02,,

-0.097

C,AM-241

, NO

-6.680E+01,

VAX/VMS Teledyne Brown Eng. Laboratory Gamma Report: 19-JUN-2006 12:27:26.98 TBE13 P-10727B HpGe ******* Aquisition Date/Time: 19-JUN-2006 11:15:13.71

LIMS No., Customer Name, Client ID: L28642-4 FI EXELON/BYRON

Sample ID : 13L28642-4 Smple Date: 10-MAY-2006 14:30:00.

 Sample Type
 : FI
 Geometry
 : 13B300082504

 Quantity
 : 2.39780E-01 KG WET
 BKGFILE
 : 13BG060306MT

 Start Channel
 : 25
 Energy Tol
 : 1.50000
 Real Time
 : 0 01:12:02.47

 End Channel
 : 4090
 Pk Srch Sens: 5.00000
 Live time
 : 0 01:12:01.33

MDA Constant : 0.00 Library Used: EXELONFSSDVG

Pk	It	Energy	Area	Bkgnd	FWHM	Channel	%Eff	Cts/Sec %Err	Fit
1 2	2 1	77.21* 85.40*	15 74	91 144	1.12	154.39		3.51E-03118.3	
3	1	185.47*	74 9	58	1.16	170.77 370.91		1.71E-02 35.8 2.15E-03168.0	
-	1	238.46*	7	55	0.95	476.91		1.69E-03195.4	
5	1	294.78*	23	31	1.67	589.55	2.28E+00	5.44E-03 49.0	2.27E+00
6	1	351.70*	4	63	1.33	703.42	2.00E+00	8.88E-04417.9	8.59E-01
7	1	510.65*	24	66	3.06	1021.39	1.51E+00	5.57E-03 87.4	2.20E+00
8	1	911.69*	16	11	2.70	1823.83	9.52E-01	3.73E-03 52.7	5.43E-01
9	1	1461.13*	69	0	2.30	2923.56		1.60E-02 15.6	

Flag: "*" = Peak area was modified by background subtraction

Nuclide Line Activity Report

Nuclide Type: natural

					Uncorrected Decay Corr 2	-Siqma
Nuclide	Energy	Area	%Abn	%Eff	pCi/KG WET pCi/KG WET	%Error
K-40	1460.81	69	10.67*	6.602E-01	2.561E+03 2.561E+03	31.20
RA-226	186.21	9	3.28*	3.036E+00	2.432E+02 2.432E+02 3	36.04
AC-228	835.71		1.75	1.022E+00	Line Not Found -	
	911.07	16	27.70*	9.525E-01	1.592E+02 1.613E+02 1	05.47
TH-228	238.63	7	44.60*	2.631E+00		90.78
U-235	143.76		10.50*	3.285E+00	Line Not Found -	
	163.35		4.70	3.193E+00	Line Not Found -	
	185.71	9	54.00	3.036E+00		36.04
	205.31		4.70	2.881E+00	-	

Flag: "*" = Keyline

Summary of Nuclide Activity Sample ID: 13L28642-4

Page: 2 Acquisition date: 19-JUN-2006 11:15:13

Total number of lines in spectrum 9
Number of unidentified lines 5

Number of lines tentatively identified by NID 4 44.44%

Nuclide Type : natural

Nuclide K-40 RA-226 AC-228	1.28E+09Y 1600.00Y 5.75Y	1.00 1.00 1.01	2.432E+02 1.592E+02	2.561E+03 2.432E+02 1.613E+02	2-Sigma Error 0.799E+03 8.172E+02 1.702E+02	31.20 336.04 105.47	
TH-228 U-235	1.91Y 7.04E+08Y	1.04	1.621E+01	1.613E+02 1.687E+01 1.477E+01	1.702E+02 6.592E+01 4.964E+01	390.78	K

Total Activity: 2.995E+03 2.998E+03

Grand Total Activity: 2.995E+03 2.998E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Unidentified Energy Lines Sample ID: 13L28642-4

Page: 3 Acquisition date: 19-JUN-2006 11:15:13

It	Energy	Area	Bkgnd	FWHM	Channel	Left	Pw	Cts/Sec	%Err	%Eff	Flags
2	77.21	15	91	1.12	154.39	148	10	3.51E-03	***	2.00E+00)
1	85.40	74	144	1.16				1.71E-02			
1	294.78	23	31	1.67				5.44E-03			
1	351.70	4	63	1.33				8.88E-04			
1	510.65	24	66	3.06				5.57E-03			

Flags: "T" = Tentatively associated

Summary of Nuclide Activity

Total number of lines in spectrum 9
Number of unidentified lines 5
Number of lines tentatively identified by NID 4 44.44%

Nuclide Type : natural

2.00 2 2 0.0	1100 . 11000						
			Wtd Mean	Wtd Mean			
			Uncorrected	Decay Corr	Decay Corr	2-Sigma	
Nuclide	Hlife	Decay	pCi/KG WET	pCi/KG WET			
K-40	1.28E+09Y	1.00	2.561E+03	2.561E+03	0.799E+03	31.20	5
RA-226	1600.00Y	1.00	2.432E+02	2.432E+02	8.172E+02	336.04	
AC-228	5.75Y	1.01	1.592E+02	1.613E+02	1.702E+02	105.47	
TH-228	1.91Y	1.04	1.621E+01	1.687E+01	6.592E+01	390.78	
	Total Acti	.vity :	2.980E+03	2.983E+03			

Grand Total Activity: 2.980E+03 2.983E+03

Flags: "K" = Keyline not found "M" = Manually accepted

"E" = Manually edited "A" = Nuclide specific abn. limit

Interference Report

No interference correction performed

Combined Activity-MDA Report

---- Identified Nuclides ----

Nuclide	Activity (pCi/KG WET)	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA
K-40	2.561E+03	7.991E+02	6.916E+02	0.000E+00	3.703
RA-226	2.432E+02	8.172E+02	1.393E+03	0.000E+00	0.175
AC-228	1.613E+02	1.702E+02	2.503E+02	0.000E+00	0.645
TH-228	1.687E+01	6.592E+01	1.193E+02	0.000E+00	0.141

---- Non-Identified Nuclides ----

	Key-Line				
Nuclide	Activity K.L. (pCi/KG WET)Ided	Act error	MDA (pCi/KG WET)	MDA error	Act/MDA

					4
BE-7	-7.646E+01	6.480E+02	1.039E+03	0.000E+00	-0.074
NA-24	-3.700E+14	3.844E+14	Half-Life too		0.0,1,
CR-51	-1.494E+02	9.525E+02	1.569E+03	0.000E+00	-0.095
MN-54	1.501E+01	5.041E+01	8.550E+01	0.000E+00	0.176
CO-57	-1.261E+00	3.333E+01	5.449E+01	0.000E+00	-0.023
CO-58	-1.924E+01	6.377E+01	1.013E+02	0.000E+00	-0.190
FE-59	-1.075E+02	1.695E+02	2.561E+02	0.000E+00	-0.420
CO-60	-6.645E+00	4.898E+01	7.932E+01	0.000E+00	-0.084
ZN-65	9.768E+01	1.256E+02	2.238E+02	0.000E+00	0.437
SE-75	2.771E+01	6.358E+01	1.069E+02	0.000E+00	0.259
SR-85	3.825E+02	9.565E+01	1.794E+02	0.000E+00	2.133
Y-88	-4.359E+01	5.167E+01	6.614E+01	0.000E+00	-0.659
NB-94	1.956E+01	4.716E+01	8.137E+01	0.000E+00	0.240
ZRNB-95	3.594E+01	5.868E+01	1.040E+02	0.000E+00	0.345
MO-99	-6.951E+00	3.887E+00	Half-Life too		0.313
RU-103	-2.022E+00	8.373E+01	1.390E+02	0.000E+00	-0.015
RU-106	2.272E+02	4.758E+02	8.133E+02	0.000E+00	0.279
AG-110m	-2.896E+00	5.234E+01	8.484E+01	0.000E+00	-0.034
SN-113	5.258E+01	7.040E+01	1.223E+02	0.000E+00	0.430
SB-124	-8.688E+01	8.855E+01	1.345E+02	0.000E+00	-0.646
SB-125	5.352E+01	1.278E+02	2.159E+02	0.000E+00	0.248
TE-129M	-1.375E+02	1.171E+03	1.883E+03	0.000E+00	-0.073
I-131	9.901E+02	1.456E+03	2.514E+03	0.000E+00	0.394
BA-133	-3.711E+01	7.854E+01	1.052E+02	0.000E+00	-0.353
CS-134	4.775E+01	5.674E+01	9.875E+01	0.000E+00	0.484
CS-136	1.394E+02	3.553E+02	6.104E+02	0.000E+00	0.228
CS-137	2.341E+01	5.287E+01	8.960E+01	0.000E+00	0.261
CE-139	-1.270E+01	4.212E+01	6.657E+01	0.000E+00	-0.191
BALA140	2.518E+02	3.535E+02	6.610E+02	0.000E+00	0.381
CE-141	5.261E+00	1.353E+02	2.202E+02	0.000E+00	0.024
CE-144	-7.405E+01	2.632E+02	4.216E+02	0.000E+00	-0.176
EU-152	-4.502E+01	1.457E+02	2.053E+02	0.000E+00	-0.219
EU-154	-3.446E+01	6.502E+01	1.029E+02	0.000E+00	-0.335
TH-232	1.592E+02 +	1.679E+02	3.219E+02	0.000E+00	0.495
U-235	1.111E+02	2.681E+02	4.480E+02	0.000E+00	0.248
U-238	3.147E+03	5.570E+03	9.829E+03	0.000E+00	0.320
AM-241	-4.441E+02	2.755E+02	3.988E+02	0.000E+00	-1.114
					يق مقد مات • سدد

```
A, 13L28642-4
                     ,06/19/2006 12:27,05/10/2006 14:30,
                                                                 2.398E-01,L28642-4 FI EX
B,13L28642-4
                     , EXELONFSSDVG
                                             ,06/13/2006 09:43,13B300082504
            ,YES,
C, K-40
                     2.561E+03,
                                    7.991E+02,
                                                   6.916E+02,,
                                                                    3.703
C, RA-226
            ,YES,
                     2.432E+02,
                                    8.172E+02,
                                                   1.393E+03,,
                                                                    0.175
            , YES,
C, AC-228
                     1.613E+02,
                                    1.702E+02,
                                                   2.503E+02,,
                                                                    0.645
C, TH-228
            , YES,
                     1.687E+01,
                                    6.592E+01,
                                                   1.193E+02,,
                                                                    0.141
C, BE-7
            ,NO
                    -7.646E+01,
                                    6.480E+02,
                                                   1.039E+03,,
                                                                   -0.074
                    -1.494E+02,
C, CR-51
            , NO
                                    9.525E+02,
                                                   1.569E+03,,
                                                                   -0.095
C, MN-54
            , NO
                     1.501E+01,
                                    5.041E+01,
                                                   8.550E+01,,
                                                                    0.176
            , NO
C, CO-57
                    -1.261E+00,
                                    3.333E+01,
                                                   5.449E+01,,
                                                                   -0.023
C, CO-58
            , NO
                    -1.924E+01,
                                                   1.013E+02,,
                                    6.377E+01,
                                                                   -0.190
C, FE-59
            , NO
                    -1.075E+02,
                                    1.695E+02,
                                                   2.561E+02,,
                                                                   -0.420
C, CO-60
            , NO
                    -6.645E+00,
                                    4.898E+01,
                                                   7.932E+01,,
                                                                   -0.084
C, ZN-65
            ,NO
                     9.768E+01,
                                    1.256E+02,
                                                   2.238E+02,,
                                                                    0.437
                     2.771E+01,
C, SE-75
            , NO
                                    6.358E+01,
                                                   1.069E+02,,
                                                                    0.259
C, SR-85
            , NO
                     3.825E+02,
                                    9.565E+01,
                                                   1.794E+02,,
                                                                    2.133
C, Y-88
            , NO
                    -4.359E+01,
                                    5.167E+01,
                                                   6.614E+01,,
                                                                   -0.659
            ,NO
C, NB-94
                     1.956E+01,
                                    4.716E+01,
                                                   8.137E+01,,
                                                                    0.240
C, ZRNB-95
                                    5.868E+01,
            , NO
                     3.594E+01,
                                                   1.040E+02,,
                                                                    0.345
C, RU-103
            , NO
                    -2.022E+00,
                                    8.373E+01,
                                                   1.390E+02,,
                                                                   -0.015
C, RU-106
            , NO
                     2.272E+02,
                                    4.758E+02,
                                                   8.133E+02,,
                                                                    0.279
C, AG-110m , NO
                    -2.896E+00,
                                                   8.484E+01,,
                                    5.234E+01,
                                                                   -0.034
            , NO
C,SN-113
                     5.258E+01,
                                    7.040E+01,
                                                   1.223E+02,,
                                                                    0.430
C,SB-124
                   -8.688E+01,
            , NO
                                    8.855E+01,
                                                   1.345E+02,,
                                                                   -0.646
            , NO
C,SB-125
                     5.352E+01,
                                    1.278E+02,
                                                   2.159E+02,,
                                                                    0.248
C, TE-129M
           , NO
                    -1.375E+02,
                                    1.171E+03,
                                                   1.883E+03,,
                                                                   -0.073
           , NO
C, I-131
                     9.901E+02,
                                    1.456E+03,
                                                   2.514E+03,,
                                                                    0.394
C, BA-133
                   -3.711E+01,
           , NO
                                    7.854E+01,
                                                   1.052E+02,,
                                                                   -0.353
C, CS-134
           ,NO
                     4.775E+01,
                                    5.674E+01,
                                                   9.875E+01,,
                                                                    0.484
C, CS-136
                     1.394E+02,
                                    3.553E+02,
           , NO
                                                   6.104E+02,,
                                                                    0.228
C, CS-137
           , NO
                     2.341E+01,
                                    5.287E+01,
                                                   8.960E+01,,
                                                                    0.261
C, CE-139
           , NO
                   -1.270E+01,
                                    4.212E+01,
                                                   6.657E+01,,
                                                                   -0.191
C,BALA140
           , NO
                     2.518E+02,
                                                   6.610E+02,,
                                    3.535E+02,
                                                                    0.381
C, CE-141
           , NO
                     5.261E+00,
                                    1.353E+02,
                                                   2.202E+02,,
                                                                    0.024
C, CE-144
           , NO
                   -7.405E+01,
                                    2.632E+02,
                                                   4.216E+02,,
                                                                   -0.176
C, EU-152
           , NO
                   -4.502E+01,
                                    1.457E+02,
                                                   2.053E+02,,
                                                                   -0.219
C, EU-154
           , NO
                   -3.446E+01,
                                                   1.029E+02,,
                                    6.502E+01,
                                                                   -0.335
C, TH-232
           ,NO
                    1.592E+02,
                                    1.679E+02,
                                                   3.219E+02,,
                                                                    0.495
C, U-235
           , NO
                    1.111E+02,
                                    2.681E+02,
                                                   4.480E+02,,
                                                                    0.248
C, U-238
           , NO
                    3.147E+03,
                                    5.570E+03,
```

2.755E+02,

C, AM-241

,NO ,

-4.441E+02,

9.829E+03,,

3.988E+02,,

0.320

-1.114

Revision 0

APPENDIX E

DATA VALIDATION MEMORANDUM

45 Farmington Valley Drive Plainville, Connecticut 06062

Telephone: (860) 747-1800 www.CRAworld.com

Fax: (860) 747-1900

MEMORANDUM

To:

Steve Quigley

Ref. No.:

45136-21

FROM:

Kathy Shaw/ks/9/CT/

DATE:

July 6, 2006

RE:

Data Quality Assessment and Verification

Fleetwide Assessment - Hydrogeologic Investigation

Byron Generating Station - Byron, Illinois

This memorandum details a data verification of the radiochemical data resulting from the collection of 41 groundwater, and eight (8) quality control samples from the Byron Generating Station in Byron, Illinois. The sample summary detailing sample identification, sample location, quality control samples, and analytical parameters is presented in Table 1. Sample analysis was completed at Teledyne Brown Engineering in Knoxville, Tennessee (TBE) in accordance with the methodologies presented in Table 2. The quality control criteria used to assess the data were established by the methods.¹

Sample Quantitation

The laboratory reported several radionuclides with activity concentrations above the minimum detectable concentration (MDC) and greater than the three (3) sigma critical level (99% confidence interval), but qualified them as not detected due to the presence of interference preventing identification of the major peaks, with a U* flag. Based on the laboratory qualification definition these concentrations should be qualified as not-detected (U*) above the laboratory reported MDC.

Sample Preservation

Samples collected for gamma scan and total strontium analyses are to be preserved to a pH of less than or equal to two (2) during shipment and laboratory storage with nitric acid at the time of collection. The samples were shipped and maintained in accordance with the sample preservation requirements.

Method Blank Samples

Contamination of samples contributed by laboratory conditions or procedures was monitored by concurrent preparation and analysis of method blank samples. The method blank samples were reported to be free of radioactive material contamination produced by the laboratory conditions or procedures.

Laboratory Control Sample Analysis

The laboratory control sample (LCS) is a sample containing a known amount of a radionuclide that is equivalent to internal or external control samples prepared by the analytical laboratory or a Federal/State agency. The LCS percent recoveries were within the laboratory or agency control limits, indicating that an acceptable level of overall performance was achieved.

Duplicate Sample Analyses

The laboratory precision of matrix-specific measurement system was monitored by the analyses of duplicate samples. The duplicate relative percent difference (RPD) data were within the acceptance criteria. No targeted analytes were reported as detected in the laboratory duplicate sample sets.

Field Quality Assurance/Quality Control

The field quality assurance/quality control consisted of four (4) field duplicate sample sets and four (4) rinsate blank samples.

To assess the efficiency of field decontamination procedures and cleanliness of sample containers, the rinsate samples identified in Table 1 were collected and analyzed. No target radionuclides were reported as detected in the rinsate samples.

Overall precision for the sampling event and laboratory procedures were monitored using the results of the field duplicate sample sets. No matching pairs of analytes were reported as detected in the field duplicate sample sets; therefore, the level of precision could not be determined.

Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision, based on the provided information, and may be used with the qualifications noted.

TABLE 1

SAMPLE SUMMARY - FLEETWIDE INVESTIGATION FLEETWIDE TRITIUM ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Analysis	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Tritium	Trifium	Tritium/Strontium/Gamma Spectrum	Tritium
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Water	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Date	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/25/06	4/26/06	4/26/06	4/26/06	4/26/06	4/26/06	4/26/06	4/26/06	4/26/06
QC Sample									MS/MSD	Duplicate (08)					Rinsate	Rinsate			Duplicate (17)		
										Q									Н		
Sample Identification	DF-12	DF-4DS	DF-1D	DF-1S	DF-6	DF-2S	PC-2B	DF-3S	MW-36	DF-3S Du	PC-5B	DF-19	DF-24	MW-1	i	1 1	PC-6B	MW-3	PC-6B	AR-3	PC-1C

TABLE 1 Page 2 of 3

SAMPLE SUMMARY - FLEETWIDE INVESTIGATION FLEETWIDE TRITIUM ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Analysis	Tritium/Strontium/Gamma Spectrum	Tritium	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium	Tritium/Strontium/Gamma Spectrum	Tritium	Tritium/Strontium/Gamma Spectrum	Tritium	Tritium	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum
Matrix	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Water	Groundwater						
Sample Date	4/26/06	4/26/06	4/26/06	4/26/06	4/27/06	4/26/06	4/27/06	4/26/06	4/27/06	4/26/06	4/27/06	4/26/06	4/27/06	4/27/06	4/27/06	4/27/06	4/27/06	4/27/06	4/27/06	4/27/06	4/27/06
QC Sample														Rinsate					Duplicate (39)		
Sample Identification	AR-2	PC-1B	AR-10	AR-1	AR-9	AR-11	CAR-3	MW-39	AR-8	DF-13	AR-7	MW-37	MW-2.	t t	CAR-1	TW-14	TW-15	TW-13	TW-13 D	AR-6	AR-5

TABLE1 Page 3 of 3

SAMPLE SUMMARY - FLEETWIDE INVESTIGATION FLEETWIDE TRITIUM ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Analysis	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium/Strontium/Gamma Spectrum	Tritium
Matrix	Water	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Date	4/27/06	4/27/06	4/27/06	4/27/06	4/27/06	4/28/06	4/28/06
QC Sample	Rinsate			Duplicate (45)		MS/MSD	
Sample Identification	t 1	AR-4	Well 7	Well 7	CAR-2	6-MD	MW-30
Sample Location	RB-BYN-042706-SS-43	WG-BYN-042706-SS-44	WG-BYN-042706-KD-45	WG-BYN-042706-KD-46	WG-BYN-042706-SS-47	WG-BYN-042806-KD-48	WG-BYN-042806-SS-49

(i.e. Ac-228, K-40, Be-7, Ra-226, Th-228, Th-232, etc.) were reported if detected.

QC - Quality Control

Gamma Spectrum - Barium-140, Cesium-134, Cesium-137, Cobalt-58, Cobalt-60, Iron-59, Lanthanum-140,

Manganese-54, Niobium-95, Zinc-65, Zirconium-95 Isotopes not listed in Table 1, but typically detected in environmental samples

SUMMARY OF ANALYTICAL METHODS, HOLDING TIME PERIODS, AND PRESERVATIVES FLEETWIDE ASSESSMENT BYRON GENERATING STATION BYRON, ILLINOIS

Parameter	$Method^{-1}$	Matrix	Holding Time	Preservation
Tritium	EPA 906.0	Water	- 6 months	None
Strontium-89/90 (Total)	EPA 905.0	Water	- 6 months	HNO3 to pH<2
Gamma Spectrum	EPA 901.1	Water	- 6 months	HNO3 to pH<2

¹ EPA-60/40-80-032 August 1980 "Precribed Procedures For Measurement of Radioactivity In Drinking Water